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Probe transmission in a two-dimensional optical lattice
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We present a calculation of the probe-transmission spectrum of a two-dimensional optical lattice,
in which atoms are cooled by a pair of standing-wave fields with perpendicular polarizations within
the plane of incidence. A probe laser is directed along the axis of one of the cooling fields, with a
polarization parallel to the incident plane of the cooling fields. The calculated probe-transmission
spectrum exhibits both sidebands, which originate from stimulated Raman transitions between dif-
ferent vibrational states of the atoms in the molasses, and a central resonance structure, which
originates from Rayleigh resonances among these vibrational states. We also include in our cal-
culation a possible misalignment of the probe field relative to the axis of the cooling field. It is
shown that the eKects of the probe misalignment can lead to significant modifications to the central
resonance signal.

PACS number(s): 32.80.Pj, 42.65.—k

I. INTRODUCTION

In a normal optical molasses, atoms are cooled by a
number of incident Gelds whose polarizations are orthog-
onal to each other. The equilibrium energy of the cooled
atoms can be suKciently small, such that these atoms
can become spatially localized at the minima of the light-
induced potential wells, and form a spatial lattice struc-
ture, i.e., optical lattices. The dynamics of the cold atoms
trapped in the light-induced potentials can be studied by
pump-probe techniques, such as probe transmission or
four-wave mixing spectroscopy. In these types of exper-
iments, the cooling fields also play the role of the pump
fields. Some early experiments in one-dimensional (1D)
molasses [1,2] provided direct evidence of the quantiza-
tion of the atomic motion in the molasses. Recently, both
probe-transmission [3—5] and four-wave mixing [6] exper-
iments were carried out in 2D and 3D molasses, and the
obtained spectra in these experiments exhibit rich and
sometimes unexpected features.

On the theoretical side, qualitative understanding of
the spectroscopy of the optical lattices is still at the be-
ginning. Calculations of the probe-transmission or four-
wave mixing signals in 1D molasses [7,8] have been pub-
lished recently, and good agreement between the calcu-
lations and the experimental results have been achieved.
Up till now, however, a rigorous theoretical investigation
on the spectroscopy of 2D or 3D molasses did not exist,
partially owing to the fact that a calculation similar to
those in Refs. [7,8] proved to be much more difficult and
computationally demanding in higher dimensions.

In this paper, we calculate the probe-transmission
spectrum of a 2D optical molasses. As shown in Fig.
1, the cooling Geld having a frequency u consists of a
pair of standing-wave Gelds along the x and y axes, po-
larized in the y and x directions, respectively. A probe
field of frequency u' is incident along the x direction,
with a polarization in the y direction. In our calculation,
we allow a small misalignment between the propagation

directions of the probe and the cooling fields denoted by
a small angle 0. Theoretical investigations of Sisyphus
cooling in the same 2D configuration have been carried
out both semi-classically [9—11] and fully quantum me-
chanically [12,13]. It was shown [9—ll] that cooling in
this situation depends sensitively on the relative phase
SP between the two standing-wave fields. In this calcu-
lation, we assume that bP is fixed at z'/2, which leads to
maximum cooling effects. The atomic level scheme is as-
sumed to be a Ja = 1/2 -+ 1, = 3/2 transition. Similar
to an earlier 1D calculation [8], we also investigate the
effects related to a possible misalignment of the probe
Geld relative to the propagation of the cooling field both
within and outside of the molasses plane. We show that
the probe misalignment can result in significant modi-
fications to a central resonance signal in the calculated
spectrum.

This paper is organized as follows. In Sec. II, we write
down the Hamiltonian for the system under investigation
and the master equation governing the evolution of the
atomic density matrix. In Sec. III, a Bloch-state basis
is introduced, in which the atomic density matrix is ex-
panded and solved under a secular approximation. Then
in Sec. IV, we calculate the probe-transmission spectrum

FIG. 1. Cooling and probing field configuration of a 2D
optical lattice.
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of this 20 lattice, assuming that the probe field is prop-
agating exactly along the x axis. In Sec. V, the effects
related to the misalignment of the probe field are ana-
lyzed. We conclude in Sec. VI by discussing the relation
of our calculation to some existing experiments.

The first-order term in Eq. (4), H~ l, is the modification
to the light-shift potential introduced by the addition of
the probe Geld. It is given by

II. DENSITY MATRIX EQUATION
AND THE BLOCH-STATE BASIS

The incident fields shown in Fig. 1 can be written
explicitly as

—iaaf,E = —Ze ' (cos kxy —i cos kyx + ee' ' ' y)2
+C.C. )

where u is the cooling Geld frequency, k' is the probe
field wave vector, b = u' —u is the detuning between the
probe field and the cooling field, and the constant t is the
ratio between the magnitudes of the probe and cooling
fields, assumed to be much smaller than unity.

Throughout this calculation, we assume a limit of weak
incident fields, which is appropriate for polarization gra-
dient cooling. The weak-field limit is defined as

y && I', IAI,

where y = —d,gZ/2v 2h is the cooling field Rabi fre-
quency, I' is the atomic excited state decay rate, and
4 = w —cup is the cooling field detuning from the Bohr fre-
quency ~p of the electronic transition. Under the weak-
Geld limit, one can adiabatically eliminate the electronic
excited states of the atoms, and derive an effective Hamil-
tonian for the electronic ground states of the atoms only.
The resulting density matrix equation for the atoms is
given by

1
p = —. [H p]+ [pl-~-ih

where the effective Hamiltonian H is given by

+ (coskx ——cosky)e ' 'I —)(—I
.

3 2

The term [p]„~ „in Eq. (3) denotes the relaxation of the
atomic density matrix due to optical pumping induced by
both the cooling and probe fields. For the Jg = 1/2 ~
J, = 3/2 transition considered in this calculation, the
optical pumping term [p)„~ „has a particularly simple
form [13],and can be explicitly written out as

pf
[p]„(„=——[Ap + pA] + I ' dp'

1

x ) Nq (p') Bq e pe 'Bq, '

Q= —i

where

I'lxl'
(I'/2)2 + A2

is the optical pumping rate. The operators A and Bg in
Eq. (8) can be written as

A = Ai'l +.[Ai'le'" + H.c.],
Bq = Bq + e[Bq e* ' + H.c.],

where

4
A l = —(cos kx + cos ky + cos kx cos ky) I+) (+I3

4+—(cos kx + cos ky
3

—cos kx cos ky)
I

—) (—I,
4 —'k'Ai'i = —(coskx+ 2 cosky)e *" 'I+)(+I
3

H = H~'i+. [Hi'le*"+ H.c.] . (4)
4 —'k'+—(coskx ——cosky)e '" 'I —)(—I,

The zeroth-order term in Eq. (4), H~oi, describes the
motion of the atoms in the 2D periodic potential induced
by the cooling field. It is given by

p2 U

2M 3
+ (cos kx + cos ky

+ cos kx cos ky) I+)(+ I

Up+ (cos kx + cos ky
3

—cos kx cos ky) I

—) (—I,

where I+) = lg + 1/2), are the two magnetic sublevels
of the atomic ground state, and Up is the depth of the
light-induced potential wells, given by

4nzl~l'
(I /2)'+ 4'

and

B+'i = (—i)(coskx + cosky)(I+)(+I+ —.'I+)(+I)

Bo —
(—i) [(cos kx + cos ky) I

—) (+ I

(0) . V&

3
+ (cos kx —cos ky) I+) (—I],

B~i = (—i)e *"'(I+)(+I+ —.'I+)(+I)

B'" = (-') '" ', (I-)(+I+ I+)(-I)

The kernels Nq(p ) in Eq. (8) are the probability distri-
bution functions for the emission of a spontaneous photon
having a spherical polarization component Q and a mo-
mentum hp'. The exact expressions for Nq(p') can be
derived based on a procedure described in details in Ref.
[13]. In practice, one discretizes the spontaneous photon
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momentum hp'. Depending on the discretization scheme,
the functions Kq(p') can have diferent forms, examples
of which will be described below.

The atomic density matrix can be written as

(13)

where p& ~ is the steady-state density matrix in the ab-
sence of the probe fi.eld, and p~ ~ is the probe-induced
modification to p. The probe transmission coefBcient G„
can be found in terms of p(il as [7]

G„= Im . (p(' [(2c soke+ cosky)e'" '~+)(+~)I /2 —A
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III. BLOCH-STATE BASIS
AND THE RATE EQUATIONS

100 ~
C

LLJ

The density matrix p can be solved in a so-called Bloch-
state basis [12,13]. The Bloch states are the eigenstates
of the Hamiltonian H~ ~, which describes the motion of
the atoms in the light-induced 2D potential. They can be
denoted as ~n, q, e), where n is the energy band index, g is
the Bloch index, and e = + represents the two magnetic
sublevels ~+). In the position representation, the Bloch
states can be expanded as

60 ==-—
40
—1.0 —0.5 0.0

q,/k
0.5 1.0

FIG. 2. The energy spectrum of atoms in the 2D poten-
tial. The potential depth Uo = —150Eg. (a) The lowest 30
energy bands (n = 0, 1, . . . , 29), and (b) the highest 30 bands
(n = 195, 196, . . . , 224).

where C„z,(l, m) is the expansion coefficient and N
is the cutoff value for the plane-wave components of
the Bloch states. The maximum momentum component
along either the x or y direction is limited to 2Nhk. In
the calculation below, X is chosen as N & N = 7
[14]. The Bloch vector g can be chosen within the first
Brillouin zone, which in this case is given by [12]

can lead to a substantial difference in the probe spectra
between 1D and 2D cases.

To calculate the zeroth-order density matrix p~ ~, we
invoke a secular approximation, which amounts to ne-
glecting the off-diagonal density matrix. elements between
Bloch states with different energies. Such an approxima-
tion is valid for laser detunings much greater than the
natural linewidth of the electronic transition [13], i.e. ,

In Fig. 2, we plot the energies of the Bloch states ~n, g, +)
as a function of the Bloch index q = q„y. Among the
lowest Bloch states, there exists quasidegeneracy among
certain Bloch states, which form an energy manifold. The
degree of degeneracy, or the number of states in a mani-
fold, increases linearly with energy, similar to the case of
a 2D harmonic oscillator. This result is expected, since
the lowest motional states are localized in the vicinity
of the antinodes of the Beld, where the light-shift poten-
tial can be approximated by a 2D harmonic potential
For highly excited Bloch states, on the other hand, the
energy-momentum relation resembles that of free parti-
cles, with the exception of the existence of small energy
gaps whenever two curves cross each other. The increase
of the number of motional states with energy is absent in
the 1D cases [15,16), and as we see below, such a property

)r„~, = (n, g, e~ p( l ~n, g, e),

can be solved from the following rate equations:

(18)

'A)q)6 pA)g)E A)q)C

I I I.+ g 'Y(n~q~ i ~9~ ) n'~'e' ~

where

For the simple Jg = 1/2 ) 1, = 3/2 transition chosen in
this calculation, and for the incident field configuration,
the zeroth-order density matrix p~ ~ is diagonal in the
Bloch-state basis [13]. Under the secular limit (17), the
populations of various Bloch states
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p~ z, ——(n, q, a[A ln, q, e),(o)

p(n ) q ) e t n) q) e)

dp' Ng p' n', q', e' B e'+ n, q, e

Q

(20)
(21)

p(i) ([~(o) p(i)] + [II(i) p(o)])
ih

r'
[~(o)p(i) + p(i)~(o) + &(i) (o) + (o)~(i)]

2

+I" dp' Nq p' B&~ te '~''p~ ~e'~''B~ ~

+(g(o))t ip—' r (0) ip' rgy(i)]

The choice of the discretization scheme for the Bloch vec-
tors q depends on the incident field configuration. For
example, in the absence of the probe Geld, or if the probe
field propagates exactly along the axis of the cooling Geld,
one can choose a minimum number of Bloch vectors, as in
the case of Refs. [12,13]. However, when the probe field
propagates at a small angle with respect to the cooling
laser axis, as we study below, one needs to choose a difFer-
ent set of Bloch vectors to resolve the grating structures
excited by the addition of the probe Geld.

Similar to the 1D case [15], the steady-state values
of the populations vr ~, solved &om Eq. (19) depends
only on the reduced potential depth (Uo/Ei, ), where
El, = h2k2/2M is the recoil energy. A detailed descrip-
tion of the properties of m z, can be found in Refs.
[12,13]. In particular, it is found that in the secular
limit, there exist resonance peaks in the populations of
the lowest Bloch states for certain values of Uo, and the
appearances of such resonances have been attributed to
the avoided crossings of the energy curves associated with
a few motional states [12], and are found to smooth away
in the nonsecular limit of smaller values of lAl/I' [l3].

IV. PROBE TRANSMISSION SPECTRUM IN
THE ABSENCE OF PROBE MISALIGNMENT

After the solution for p& ~ is obtained, one can solve
for the first-order density matrix p& & by substituting p~ ~

into Eq. (3). The evolution equation for p( ) is given by

The density matrix p~ ~ can be expanded in the Bloch-
state basis as well, and the resulting expansion terms are
denoted as

p (n, q, e;n', q', e) = (n, q, alp In, q', e) . (22)

q = —kx, O, (23)

and the simplified spontaneous emission kernels in Eq.
(8) are described in the Appendix.

As shown in the previous section, in this case of 2D lat-
tice, there exists quasidegeneracy of the Bloch states be-
longing to the lowest energy manifolds. For a finite value
of lAl/I' (e.g. , less than 100), the energy separations be-
tween the states in these manifolds are much smaller
than I", and in practice these states can be treated as
exactly degenerate. We calculate the first-order terms
p(i) (n, q, e; n', q, e) as follows.

First, the first-order density matrix elements with n g
n' represent a contribution to the signal due to stimulated
Raman-type transitions between Bloch states of difFerent
energy bands. For the lowest few energy manifolds, in
each of which the energy separations between the Bloch
states are much smaller than I ', the equations for the
steady-state density matrix elements can be derived from
Eq. (21) as

In this section, we assume that the probe Geld propagates
exactly along the x axis, with a polarization along the y
axis. As a result, the Grst-order density matrix elements
p( )(n, q, e;n', q', e) with q g q' vanish. To reduce the
number of density matrix elements, we choose two Bloch
indices

—[2 (p„~, + p~ ~,) + ib + xa„~,.„e ~,]p (n, q, e; n', q, e) + I"
nil nlll gl ~l

).~~(p')

x(n, q el(&~')'e "'ln" q' e')(n"' q' .'Ie" '&~( ln', q, .)p ' (n q & n q e )

r'
(n, q, el H(') ln', q,—e) (vr„~, —~„~,) + —(n, q, a[A(') ln', q) e) (vr„~, + vr„„,)

—I" ) f dp )Ag[p')( 'ge, e~(Reg~~~) e ' '~~ee", g', e')
n",g', e' Q

~ Ix(n", q', e'le'P 'B~ ln', q, e)~„.~. . (24)

where



1462 J. GUO S2

1
&n,q, e;n', q, e = (En, q, e En', q, e) (25)

is the frequency difference between two Bloch states
[n, q, e) and ~n', q', e). In the above equation, the band
indices n, and n" belong to the same energy manifold,
while n' and n'" to a different manifold. For higher
energy manifolds, the energy separations between dif-
ferent Bloch states becomes greater than the relaxtion
rates of these Bloch states, owing to the anharmonicity
of the light-shift potential. As a result, one can neglect
the couplings between the coherences pl l (n, q, e; n', q, e)
and pl~i (n", q', e', n'", q', e'), where the band index pairs
(n, n') and (n", n"') are different from each other. The
equations for these density matrix elements between the
highly excited Bloch states can be obtained from Eq. (24)
by replacing n" with n and n"' with n'.

Second, the density matrix elements p (n, q, e; n, q, e)
represent a Rayleigh contribtion to the signal due to tran-
sitions beginning and ending at the same Bloch states.
These density matrix elements can be obtained &om Eq.
(24) by replacing n' with n, n" and n'" with n' In.
calculating this part of the signal, we also include the
off-diagonal density matrix elements between the Bloch
states within one of the lowest energy manifolds, in which
the energy separations between these states are less than
their relaxations rates due to optical pumping.

In Fig. 3, an example of the Raman-type signal due to
transitions between the Bloch states of different energies
is shown for a potential depth Vo ———150EA, . The probe-
transmission spectrum is plotted against the probe-pump
detuning b/ul„where ~l, = hk2/2M is the recoil fre-
quency. Similar to the 1D case, the spectrum exhibits
pairs of sidebands symmetrically located at negative and
positive detunings. These sidebands are dominated by
the contribution due to transitions between the bound
vibrational states, since the positions of these sidebands
correspond approximately to the energy separations be-
tween the lower energy manifolds. The widths of the
sidebands are mainly due to the spread of the Raman
transition &equencies, which itself originates &om the
anharmonicity of the light-shift potential wells. A no-
table difference between the 2D spectrum shown in Fig.
3 and those of 1D molasses [7,8] is that the magnitude of

the second sideband relative to that of the first sideband
is greater in the 2D case than in 1D. Such a difference
stems from the quasidegeneracy of the Bloch states in
the 2D case, which increases with energy. For instance,
the degrees of degeneracy for the erst and second excited
energy manifold are two and three, respectively. As a
result, there are three possible transitions between the
ground and the second excited manifolds that contribute
to the second sideband, compared to two possible tran-
sitions between the ground and the first excited mani-
folds that contribute to the first sideband. As a result,
the ratio between the magnitudes of the second and erst
sidebands becomes greater in the 2D case than in the 1D
case.

In Fig. 4, we plot the Rayleigh signal, which originates
from transitions beginning and ending at the Bloch states
with the same energy. As can be seen &om Fig. 4, the
Rayleigh signal exhibits a dispersion line shape centered
at b = 0, with probe amplification for b ( 0 and probe
absorption for h ) 0, which are in qualitative agreement
with some related 2D experimental results [3,4]. From
Figs. 3 and 4, the calculated central signal has a mag-
nitude much smaller than those of the Raman sidebands
in the absence of probe misalignment. Such a feature is
analogous to the case in 1D molasses when the probe Geld
and the copropagating cooling field have parallel polar-
izations [8]. As shown in the next section, the inclusion
of a small misalignment of the probe field, either in the
x-y plane or in the x-z plane, can lead to significant mod-
ifications to this central Rayleigh signal.

One of the unusual features revealed in previous cal-
culations on 2D cooling in this configuration is the exis-
tence of resonance peaks in the populations of the low-
est Bloch states as the potential depth Uo is varied [12].
It was also shown [13] that such resonances exist only
in the limit of very large detuning ~A[ (on the order of
501') for which the secular approximation is valid, and as
~A~/I' decreases, these resonances peaks disappear. One
possible way to observe these predicted resonance fea-
tures may be through the type of probe-transmission ex-
periments investigated in this work. In Fig. 5, we plot
the probe-transmission spectra for three different values
of the potential depth Uo in the vicinity of a resonance
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FIG. 3. Raman resonance signal. The potential depth
Uo ———150EA, , and the cooling Geld detuning A = —20I'.

FIG. 4. Rayleigh resonance signal in the absence of probe
misalignment. The cooling Geld. parameters are the same as
in Fig. 3.
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states, whose populations are only a few percent of the
total population. As a result, resonances in the lowest
Bloch states do not result in any significant change in
the line shape of the probe spectrum.
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V. CENTRAL SIGNAL IN THE PRESENCE
OF PROBE MISALIGNMENT

In the above section, we have assumed that the probe
field copropagates exactly with one of the cooling field
along the x axis. In reality, however, there usually ex-
ists a small angle between the directions of the probe
and the cooling fields. It has been shown in a 1D case
[8] that such a misalignment of the probe field can lead
to significant modifications to the central signal in the
probe-transmission spectrum.

In this section, we investigate the efI'ects due to the
misalignment of the probe in the 2D molasses. We con-
sider misalignment of the probe field in the x-y plane and
in the x-z plane, respectively.

0.02

0.00
20

I

40 60 80 100 120 140
~u, /E,

peak in the population of the ground motional state. The
cooling field detuning is A/F = —40, which results in rel-
atively narrow widths for the Raman peaks. As can be
seen from Fig. 5, the difFerences between these spectra
are small, indicating that the probe-transmission signal
is insensitive to the population resonances. This is par-
tially due to the fact that the resonance peaks in the pop-
ulations are significant only for the lowest several Bloch

FIG. 5. (a) Probe-transmission signal in the absence of
probe misalignment. The cooling field detuning A = —40I',
and the potential depth Uo = —102E), (dotted line), —105E),
(solid line), and —108E), (dashed line). (b) Populations of the
lowest ten bands as a function of ~U() ~/E), .

A. Probe misalignment in the x-y plane

We first consider the misalignment of the probe field
within the lattice plane. The probe field wave vector is
assumed to be given by

k' = k~+ key, (26)

where 0 (( 1 is the misalignment angle. The interfer-
ence between the probe and the nearly copropagating
cooling field can lead to the formation of an atomic in-
dex or magnetization grating in the y direction, with a
grating period given by A/O, where A is the optical wave-
length. For very small pump-probe detunings such that
~8~ (( 1 ', the atomic density matri~ elements represent-
ing the contribution of this grating to the signal are of
the form p (n, q, e;n, q+ Oky, e). Similar to Eq. (24),
the equations for these density matrix elements can be
derived from Eq. (21) as

[2 (p~ q B + p& q+epy &) + ib + ild& q q & q+s&y &]p (nI qI EI nI q + OkyI e)

+I" ) f ) Nq(p')( q, ~(BqI'I)nI ee'~n', q'e, e')
n', q', ~' Q

~ Ix(n' q + Oky e le'+ 'Bq In q+ Oky e)p( )(n' q e nq + Oky e')'

(i) A

&(n q elB ln q+ Oky e)(7r,q+»y, .—~,q,.) + —(n q el&('ln q+ Oky e)

n(n n +e' e+eee ) —I' ) f dP ) Nq(P )(n, q e~(B )Ie e ~n', q', e )
n', q', e' Q

~ I
x(n', q', e'~e'~ 'Bq )(n, q+ Oky, e)~„ (27)
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As can be seen &om the above equation, in order to
solve these first-order density matrix elements, one needs
to choose the Bloch vectors in a way such that the difFer-
ence between the y component of adjacent Bloch vectors,
Lq„, satisfies

Lpy &Ok. (28)

For a small value of 0, this requirement can result in a
large increase in the size of atomic density matrix and
the computational demands. In the calculation below,
we assume a misalignment angle 0 = 0.2 rad, and the
Bloch vectors are chosen correspondingly as

q = (—1+j8)ky, j = 0, 1, . . . , 9. (29)

The spontaneous emission kernels Kg(p') in Eq (8)
must be discretized in accordance with the above choice
of Bloch vectors, such that Eq. (27) represents a closed
set of equations for the density matrix elements. In
the Appendix, a possible scheme for the discretization
of Ng(p') is shown. Despite the difFerent selections of
the Bloch vectors in this and the previous sections, it is
found that the zeroth-order atomic populations in various
energy bands are within a few percent of each other in
these two cases, and one expects the calculated Raman-
type signals in the present case are also similar to those
displayed in the previous section.

Figure 6 shows the central part of the probe-
transmission signal in the presence of probe misalign-
ment for a detuning A/I' = —20, and a potential depth
Us/Ei, = —150. As can be seen from Fig. 6, the am-
plitude of the central signal is greater than the case of
no misalignment shown in Fig. 4, and comparable to
those of the Raman sidebands. In the presence of probe
misalignment, there exist intraband Raman resonances
between the Bloch states ~n, q, e) and ]n, q+ Oky, e) in-
volving the probe field. The contribution of these Raman
resonances to the signal is partially represented by the
source term proportional to H& l in Eq. (27), which van-
ishes in the absence of probe misalignment. Moreover,
a special feature in the absence of probe misalignment
is that, the summation of the source terms proportional
to A~ ~ exactly cancels the summation of those propor-

We next analyze the effects of the misalignment of the
probe Geld in the x-z plane, which was the case of an
earlier experiment in a 2D optical lattice described in
Ref. [3]. The probe propagation direction is given by

k' = k~ —k0i, (30)

where 0 (( 1. This case is very similar to probe trans-
mission in 1D molasses with the inclusion of probe rnis-
alignment [8]. In the 1D case, the atomic motion trans-
verse to the molasses can be described by &ee-particie
states (plane waves). When a probe field propagates at
a small angle with a cooling Geld having parallel polar-
izations, the coherences between atomic states with their
transverse center-of-mass momenta diKering by Ako can
be created when an atom absorbs a probe photon and
emits a pump photon or vice versa. Such recoil-induced
resonances (RIR) [17,18] have been shown to lead to ad-
ditional contribution to the central probe-transmission
signal in certain cases [8]. In the present 2D lattice
with a probe misalignment in the x-z plane, one Gnds
a similar situation where the recoil-induced resonances
are expected to contribute to the central signal, since the
atomic motion along the z direction can be described by
&ee-particle states as well.

The equation for the atomic density matrix elements
representing the recoil-induced. signal can be derived in
almost exactly the same way as in the 1D case, and the
details of the derivation can be found in Ref. [8]. In-
cluding the atomic motion in the z direction, which is
described by the momentum eigenstates lp, ), the atomic
density matrix elements can be written as

&-,~, ;-,~,"(p p') = (p. l(~ q elpl~' q' e')lp'. ) (»)

tional to BJ in Eq. (27), as can be verified from Eqs.
(11) and (12). In the presence of probe misalignment,
such a feature no longer exists, and the contribution of
these nonsecular terms proportional to A& & and B be-(y} (1)

comes more important. These effects introduced by the
misalignment of the probe Geld result in the observed
increase in the amplitude of the central resonance signal.

B. Probe misalignment in the x-r. plane:
recoil-induced resonances

0.020
The first-order coherences between the atomic states
with difIerent center-of-mass momenta in the z direction,
which represent the recoil-induced signal, is given by

0.01 0

0.000

p~'~(p„p, —~ko) = )
AigfE

x (p„p, —hk8) . (32)

—0.01 0

-0.020
0

6/u,

FIG. 6. Central signal in the presence of probe misalign-
ment in the x-y plane. The cooling Beld parameters are the
same as in Fig. 3.

p~'l(p„p, —nke) = —
l

iS+ i p~'l(p. , p. —nko)
(. . kp, g)

+— ) (n, q, elH~ l ln, q, e)ir„
'A) g) E

x [W(p, ) —W(p, —hk0)], (33)

In the secular limit ( ), the equation for p~i~ (p, p, —hko)
can be shown to be given by
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where W(p, ) is the atomic momentum distribution func-
tion in the z direction, which is assumed to have a typical
width given by po ——Mu, where u is the most proba-
ble atomic speed in the z direction. The solution for

t

p~ ~(p„p, —hk8) in a long-time limit (ku8t )) 1) can be
obtained from Eq. (33), and upon substitution of this
solution into Eq. (14), one finds the recoil-induced probe
transmission signal as

GP = Im . p~ l(p„p, —hk8)dp,ir/2 —a

1+ ) (n q~ ale ' *ln q e)~,~,.myMUO, ( Mb) —2iA:z

6(I'/2+ ib. ) q k8 p A ~Q~C

+) [(n, q, +leos(ky)e '"
ln, q, +)m„,~+ —(n, q, —

l
cos(ky)e '"

ln, q, —)vr„~ ]
n, q

(34)

where W'(p, ) is the first-order derivative of W(p, ) with
respect to p . For a Maxwellian distribution

1 2 2

W(p) — gala
~m.po

(35)

one obtains a typical line shape for the recoil-induced
signal as

G(RIR)
k~T ku8

j2
(ku8) ' (36)

0.020

0.010

0.000
U
(Do~—0 010

I -0.020
O
O
(D

FIG. 7. Recoil-induced signal. The temperature T is given
by k&T = 100E&, and the misalignment angle in the 2:-z
plane is 8 = 0.05 rad. Other parameters are the same as in
Fig. 3.

where k~T, = Mu2/2 is the average kinetic energy of
the atomic motion along the z direction. As in the 1D
case [8], the recoil-induced signal exhibits a Gaussian-
type dispersion profile, with a width given by the resid-
ual Doppler width ku8, and a magnitude inversely pro-
portional to the temperature k~T . In Fig. 7, the sig-
nal given by Eq. (34) is plotted for a kinetic energy
k~T = 100EA, , and a misalignment angle 0 = 0.05 rad.
The parameters for the cooling field are the same as in
Figs. 3 and 4. Comparing Figs. 4 and 7, it can be
seen that for the chosen temperature T, which is typical
of sub-Doppler cooling, the recoil-induced signal can be
much greater in magnitude than the Rayleigh signal in
the absence of probe misalignment.

VI. CONCLUSIONS

In this paper we have presented a calculation of the
probe-transmission spectrum of a 2D optical lattice. The
atomic internal level scheme is chosen as a Jg = 1/2 +

J, = 3/2 transition for simplicity, and the atomic center-
of-mass motion is quantized in this calculation. The cal-
culated spectrum exhibits both sidebands and central
resonance structures, which can be explained based on
stimulated Raman and Rayleigh transitions between the
eigenstates of the atomic motion in the light-induced po-
tentials. The Rayleigh signal exhibits a dispersion line
shape centered at b = 0, while the Raman sidebands oc-
cur at detunings corresponding to the energy differences
between the motional eigenstates.

We have also included in this calculation the misalign-
ment of the probe Geld, both inside and outside of the
2D molasses plane (x-y plane). In the case of misalign-
ment in the x-y plane, we have found that the magni-
tude of the central resonance signal increases as a result
of the probe misalignment, which can be partially ex-
plained by the Raman intraband resonances between the
Bloch states having different Bloch indices. In the case of
probe misalignment in the x-z plane, the recoil-induced
resonances between the &ee-particle states along the z di-
rection becomes important, which lead to an additional
signal at b = 0 with a Gaussian-type dispersion profile,
and a width proportional to the misalignment angle 0.

The experiments on 2D probe transmission have been
carried out, with both a field configuration investigated
in this calculation [3] and a three-beam configuration de-
scribed in Ref. [4]. In the former case, the probe field
propagates with a small misalignment in the x-z plane,
similar to the case studied in Sec. V B. The observed
spectral features, such as relative magnitudes and line
shapes of exhibited structures, are in qualitative agree-
ment with this calculation. A recent four-wave mixing
experiment on a 3D lattice has studied the effects of
probe misalignment within the x-y plane [6], and it was
found that the width of the central resonance signal also
depends on the misalignment angle. In the present cal-
culation, we have chosen a relatively large misalignment
angle 0 = 0.2 rad in the x-y plane. Due to limited com-
puting resources, we have not been able to study the cases
of smaller values of 6t, and therefore the dependence of
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the signal amplitude and width on 0 in this 2D case, al-
though numerical calculations can be performed in the
same fashion as described in Sec. VA. Investigation on
the angle dependence, with a generalization to 3D lat-
tices, will be the subject of future research.

alignment in the x-z plane, one can choose the Bloch
indices given by Eq. (23). The simplest spontaneous
emission pattern compatible with this choice of q is to
assume that the Huorescence photons are emitted only
along the Cartesian axes x, y, z. As a result, Eq. (Al)
becomes [13]
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APPENDIX

3I'
[/gg]-i- =

4m
d2 1 —ikn~. r

/1 —n2~

(i) (i)X g Cage peeeg
2=XiyiZ

(oge nJ )pee(oeg nl )

In this appendix, we describe two difI'erent discretiza-
tion schemes for the spontaneous emission kernels Ng(p')
used in Secs. IV and V. Our starting point is the ana-
lytical formula for the feeding term of the atomic ground
state from the excited states due to spontaneous emis-
sion, as is derived in detail in Ref. [13]. In this 2D case,
the feeding term can be written as

['„]--=-,): ): ):
g=+ rn=x, yiz $g~

(m) —ikv)g ikv(g (rn)
ge pee& 0eg (A4)

or, in terms of the spontaneous emission kernels Ng(p')
in Eq. (S),

Ng, (p') = —[b'(p' —kx) + h(p' + kx)
8
+b(p' —ky) + 8(p'+ ky) + 46(p')],

No(p') = —[b(p' —kx) + b(p' + kx)
4
+6(p' —ky) + 8(p' + ky)] . (A5)

In the presence of a small probe misalignment in the
x-y plane, the interval between different Bloch vectors
must be suKciently small to resolve the probe-induced
grating structure. For the choice of Bloch vectors de-
scribed in Eq. (29), the azimuthal angle P can be chosen
such that the projection of the Huorescence photon mo-
mentum in the z-y plane is along the x or y axis only,
i.e. , P = 0, vr/2, n, 3m/2. For the case of P = 0 or vr, the
spontaneous photon wave vectors can be assumed to be
in the x direction only, i.e. ,

(1 2 ) lzl (z) ikn~. r
~~)oge pee&eg )

n~k =+k» for P = o, vr. (A6)

where in Cartesian coordinates, n~ = (sin o. cos P,
sinn sinP, 0), and (n, P) are the polar angles. In Eq.
(Al), o,g (o'~, ) are the atomic raising (lowering) oper-
ators, whose spherical components for the Jg = 1/2 +

J, = 3/2 transition are given by

ai,+'~ = is + 3/2)(g + 1/2i

1
+ l~+~/2)(g+~/21,

For P = vr/2 or 3m/2, n~ is discretized as follows:

n~k = (—k+ jek)y,

j = 0, 1, . . . , 2/0, for P = 7r/2, 37r/2 . (A7)

The probabilities associated with each fIuorescence
photon momentum can be derived &om Eq. (Al). Based
on a direct discretization of the integral in Eq. (Al), we
obtain the spontaneous emission kernels Ng(p') as fol-
lows:

~(O)
eg (le1/» &~1/21 + le —1/»(~ —1/2l) (A2) Ngi(p') = —[6(p' —kx) + h(p'+ kx) + 2b(p')]

8

The atomic excited-state density matrix p in Eq. (Al)
can be expressed in terms of pgg as

2/6

+ ) .&+i(»(j))~(p' »(&)y)—
&« = [~~9 ' e(r))&ag[~9~ ' (r)] ~ (A3)

No(p') = —[8(p' —kx) + h(p' + kx)]
where e(r) is the polarization vector of the incident field.

For the purpose of numerical calculation, one needs to
discretize the Bloch index g as well as the spontaneous
emission kernel in Eq. (Al). Our criterion for choosing
the discretization schemes are mainly based on minimiz-
ing the numerical computation. In the absence of probe
misalignment, or in the presence of a small probe mis-

where

2/0

+).&o(»(j))~(p' —»(j)y)
j=O

~(j) = (-1+jo)k

(AS)

(A9)
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and

IpU) I

+~ (&(j)) —
16

P.(p(j))=-, , j~0 2/0IPU) I'

1 —p(j)'
Pp(p(j)) = 0.16, j = 0, 2/8 . (A10)

+11lp(j)1+1 p(J—)', j g o, 2/~l,

P~q(p(j)) = 0.085, j = 0, 2/0,

The kernels Ng(p') shown above satisfy the norrnaliza-
tion conditions P, N~(p') = 1 for Q = +1,0, respec-
tively.
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