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Antiphased states in intracavity second-harmonic generation: Stability of the periodic solutions
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We study the self-pulsing solutions which emerge from the steady state via a Hopf bifurcation in a
laser with intracavity second-harmonic generation. Our main result is the construction of periodic solu-
tions and the derivation of explicit amplitude equations which rule the stability of these periodic solu-
tions. In this way, we have been able to substantiate the classification into four classes of periodic solu-
tions with simple phase and amplitude relations. Near the Hopf bifurcation, the periodic solutions are
stable and the sum over the individual mode intensities is not periodic but constant, a signature of anti-
phase dynamics in this system. A fifth class of periodic solutions has been found numerically where the
sum over all modal intensities is periodic. Finally, a numerical analysis complements these results and
shows that the phase relations which characterize antiphase dynamics are maintained throughout the
route to chaos and in the first chaotic domain when the pump parameter is increased.

PACS number(s): 42.SO.Ne, 42.60.Mi

I. INTRODUCTION

Antiphase dynamics (AD) is a property displayed by
systems in which N degrees of freedom oscillate with a
strong phase correlation. In laser physics, this type of
dynamics is now well established for the self-pulsing state
of intracavity second-harmonic generation (ISHG) [1—7]
and for pulsing lasers [8—12] that can be described by the
Tang, Statz, and deMars rate equations [13] with gain or
loss modulation. For periodic solutions, antiphase dy-
namics is a highly ordered state in which the modal in-
tensities are periodic but the total intensity is either
periodic or constant. This requires a strong correlation
among the phases of the modal intensities. A generaliza-
tion of this property for transient, noisy, and chaotic dy-
namics has been observed experimentally, analytically, or
numerically. A short review of these extensions and a list
of references can be found in [14].

In the case of periodic states, the classic example of
AD is the experimental observation made by Wiesenfeld
et al. [1]. They showed that an ISHG laser could oscil-
late on three modes which self-pulse (AM modulation) in
such a way that each mode is "on" successively. Numeri-
cal simulations of the relevant equations indicate that all
modes have the same time dependence but they are phase
shifted by a constant amount ( —,

' of the period in this case)
so that the total intensity is also in a periodic state but
with a frequency which is three times larger than the
modal frequency. The fact that the low frequency which
characterizes the modal intensity dynamics disappears
from the power spectrum of the total intensity seems to
be the signature of AD which is best generalized to more
complex situations.

In a recent paper [5], we have analyzed the periodic
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solutions occurring in the equations proposed by Roy,
Bracikowski, and James [15] to describe ISHG:

M P
gdI /dt=I G a+geI ——2ge g I„2g,e g J„—,

P M
rjdJ~/dt=J H a+g—eJ —2ge g J„—2g, e. g I„

M P
dG /dt=y —G 1+(1 p)I +—p g I„+p g J„

P M
dH /dr =y H 1+(1——p)J +p g J„+p g I„

r=1 r=1

(4)

with g=~, /~f where ~, and zf are the cavity round-trip
time and fluorescence lifetime, respectively. o; is the cavi-
ty loss parameter, y' is the small signal gain which is re-
lated to the pump rate, P is the cross-saturation parame-
ter, and g is a geometrical factor whose value depends on
the phase delays of the amplifying and doubling crystals
and on the angle between the fast axes of these two crys-
tals. We have assumed that a, P, and y are mode in-
dependent, in good agreement with the experimental re-
sults [1]. The electric field modes can oscillate in one of
two orthogonal polarizations. There are M modes in one
field polarization (m =1,2, . . . , M) and P modes in the
orthogonal polarization (p = 1,2, . . . , P) with M+P =N.
I and G or J and H are, respectively, the intensity
and the nonlinear gain associated with the mth or pth
longitudinal mode. The mode-mode coupling constant is
g when the two modes have the same polarization and
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g& =1—g when the two modes have orthogonal polariza-
tions. e is a nonlinear coeKcient whose value depends on
the properties of the potassium trihydrogen phosphate
(KTP) crystal; it is a measure of the conversion efficiency
of the intensity at the fundamental frequency into the
frequency-doubled intensity.

An asymptotic analysis of Eqs. (1)—(4) has to be based
on the orders of magnitudes suggested by experiments for
the various parameters:

e«1, g «1, a, P, y, g, e/q=O(1), (5)

with the physical restrictions 0&g (1 and 0&P& 1. In
[5], we made an expansion of the amplitude of the period-
ic solutions of Eqs. (1)—(4) in powers of e'~ . The
motivation for this unusual scaling was to avoid an ex-
pansion in terms of a small parameter 0&5«1 defined
through f=fh+5, where f is a control parameter such
as a, p, or y and fh is the value of f at the Hopf bifurca-
tion. The e' expansion was only partially successful
since it produced a set of degenerate amplitude equations
for the oscillating solutions. From these equations, the
stability of the solutions could not be assessed at least to
dominant order in the small parameter. However, a posi-
tive result of that analysis was the occurrence of sum
rules which enabled a classification of the periodic solu-
tions.

In this paper, we propose a more traditional analysis in
the vicinity of the bifurcation point. This analysis leads
to a definite answer on the stability problem and the
structure of the bifurcation equations explains the
difhculties met in the previous analysis. The technical
problem is that the amplitudes are functions of at least
two small parameters, namely, e and g, and of the expan-
sion parameter if it is distinct from e and g. The limit

I

where all three parameters tend to zero is singular and
the relative magnitude between these small parameters
defines di6'erent limits.

Our starting point will be the steady-state solution in
which all modes with the same polarization have the
same intensity and nonlinear gain: I =I„G =G„
m =1,2, . . . , M, and J =J„H =H„p =1,2, . . . , P.
This steady state is not the only possible steady solution
of (1)—(4). However, for the parameter values realized
in [1], i.e., e-10, it is the stable state with the lowest
linear gain or pump parameter y. As shown in [4] and
[5], this steady state is stable if and only if (iff)

g&K y =my'+ ' +0(n),
E I~Gg E y CK

(6)

4MP Ny+— +0(g) . (7)
8MP N~ — e y —a

If all modes oscillate in the same polarization (either
M=0 or P =0), the only stability condition is (6). If
M =P = 1, the only stability condition is (7). Otherwise,
neglecting the 0 ( q ) correction in (6) and (7), these two
inequalities are compatible only if the following relation
holds:

1+(N —1)P 1
y

E p cx 2
(8)

which provides a necessary condition of stability for the
steady-state solution. If the condition (8) is not satisfied,
the steady solution will be destabilized via a Hopf bifur-
cation to a time-periodic solution for P & 1 and e (& 1. In
general, the Hopf bifurcation occurs at I» for g & —,

' and
at I„2 for g & —,':

1

ge/g —[1+(N —1)P]

Ih2=Ihzo+0(rl ),
1

[4MP /N [(8MP N) /N]g—
] e/r) ——[1+(N —1)P]

(10)

Note that if all modes oscillate with the same polariza-
tion the destabilization occurs at I» while if M=P=1
the destabilization occurs at I&2 for all g. A third Hopf
bifurcation has also been found but it requires the non-
physical value g &1. Therefore we shall not analyze it
here.

I =Ih+x (5, T,o), J =Jh+yz(5, T,o),
6 =Gh+u (5, T, o ), H~ =Hh+U~(5, T, o ),

(13)

I

Ihj(y ) =I,(y) for j=1 or 2. In the vicinity of the Hopf
bifurcation, we seek solutions of Eqs. (1)—(4) of the form

II. BIFURCATION ANALYSIS

~1 h 16h 1( I P)/9 g~Ih ly

hi�/(

96h 1 )

aPq —IhqGh2(1 —P)/g+ 0( I ), (12)

where y&J is the solution of the implicit equation

At the Hopf bifurcation, periodic solutions emerge
with a frequency given by a purely imaginary root of the
characteristic polynomial. The two frequencies are

where x, y~, u, and U~ can be expanded in powers of 5
as follows:

z(5, t)=5z, (T,o)+5 z2(T, o )+5 z.3(T,o )+0(5 ),
(14)

and the functions I„,J„,G„, and H„refer to the intensi-
ties and nonlinear gains at either of the two Hopf bifurca-
tions. The small parameter 5, the fast time T, and the
slow time o. are defined by
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y=yh+a25, 0&5«1, a2=+1,
T=mt, o =52t,

(15)
BU M P

co = H—
I, (1—P)y~&+P g x„,+P g y„,

r=l r=1

5~0, e—&0, g —+0, 5/e~0, e/rI=O(1) . (16)

This last expansion will be made explicitly in the bifur-
cation equations (48), (51), and (52). It will appear then
that only minimal qualitative information is needed from
the limit (16) to proceed with the analysis.

where co =col if Eh =Ih 1 and co =cu2 if Ih =Ih2. Thus we
seek 2N amplitudes x, u, y, and v which are 2m-

periodic functions of T in the long-time limit T~co.
The strategy we follow in this paper is to seek the period-
ic solutions for 0 & 5 « 1 with e =0 (1) and g =O(1). In
other terms, 5 is the small parameter whereas e and g are
fixed constant parameters. This will lead to equations
whose coefficients are usually too complex to be analyzed
and we shall then expand these coefficients in powers of e
and q. This procedure amounts to studying the limit

Vh
Up 1

h

(20)

This problem can be formulated as the 2NX2X matrix
equation c)z /c) T=ikz where z is the column vector

z=col[S(x, ,M), S(y„P), S(u„M), S(U„P)]

and Af is a 2XX2X constant matrix. The notation
adopted throughout this paper is that S(x &,N ) with N in-

teger is the sequence xll, x21, . . . , x». Seeking periodic
solutions of the form z ( T) -expiA, T leads to a charac-
teristic equation which we discuss in the relevant cases.

1. M=N, P =0

The bifurcation takes place at Ih =Ih, . The charac-
teristic equation is

A. The Srst-order problem

The first-order amplitudes x 1, y 1, u 1, and Uzi satisfy
the evolution equations

Bx M P
co'g — u~(+gex ) m2g& g x„) 2g)e g y„( Ig

r=l r=l

(17)

By, P M

U~, +gey~, 2ge —g y„, 2g, e g—x„, Jh,
r=l r=l

(a b) '[a—+(M —1)b ]=0,
where

a = X+ge i~X+ +Gl CO'Q Vhl

Ih] hl

Xhlb=2ge icoA++. PGh& .
hl

The solutions of Eq. (21) are

(21)

(22)

Bum 1
M P

co = —Gz (1—P)x, +P g x„,+P g y„&
r=l r=1

(18)
z iM 'Yai 1+(M —1)P

co Gz, 1 —P

1/2

+O(g) . (23)

Yh

G ml
h

(19)

The solutions associated with the eigenvalue A,2 vanish for
T~ao. The eigenvalue kl is degenerate and has M —l
eigenvectors which can be written as

yj=col[S(5J,M —1), —1, X&S(5J,M —1), —X&], j=1,2, . . . , M —1,
=i cori/Iq i

—ge = (P—1)Gh i/(i co+ 1'~, /Gh, ),
(24)

where S(5J,N)=5,1,52~, , 5&J is a sequence of
Kronecker symbols. These eigenvectors are associated
with antiphased solutions in which only a pair of modes
is excited but with opposite phases.

With these eigenvectors we construct the general
periodic solution of Eqs. (17) and (19):

2. Mand P ~1

The characteristic equation is

(a —b) I [a+(M —1)b][a+(P—1)b] MPc I =0, —

(27)

(2g) c = (i coA+y I, /Gi, )2g &
e,+PG&,x,=a (cr)e' +c.c. , u, =X,a (o )e' +cc.

where the coefficients satisfy the sum rule
M

g a (cr)=0 . (26)

The functions a (cr ) will be determined by requiring that
the solutions at order 5 be periodic.

and the definition (22) for a and b Using the relat. ions (5)
we neglected the difference between Ih and Jh and be-
tween Gh and Hh. The discussion will be different de-
pending on which of the two Hopf bifurcations occurs
first.

(a) Il, =II„. The solutions of Eq. (27) are
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=1, A,'=+1+ ™~hl
1 +O( ),

co X Gh1

1/2
1+(X—1)P

1 —P
+— M +P +MP +O(q) .

67 Gh1 g

The third root does not contribute to the long-time limit since Re(ik, 3) &0. The real part of iA, 2 is positive for g & —,
' and

negative for g & —,'. Thus we only consider the domain g & —,'. The eigenvalue A, 1 is degenerate and has X—2 eigenvec-
tors which are of the form

yj. =col[S(5J,M —1), —1, S(O,P), X,S(5,M —1), —X&, S(O,P)],
y~+h=col[S(O, M), S(5h, P —1), —1, S(O,M), X,S(5h, P —1), X,],

with j =1,2, . . . , M —1, k =1,2, . . . , P —1. The symbol
S(O,X) indicates a sequence of N zeros. These eigenvec-
tors are associated with antiphased solutions in which
only a pair of modes in one polarization is excited but
with opposite phases. With these eigenvectors we con-
struct the general solution of Eqs. (17)—(20):

T

2MP geI&2

g

A2=1+O(g),

—1 +O(71),

(b) Ih =Ih2. The solutions of Eq. (27) are

x,=a (cr)e' +c.c., y, =p~(o)e' +c.c. ,

u, =X,a (cr)e' +c.c. , u, =X,p (cr)e' +c.c.

(28)

(29)

1/2
1+(X—1)P'3 +-1-

The coefficients of the solutions satisfy the separate sum
rules

2 gal~2+— M +P MP+2MP— +O(g) .
M

M P

g a (o )=0, g P„(cr)=0 . (30)

The functions a (o ) and p (o ) will be determined by re-
quiring that solutions at order 5 be periodic.

The third root does not contribute to the long time limit
since Re(ik, 3) &0. The real part of iA&is p, ositive for
g & —,

' and negative for g (—,'. Thus we only consider the
domain g & —,'. The eigenvalue k2 is nondegenerate and
has an eigenvector of the form

y=col[(1/M)S(1, M), (
—1/P)S(1, P), (X2/M)S(1, M), ( X2/P)S(1, P)],—

+2 (P )Gh2/(E~+ Yh2 Gh2)

The notation S(l,M) stands for M consecutive 1. This
eigenvector is associated with solutions where all modes
in each polarization are excited and have the same phase,
but the two polarizations have opposite phases. %'ith
this eigenvector we can construct the general solutions of
Eqs. (17)—(20) at Ih =Ih2..

B. Second-order problem

To simplify the study of the next order equations, we
write the set of equations (17)—(20) in the more compact
form

Bz, /8 T=Jkz ),x,=[a(cr)/M]e'. +c.c. ,

y, = —[a(cr )/P]e' +c.c. ,

u &=[X2a(o )/M]e' +c.c. ,

u~&
= —[X2a(cr )/P]e' +c.c.

(31)

(32)

where z1 is a 2%-dimensional column vector

z„=col[S(x„,M), S{y„,P), S(u„,M), S(u„,P)]

and JR is a 2X X2N constant matrix. With this notation,
we can write the equations at order 5 as

g x,(o. )+ g y~, (o.)=0 . (33)
m=1 p=1

The function a{o ) will be determined by the solvability
condition at the third order in the expansion in 6.

This time, the coefficients of the solutions satisfy a global
sum rule which couples the modes of the two polariza-
tions:

az, /aT =Wz, +X(z, ),
with the nonlinear vector

i'�(z, ) =col[S (X,M), S ( F P), S ( U, M), S ( V P) ]

defined through

(34)
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The nonlinear vector

1 "m1
U =—-a2+

Gg

~~m1 Vh
CO + Q

N(z„z2)=col[S(X,M), S(Y,P), S(U,M), S(V,P)]

1 Vp1 BVp1 T h

The solution of the second-order equations (34) is

x @=A +(8 e ' +c c. )+x

y 2=C +(D e ' +c c )+.y.

u 2=E +(E e ' +c.c. )+u

u~2=G~+(H~e ' +c.c. )+u~,

(35)

(36)
f"&N(z, z ) Q„(T))dT=O, k=1, . . . , 2N,

0
(38)

has components which are defined in Appendix B. The
homogeneous solutions of Eq. (37) has oscillations at the
frequency 1. Since the inhomogeneous term N (z „z2 )

has oscillations at the same frequency, bounded periodic
solutions are possible if and only if the solvability condi-
tions are satisfied [16]. There are 2N solvability condi-
tions

where

z=col[S(x,M), S(y,P), S(u, M), S(u, P)]
is the general solution of the homogeneous problem
"dz/BT=Atz which will not contribute to the leading ap-
proximation. The coefficients appearing in (35) and (36)
are given in Appendix A.

where the scalar product of two vectors a =col[S (a, 2N)]
and b =col[S (b, 2N) ] is defined through
(a b)=gh ahbh and the asterisk means the complex
conjugate. In the solvability condition (38) the gh( T) are
the solutions of the adjoint of the homogeneous problem
t)z/t)T=Az which we determine now.

C. The third-order problem

The third-order equations can be written as

Bz3/BT=JN, z3+N(z„z2) . (37)

I Solutio.ns of the adjoint problem

The solutions corresponding to the eigenvalue 1 are the
following.

(i) M =N, P =0, and Ih =Ih,

1bh(T)=col[S(5h, M —1), —1, AS(5h, M —1), —%']e'

PM+h(T)=[gh(T)]*, k=1,2, . . . , M —1,
9 i~ ) hl/Ghl

(39)

This gives 2M —2 solutions. The remaining two solutions vanish in the long-time limit.
(ii) M, P ~ 1, N ~ 3, and Ih =Ihi. This domain requires g )—,

' and the solutions of the homogeneous adjoint problem
corresponding to the eigenvalue 1 are

gh(T)=col[S(5h, M —1), —1, S(O,P), AS(5&,M —1), —A', S(O,P)]e'

/M+1(T)=col[S(O, M), S(5&,P —1), —1, S(O,M), A'S(5I,P —1), —A]e'

tq+h( T)= [gh( T) ]', g~+M+I( T)= [/M+I( T)]',

(40)

(41)

with k =1,2, . . . , M —1 and / =1,2, . . . , I' —1. This gives 2X —4 solutions. The other four solutions vanish in the
long-time limit.

(iii) M, P ~ 1, N ~ 3, Ih =Ihz, which requires g (—,'. There are only two solutions of the homogeneous problem which
do not vanish in the long-time limit:

g, (T)=col[(1/M)S(1,M), (
—1/P)S(1,P), (%'/M)S(I, M), ( %'/P)S(l, P)]e'—

02(»=[el(»l' .

2. The amplitude equations

With these expressions, it is not difficult to derive from
the solvability conditions (38) the amplitude equations.
These amplitude equations are fairly intricate. They are
given explicitly in Appendix C. Here we shall simply
give the structure of the equation which is sufficient to
follow the discussion.

(i) M =N, P =0, and Ih =Ih, .

da (o )/do'=g a aq(o )

q

+ Q A q„,aq(o )a„(o )a,'(o ),
q, r, s

(43)

with 1~m &M. These equations derive from the solva-
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bility condition (38) using the solutions (39). Although
we have written M equations for symmetry reasons, the
sum rule (26) is automatically fulfilled, which means that
there are only M —1 independent equations in the set
(43). The remaining M —1 equations are simply the com-
plex conjugates of Eq. (43).

(ii) M, P ~ 1, N ~ 3, Iz =Ih „corresponding to the range
g & —,'. Here, we neglect the di6'erence between Ih and J&
and between G& and HI, which are of order e. This leads
to

2nirm IM (46)

dp(o )

dG'
p(cr ) A +p'(o )B —

p (cr)p*(cr )
h

JY ci+ [c2 [Zip(a )E~ +X*,p*(a )F ]
h

where r=1,2, . . . , M —1 and m =1, . . . , M. From Eq.
(43), the complex amplitude p(o ) satisfies the equation

da (o)/do =gb a (o).
q

+ g Pq(cr )[Dpq„,P„(cr )P,*(cr )

q, r, s

+E „,a„(o)a,*(o)],.

for 1~m ~M and 1&p ~P. These equations derive from
the solvability condition (38) using the solutions (40) and
(41). We have written N equations for symmetry reasons
but since the sum rule (30) is automatically satisfied there
are only N 2 independ—ent equations in the set (44). The
other 1V —2 equations are the complex conjugates of Eq.
(44).

(iii) M, P ~ 1, N ~ 3, Ii, =I&2, corresponding to the
range g & —,'.
da (cr )/do.

=gd qaq(o')+ g F q„aq(o )a„(cr)a*(o')
q, r, s

(45)

This equation derives from the solvability condition (38)
using the solution (42).

III. CLASSIFICATION AND STABILITY CONDITIONS
FOR PERIODIC SOLUTIONS

To solve Eqs. (43)—(45) still represents a formidable
task. Instead, we shall consider the four classes of solu-
tions which have been identified in [5] and we shall study
their stability using Eqs. (43)—(45). With this trade-off,
we shall be able to determine the stability of the solutions
which we know, but we shall not know whether other
stable periodic solutions emerge from the Hopf bifurca-
tions.

A. M =N & 2, P =0, Ip, =II, )

For this case, a (o. ) must satisfy the sum rule (26).
Two solutions which satisfy the above condition are as
follows.

(a) ADI solutions

+ g a (o)[B „,a„(cr)a,'(o)
q, r, s

+C „,p„(o.)p,"(o )],
(44)

dP (o)/do =pc P (cr)

(47)

The coei5cients A, 8,E, and I' are those given in
Appendix A after replacing a (o ) by p(o ). In the AD1
regime, all modes have the same amplitude, each mode
being phase shifted by 1/M of the period from another
mode.

For this discussion, the choice of m is irrelevant since
the set [a (cr)j is the same for any m in the range
[1,M —1]: different m correspond to different orderings
of the sequence Ia (o ) j. This means that the solution
(46) has a high degree of degeneracy: there are (M —1)!
equivalent antiphased states. We have proposed in [6] a
simple procedure to switch between the (M —1)!
equivalent antiphased states obtained by permuting the
M modes of a given antiphased state in (46). The polar
decomposition p(o ) =R (o )exp[i8(o ) ] leads to an equa-
tion for the real amplitude R (o ),

dR
do

=(ia2R+$3R =[pip+0(ql)]a2R+[$3p+O(qi)]R

(48)

In all cases treated in this paper, the linear coefficient pip
does not vanish. This equation has two solutions. The
trivial solution R =0 corresponds to the steady-state
solution. The nontrivial solution R = —g, a2/$3 corre-
sponds to the self-pulsing solution. Since R must be
positive, a2 and g, /$3 must have the opposite sign.
When a2 &0 the bifurcation at I& =I&& is subcritical and
the self-pulsing solution, AD1, is unstable. When az &0
the bifurcation is supercritical and the self-pulsing solu-
tion is stable near I». We can show analytically that
$3p=0 which means that the bifurcation becomes vertical
in the limit ri~0. Figure 1(a) shows the dependence of
gi/g3 on the geometrical factor g for the case of M =3
and P =0. From the parameters of this figure, the AD1
regime is always stable. The corresponding bifurcation
diagram is shown in Fig. 1(b) where it is clear that the bi-
furcation is indeed almost vertical for g~0.

(b) AD2 solutions For the sa.me values of the parame-
ters as in the AD1 regime, we find another solution in
which L of the M modes are in phase and the other
J=M —L modes are also in phase, but the two subsets
antiphase. We shall refer to this solution as AD2. From
the sum rule (26) it follows that the amplitudes in the
AD2 regime must be given by
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—50=

81/6-

(o)
4

r T 1 I ~ I I I ~ I ~ I I I I 5 I ~ r".2 1.0

—0.005—

6o/bo

—0.1 35 I ~ I ~ ~ I % ~ ~ ~ I ~ ~ I ~ I ~ I I

0.2 1.0

0.35-

(~1)max: ~
'

0.0$
(b)

I I a S ~ S ~ g ~ I ~

0.13

(~S)max ~
4

4

4 4

(~;)...

0 .105 —
1 2

- =1,2
= (b)

(i)... -

(5. 12175 0.12195

FIG. 1. The AD1 regime. (a) The dependence of g, /$3 on
the geometrical factor g. (b) Bifurcation diagram for g=0. 52.
Parameters are M =3, P =0, a=0. 1, P=0.6, e=5X10
g=2X10, and Iz =I&&. Full line: stable steady state; dashed
line: unstable steady state; black dots: maxima of the stable
periodic solution.

a (o. )=p(cr)/L, u„(o )= p(cr)/J, —

m=1, 2, . . . , L, n=1, 2, . . . , J . (49)

B. M and P & 1, N & 3, Ii, =Ii, 1 (g & 2)

For this case, a (o ) and pP(o ) must satisfy the
separate sum rules (30) for each polarization. A solution
which satisfies these conditions is

)e2aimr/M p (
.

)
—

( ) 2nipn/P (50)

where the ranges of r, m, n, and p are from 1 to M —1,
M, P —l, and P respectively. We call the solution (50)
the AD3 regime. It is a regime in which all modes in
each polarization are antiphased as in AD1. We have in
this way a periodic solution in which all modal intensities
in a given polarization have the same period and the
same amplitude. The ratio of the periods M/P is given

In polar coordinates, p(cr ) =R (o. )exp[i 8(o ) ] and the
modulus of p(cr) satisfies an equation which has the same
structure as (48) except for the fact that in this regime
$3QW0 so we can neglect the corrections of order 21. Fig-
ure 2(a) shows the dependence of g,p/$3Q on the geometri-
cal factor g for the case of M =3 and P =O. The AD2 re-
gime is stable for the parameters of Fig. 2(a). The corre-
sponding bifurcation diagram is shown in Fig. 2(b). It is
clear from this figure that the relation

[(I ),„I]/[(I, ),„—I ]= lcz. /ct I

—=I /J
holds with L, =2 and J=1.

FIG. 2. The AD2 regime. (a) The dependence of g, o/gM on
the geometrical factor g. (b) Bifurcation diagram for g =0.52.
Same parameters and conventions as in Fig. 1.

by the ratio of the mode number in the two polarizations.
An exception, however, is the case P =1 and M ) 1, for
which P, (o ) =0 and the amplitude of the corresponding
mode is not determined at this order of the expansion in

With the decomposition p( rc) = R(o. ) ex[piO, (o )]
and p2(o')=R2(o )exp[i02(cr)], the moduli of p1(o ) and
p2(o. ) satisfy the equations

dRi
1(kla2+43R 1+(2R 2 )

= [gIQ+O(I))]a2R, + [$3Q+O(Ii)]R, +$2R IR 2,
(51)

dRz
R2(kla2+03R 2+42R 1 )

= [PIQ+ «n) ]a2R 2+ M3Q+ «n) ]R z+ kR 2R I

(52)

whel e $1 g2 and g3 (gi g2 and $3) are functions of A8,E, and F (CP, D, 6, and II ). Let us discuss the
stability conditions for some special cases.

(a) M &2 and P = l. For this case, $2=$2=0. Fur-
thermore the sum rule on the P modes implies Rz=O.
For the modes M)2, we can prove analytically that
$3Q 0, which means that the bifurcation is vertical in the
limit g~O.

(b) M and P&2. The coefficients $2 and $2 vanish.
Both coefftcients $3p aIlcl $3p vanish in the limit I)—+0.
For I)&0, we have not been able to draw any analytical
conclusion.

(c) M =2 and P =1. Here again $2=$2=0 and R2=0.
We can prove analytically that $3QAO, so we can neglect
the corrections of order II. Figure 3(a) shows the depen-
dence of pip/$3p on the geometrical factor g for this case.
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FIG. 3. The AD3 regime for M =2 and P =1. The other pa-
rameters are as in Fig. l. (a) The dependence of g'to/$30 on the
geometrical factor g. (b)—(d) Bifurcation diagrams for the two
M modes, for the P mode, and for the total intensity, respective-
ly, with g =0.52. Same conventions as in Fig. 1. The plus signs
are the maxima of the unstable periodic solutions.

the parameters of Fig. 4(a). The corresponding bifurca-
tion diagram is shown in Figs. 4(b) —4(d).

The reason for discussing how the coefficients depend
on g is related to the scaling laws. In all the cases we
have considered here, the linear coefficient was finite in
the limit of vanishing g. If the coefficient of the non-
linear term also remains finite, the amplitudes of the
periodic solutions satisfy the scaling R —p —

p& where p
is the control parameter and pI, is its value at the Hopf
bifurcation. Typical choices for the control parameter
are the linear gain or the cavity losses. In contrast, if the
nonlinear coefficient in the amplitude equations vanishes
in the limit g —+0, the scaling law take the nongeneric
form R"—p —

pl, where n =n(g). A simpler form of
nongeneric scaling occurs, for instance, when M ~ 2 and
P =1. In this case the M modes have a regular scaling
while the isolated P mode scales like R —(p —

pl, ) be-
cause R must vanish to dominant order. Examples of
nongeneric scalings have been given in [5].

The AD3 regime is stable for the parameters of this
figure. The corresponding bifurcation diagram is shown
in Figs. 3(b)-3(d).

For the remaining cases, either M )2, P =2 with $2 =0
and $2&0 or M =P =2 with (2%0 and gzAO. The main
point is that in these cases the nonlinear coefficients have
the property $3QXO and $3QAO.

C. M and P ~ 1, N ~ 3, II, = I&2 (g ( 2)

From the eigenvector corresponding to this case, the
only possible solution is

a (a) =p(a)/M, P~(a) = —p(tr )/P . (53)

—0.02-

410/43D

QQ6 I ~ ~ ~ ~ II ~ ~ III ~ ~ ~ I ~ I ~ ~ ~ ~ ~ ~

0.0 0.5

0.55 -
)

((])max
= (b)

0.11'3 ""
~ yO

~yO ~ 0~ yO

0.1 33

This means that the two polarizations antiphase, while all
the modes in each polarization are in phased. We refer to
this regime as AD4. The modulus of p(o ) satisfies an
equation of the form (51) with $3QAO, so we can neglect
the corrections of order rI. Figure 4(a) shows the depen-
dence of g, Q/$3Q on the geometrical factor g for the case
of M =2 and P =1. Thus the AD4 regime is stable for

IV. NUMERICAL RESULTS

We have studied analytically the periodic solutions em-
erging from the Hopf bifurcation and their stability near
the bifurcation. Numerical simulations beyond the Hopf
bifurcation have been carried out to characterize the
solutions away from the bifurcation point.

The general feature we have observed is the emergence
from the three regimes AD1, AD3, and AD4 of a new re-
gime, which we call AD5. At the point where the AD5
regime appears, it is characterized by the same type of
symmetry properties as the AD1 regime: all modes have
the same periodic temporal dependence but are phase
shifted from each other by 1/N of the period if X modes
oscillate. This remains true even if the modes are parti-
tioned among the two directions of polarization. Howev-
er, the sum rule (26) is no longer satisfied: the sum of the
intensities deviates markedly from the steady-state sumo

Another feature of the AD5 regime is that upon increas-
ing the pump parameter it evolves from a simple periodic
state (period-1 solution) towards chaos via a sequence of
bifurcations, either the classic Feigenbaum sequence or
variants of it where some of the subharmonic bifurcations
are missing. For the three cases analyzed in Fig. 5, where

2, 5
(c)

0.55-
AD5 .~

max - ~ ~ +

8.113 0.133

0.65-
AD5. ~:

- (d)
(~total) max - txl

0.1g

or, I

I
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pl
rr ~,

r~ i&: '"
~ .'"

p

r;~ r '
~ . ''

r

~'rr

~ I r r

'xII a'

ha Cr

QI I'

FICx. 4. The AD4 regime for M=2 and P=1. (a) The
dependence of /to/g, o on the geometrical factor g. (b) —(d) Bi-
furcation diagrams for the two M modes, for the P mode, and
for the total intensity, respectively, with g =0.48. Same param-
eters and conventions as in Fig. 1.

.12 y 0 20 011 y 020 011 y 020

FIG. 5. Bifurcation diagrams for the first mode. (a) Parame-
ters are as in Fig. 1. (b) Parameters are as in Fig. 3. (c) Parame-
ters are as in Fig. 4.
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X =3, we noticed that throughout the transition from the
period-1 state to the first chaotic domain the modes
remain antiphased: the total intensity has a peak in its
power spectrum at three times the fundamental frequen-
cy of the individual modes. In other chaotic domains
which occur for still larger values of the control parame-
ter, the power spectrum of the total intensity may display
a peak at twice the dominant frequency of the individual
modes, but we have not observed any case where the total
intensity has a peak at such low frequency as the indivi-
dual modes.

In Fig. 1(b), the solutions AD1 change smoothly into
the new regime AD5. In this case it is dificult to deter-
mine a point at which the transition occurs. In Fig. 5(a)
we display the maxima of the periodic solution over a
larger domain of the pump parameter y. The points on a
given vertical are the maxima of I&. A large domain of
chaos appears which is connected to the period-1 solution
via a nonstandard sequence of bifurcations.

In Fig. 2(b), we display the AD2 regime which remains
stable but the sum rule (26) is no longer satisfied: the
average of the total intensity increases and is time period-
ic. However, no instability of this branch has been ob-
served.

In Figs. 3(b) —3(d), we observe that the branch of solu-
tions which emerges from the bifurcation point becomes
unstable at a finite distance of the first bifurcation. At
that secondary bifurcation, the solution jumps to another
branch which is an AD5 regime. There is an overlap be-
tween the stable domains of these two branches. For
larger values of the pump parameter, a classic Feigen-
baum sequence leads to chaos. It is shown in Fig. 5(b).

In Figs. 4(b) —4(d), the branch of AD4 solutions
remains stable and no instability point has been observed.
The only change is again a departure from the sum rule
(33): the total intensity deviates from its steady-state
value and becomes time periodic. However, when a
sufficiently large perturbation is applied to the system, a
new branch of stable periodic states is revealed. It is
again an ADS regime and we show in Fig. 5(c) that this
new branch bifurcates to chaos. In this case the AD4 re-
gime remains stable over the whole domain we have in-
vestigated.

For the AD3 regime, we have shown that the Hopf bi-
furcation can be regular or nearly vertical, depending on
the number of modes. To be complete, we display in Fig.
6 bifurcation diagrams for M =3 and I' =1. The three
modes M undergo a nearly vertical bifurcation while the
mode I' has very small amplitude oscillations over a long
domain of the control parameter. Figure 6(a) shows the
maxima of the solutions near the Hopf bifurcation. In
Fig. 6(b), we display the bifurcation diagram for one of
the M modes. The AD3 branch which emerges from the
Hopf bifurcation suddenly changes into a breather mode:
the envelope of the AD3 solution is modulated at a very
low frequency and with a small amplitude. This breather
mode becomes unstable and the solution jumps to the
ADS branch. The AD5 branch is associated with a sim-
ple periodic solution for low y. For larger y, a breather
mode appears again, which is then followed by a complex
sequence of periodic and chaotic states. For the two
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FIG. 6. The AD3 regime for M =3 and P =1. The other pa-
rameters are as in Fig. 3. (a) Bifurcation diagram near the Hopf
bifurcation. (b) Bifurcation diagram for larger values of the
pump parameter.

branches of solutions displayed in Fig. 6(b), the quasi-
periodic regimes preserve the antiphase dynamics: the
envelope modulation of the modal intensities are shifted
by I/N of the period.

V. CGNCLUSION

We have shown in this paper that the periodic solu-
tions which emerge from a Hopf bifurcation in ISHG can
be studied analytically in the vicinity of the bifurcation
point. Using the deviation of the pump parameter from
its value at the Hopf bifurcation as a small parameter, we
have made a systematic expansion around the bifurcation
point and derived in the usual way bifurcation equations
which rule the time evolution of the amplitude of the
periodic solutions. Since there are N complex nonlinear
amplitude equations associated with 1V modes, there is no
hope for a general discussion of the properties of these
equations. Therefore we have analyzed only those solu-
tions which had been found numerically in previous stud-
ies. We have shown that a useful way to characterize
these solutions is via sum rules which apply either to each
polarization or to the global system. One merit of the ap-
proach followed in this paper is to clarify some basic
problems related to the nature of the Hopf bifurcation.
In particular, the qualitative discussion in Sec. III indi-
cates the ISHCx is prone to generate vertical Hopf bifur-
cations at Iz&. It also indicates that for a given type of
AD the Hopf bifurcation can change from supercritical
to vertical as a function of the number of modes which
oscillate. Finally, our numerical simulation has indicated
that, as the pump parameter is increased, the general
trend in ISHG is the transition to a new regime which we
called AD5. It is characterized by a global behavior in
the sense that the division into orthogonal polarizations
is no longer relevant. It is also the simplest of the four
regimes identified so far near the Hopf bifurcation points.
Finally, the ADS regime has the expected complex
behavior with routes to chaos and chaotic regimes which
retain some of the mode correlations characteristic of
AD.
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3Ir Mp 3( 1 p) i k

F,= a (o)1

3Ih

4 L J
'V a„(cr)+ ak(cr)

3I MP —3(1—P)
APPENDIX A: COEFFICIENTS OF THE

SECOND-ORDER SOLUTION

The coefficients appearing in the second-order solution
(35) and (36) are as follows. F„,= a„(o )

1

3Ih

4 L J

3I MP —3(1—P)
a„(o )+ g aq(cr)

2g(e/g)3I„G„3(1—P)G„™

1. AD1(M =N, I' =0, and Iz =I&,)

a2+2ge(1 P)—a (cr )am(cr ) —[PGh+2geyz/G& ]Y,
(1—P)Gq —goyr /G~

az+2ge(1 —P)a (cr)a* (o ) —(2—P)G& Y,

(1—P)G„—geYq/G + 'g'"&) y B„,+ y B„,
2 ic07) Y h —(1—P) a' (cr) 1 Ya p

3(1—P)Gg Gr,
' 3(1—P)

1 z 2g(e/g)
3' Gr,

" 3(1—P)G~
a (o.),

3coh Gh

F = 2ico —B —,a (cr),Yf . Vh l CO'g

~h h ~h

L J
g B„o+g Bko

4g (e/ri )

3(1—P)G„ k=1
where

1 'Yh + p
3(1—p)Gh G~

" 3(1—p)
2

7h
nh =(1 p)Ir, Gh —vl—

p L J
g a„(cr)+ g ak(cr)

[Mp —3(1—p)]Gh Gh

Yb=—M
Ma2+2ge(1 —P) g az(o )aj (o )

Y, = J=1
[1+(M —1)P]G„+(2M—1)ge

2(1 —2M)g (e/r) )

[MP —3(1—P)]G2. AD2 (M =N =L +J, I' =0, and I„=I„,)

[1+(M—1)P]Gg
+0 g

3. M, P 1, Ip, =I), ) or Ip2

[1+(M —1)P]Gq
+0 ri

[1+(N —1)P]G„
E =0(ri), E„=O(g),

=B o+icor)B &+0( i),rB„=B„O+icoriB„,+0(ri),
F =ivor)F ~+0(g), F„=icogF„,+0(g),
where n =1,2, . . . , J, m =1,2, . . . , L, and

C =
[1+(N —1)P]Gq

E =0(g), G =0(ri),
B =B 0+ico71B

&
+(0),AD& =D 0+icoriD

&
+(0g),

F =icoriF &+0(g), H =icoriH &+0(g),

where

= 2B o= a (cr)
h
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3' Mp 3( 1 p)
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= 2 22 % a„(cr)+ „(o)
3Ih 3Ih NP 3—(1—P)

= 2 2 2
3I P 3I„NP 3(—1 —P)

1 2 4F,= a (o)— g a„cr +g p„o.

1 2 4
3I' NP —3(1—P)

1 2 2g (e/r)) 4g(e/rl)
3 hGh

™a
3(1 P)G,— '+ 3(l P)Gh—

3(1 P)Gh —„, " 3(1—P)Gh Gh
' 3(1—P)

1 z 2g(e/q) + 4g(e/g)
3Ih Gh 3(1 P)Gh —" 3(1 P)Gh „—
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1 —2M 2P—
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[NP —3(1—P)]Gh Gh

g1 P
80+ 1 2P —2M — g Do
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APPENDIX B: THE NONLINEAR CONTRIBUTIONS
TO THE THIRD-ORDER EQUATION

The inhomogeneous part of Eq. (37) is given by

+m1 ~xm2 +m1 ~+m1 +m2 ~+ 1

aT I„aT + r„aT

+ CO + Qm1
6)Gh 8T Gh Q) Bo

Vp1 ~Vp2

1 ~m1

67'g Bo

Y = yp1 ayp2 ypl ayp1

J„BT J„BT
yp2 ~yp1 1 ~yp1+

CO'g 8C7

Vp1 BUp 1 l'h
CO + Vp1

Up2 ~Up] Vh 1 ~Upi+ CO + Vp1
mHh 8T Hh P co Bo

&m1
U

coGh
. a"- y. co —a2+ u

h
APPENDIX C: THE AMPLITUDE EQUATIONS

&m1 +
G +m1

In this Appendix, we give the explicit form of the sol-
vability conditions. Eq. (43) which rules the AD1 regime
1S:

da (o)
do

L COC1

Ih
a (o )A +a (a)8 — a (o )a*(o )

SQ) 1
M 1 M

a„(o ) A„+ g a„(o )B„— g a„(o )a„'(o )
r=1 r=1 h r=1

C1+ [c2[X,a (cr)E +X;a' (o )E ]—a2X&a (a) c3a (o)a* (cr—)]
h

~e c) M

c~ X, g a, (o )E„+X, g a„(cr)E„ —c3 g a„(cr)a, (cr)
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where

C)— 1 . 2Vh 1 . 37 h
C2 =le+, C3 = LEO+1++1~ h h h

Equations (44) which rule the AD3 dynamics are

da (cr ) inc,
2a (o ) A +a* (o )8 — a (o.)a* (o )

c, M M 1 M

a„(cr)A„+g a„*(cr)8„— g a„(cr)a„'(cr)
Ih M „& „~1

'
h „I

C)+ Icz[X&a (o)E. +X[a' (cr )F ]—azX&a (o ) —c3a (o )a* (cr )]

cz X& g a„(o )E„+X.
& g a„*(o)F„ —c3 g a„(o )a„'(cr) ~, (C3)

LCOC i 2Pp(cr )C~+P~ (cr )IJ~ — P~(o )Pp(cr )

le C1 I'
1 P

g P„(o )C„+g P„'(cr)D„—— g P„(cr)P„'(o )

+ [c2[X,P~(cr )6~+XfP*(o )H ]—a2X,P~(cr )—c3P (o )P*(o )]
Gh

P I'
&p &) g p„( )cGr„+X' gtp„*(o)H„—c, g p'„(o)p„*(o)

h r=1 r=1 r=1

for 1 ~ m ~ M and 1 ~p ~ P. Finally, Eq. (45) which rules the AD4 regime is given by

da(cr) '~ct M+P ~m C 8 D
a(o )+ a(cr)+ a (cr)+ a (o. ) — + a (o )a (cr) .

d o Ih MP M P M P I„M3 P3

(C4)

Cl M+P
'C2

r

X2E X2F XzGp LqH~
a(o )+ a*(o )+ a(o )+ a*(o )

M+P 1 1—o,X2 a(cr) c4—, +, a (o)a*(o.)
M P
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1 . 3'Vh
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h h
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