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Asymptotic analysis in time-dependent calculations with divergent coupling
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An efficient time-dependent method is presented to obtain, at any time, the nuclear wave functions
corresponding to the intense 6eld photodissociation of homonuclear ions, which possess a divergent
electronic transition moment, as the internuclear separation increases. It consists of splitting the
wave functions into two parts, one part corresponding to the internal region and the second to the
asymptotic part. The propagation of the wave packet's asymptotic part is done analytically even
during the 6eld interaction. The advantage of the method presented here is that the extension of the
grid, needed to represent the wave packets, is 6xed once and for all. Therefore, the numerical effort
is reduced to the propagation in a previously 6xed region of space, regardless of the duration of the
6eld. The method is applied to calculate the proton kinetic energy spectrum in the photodissociation
of the Hq+ molecule.

PACS number(s): 42.50.Hz, 33.80.Gj, 34.50.Rk, 33.80.Wz

I. INTRODUCTION

Since the advent of intense lasers, many studies
have been devoted to the photodissociation dynamic of
molecules in the presence of a laser field, with strength
comparable to the internuclear binding energy. This high
intensity regime is obtained by concentrating the laser en-
ergy in very short pulses, which implies a time-dependent
theoretical approach. In most of the studies (except in
Ref. [1]), this approach consists of solving numerically
the Schrodinger equation by sampling the initial nuclear
wave function on a grid and then numerically propagat-
ing it on the radiatively coupled electronic potential en-
ergy surfaces until the photodissociation process ends.
Several measurable quantities may then be calculated to
get insight into the dynamic of the molecule subjected
to intense field. From the point of view of numerical
calculation, these observables can be classified into two
groups.

The first group consists of quantities which can be ob-
tained without knowing the behavior of the wave packet
at large internuclear separation (asymptotic part of the
wave packet). The final vibrational state of the molecule
(which can be calculated by projection of the wave packet
on the vibrational states of the &ee inolecule) and the
total photodissociation probability (which may be calcu-
lated by time integrating the density current vector flux,
at a not too large internuclear separation) are such mea-
surable quantities. Because they can be performed ig-
noring the behavior of the wave packet at large distance,
these calculations can be done with small grid extension,
absorbing (with an optical potential, for instance) the
wave packet on the edge of the grid, and therefore are
not very time consuming.

A second type of observable, on the contrary, requires
for calculation the full wave packet (including very large
internuclear separation) at the end of the photodissocia-
tion process. We call these quantities asymptotic observ-
ables. They correspond in general to detailed information

about fragment properties. From now on, we will focus
on this second type of observable and more precisely on
the fLagment kinetic energy spectrum which is typically
that of such an asymptotic observable.

Several methods have been proposed to calculate such
detailed properties of &agments. These methods were
first developed in the context of time-dependent collision
and half-'collision studies. The aim of these methods was
to obtain the scattering S matrix by wave packet prop-
agation. Spatial Fourier transform of the wave packet
and time Fourier transform of correlation type function
[2—4] methods have been developed. These procedures
are based on the fact that, in general, the intermolecular
forces have a finite space extension, implying thus the ex-
istence of an asymptotic region of space where the &ag-
ments behave like free particles. The same procedures
have been applied to photodissociation processes (see,
for instance, Ref. [5]) in the case where the radiative in-
teraction (i.e., the permanent or induced dipole moment)
has a finite space extension. In this case, Heather and
Metiu [6] have developed a very efficient scheme which
takes advantage of the existence of an outer region &ee
of forces. Their method consists of splitting the wave
packet into an interaction part, subject to molecular and
field forces, and an asymptotic part, where propagation is
done analytically by considering it as a &ee wave packet.

It is well known that homonuclear ions with an odd
charge possess a pair of so-called charge resonant elec-
tronic states [7,8]. The transition dipole moment be-
tween these states has the peculiar property of diverg-
ing linearly as the internuclear distance increases. It has
been suggested [9] that because of this strong coupling
these molecules may be good candidates for studies of
nonlinear eKects.

Because of this electronic asymptotic coupling, the be-
fore mentioned method cannot be directly applied dur-
ing the laser interaction. This problem has recently
been addressed in the time-independent Floquet scatter-
ing framework [10,11,1].
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Until now, in the context of time-dependent methods,
the techniques used to calculate the kinetic energy spec-
trum for this type of molecules consisted of propagating
the full wave packet, on a very large grid, during the
whole Geld duration, and then in analyzing it, only after
the radiative interaction has ended, in order to extract
&ee &agment properties. This analysis may consist of a
spatial Fourier transform of the wave packets [12,6] or
of projecting the wave packets on previously calculated
eigenfunctions, corresponding to the continuum part of
the Hamiltonian [13],and also of calculating an energy re-
solved fiux [14]. These procedures are very time consum-
ing due to the grid extension required to describe the full
wave packets during the Geld interaction. Furthermore,
when the pulse length increases, the computation time
increases not only because the Gnal time propagation is
larger but also because the grid needed to represent the
spreading and displacement of wave packets during this
additional amount of time also increases.

The aim of this paper is to show a propagation method
mhich allows the description of the entire wave packet
while using a restricted grid. The method is an adap-
tation of the Heather and Metiu scheme [6], which con-
sists of splitting the wave function into two parts, one
corresponding to the internal region and the second one
corresponding to the asymptotic part. The propagation
of the wave packet's asymptotic part is done analytically
even during the Geld interaction. Because of the diver-
gent coupling, the asymptotic wave packets cannot be
considered (as in Ref. [6]) as a superposition of indepen-
dently propagating plane waves. Nonetheless, it mill be
shown that the propagation can be done in the spirit of
Ref. [6], if the wave packet is taken as a superposition of
Volkov waves in the asymptotic region of space.

The advantage of the method presented here is that the
extension of the grid is fixed once and for all, regardless
of the duration of the pulse. The principle of the propa-
gation method, emphasizing the propagation of the wave
packet's asymptotic part, will be presented in Sec. II.

The method will be applied to the photodissociation
of H2+ by intense laser pulses (I = 10is to 10i4 W/cm )
with a wavelength A = 330 nm. It is well established that
for such a wavelength and intensities the photodissocia-
tion of H2 + exhibits above threshold dissociation (ATD).
This process has been invoked to explain the appear-
ance of successive peaks, separated by the energy of one
photon (in the body-fixed frame), in the proton kinetic
energy spectrum [15,16]. The possibility of continuum-
continuum absorption and stimulated emission, during
the dissociation of the molecule, has been the subject of
inany theoretical studies [17—19]. In Sec. III the kinetic
energy spectrum is calculated with the present method.
For testing purposes it will be compared with the Heather
and Metiu method [6] and for several laser intensities
with published results [19].

II. THEORY

For the molecule being described within the Born-
Oppenheimer approximation, we assume that only the

two charge resonant electronic states ( Z~, 2 Z„) are cou-
pled by the laser field E(t). The equations describing the
nuclear motion of the diatomic molecule interacting with
the laser pulse are

Bgi(R, t) h~ oj @i(R,t)
( ) )Bt 2p OB2

—p,2(R)E(t)@2(R,t), (1-)

8/2(R, t) h~ 8 @2(R,t)
Bt 2p BR2

—pi2 (R)E(t)@i(R, t), (lb)

where @i(R,t) [@2(R,t)] is the wave function describing
the nuclear motion of the molecule in the ground (ex-
cited) electronic state, Vi(R) [V2(R)] is the ground (ex-
cited) state potential energy curve, pi2(R) is the tran-
sition dipole moment, and p is the reduced mass of the
system. The rotational motion mill not be considered in
this paper.

A. Splitting of space

where g. (R, t) is nonzero in the interaction region and

(R, t) is nonzero in the asymptotic region. This is done
through some smooth function f(R) which is essentially
equal to 1 in the interaction region and equal to 0 in the
asymptotic one, such that

@,'(R, t) = f(R)@,(R, t),

@,"(R,t) = [1 —f(R)]g, (R, t) .

(2a)

(2b)

B. Analytical propagation of Q+(R, t)

The linearity of the Schrodinger equation allows us to
propagate separately vP (R, t) and @+(R., t). The aim of
this section is to show that we can propagate @+(R,t)
analytically and therefore limit the numerical effort to
computing @~(R,t) only on a previously fixed region of
space. Actually, in the asymptotic region the potential
energy is zero and the transition dipole moment between
the two charge resonant states of the homonuclear ion
diverges as —' (e being the electric charge of the elec-
tron). The coupled equations describing the evolution of
the asymptotic wave function @+(R,t) are then

Bt 2p OB2
eE(t)R

Following Ref. [6], one can divide the space into two
regions, an asymptotic region (A) where the potential en-
ergies V~(R) (j = 1, 2) are zero and an interaction region
(I) where interaction potential acts. The wave functions
are in turn split as follows:

g, (R, t) = g,'(R, t)+g,"(R,t) (q =1,2),



1452 A. KELLER 52

0@~~(R,t) h~ 82@~~(R, t) eE(&)R
gt 2p, A/2 2

(3b)

These coupled equations (3) can be decoupled, intro-
ducing the following new wave functions:

(4-)

~, (R, t) = [@,"(R,t) —@,"(R,t)] .
2

(4b)

The time evolution of these new functions is deter-
mined by the following equations:

Oyi (R, t) 5 0'yi (R, &) eE(&)R
Ot 2p BB2 2

ug(R, t, t;) = exp(i[k+ A(t, t, )]R)
t

x exp —i dt' [k+ A(t, t')]
2p

(6)

where

t
A(t, t;) = — dt'E(t') .

The set of functions (ui, (R, t, t, );k C] —oo, +oo[ ) may
be used as a basis set for expanding the wave functions
at any time t ) t, . This is the analog of expanding the
wave packet in terms of plane waves, describing the trans-
lational motion of field Bee &agments, when no coupling
is presezit in the asyinptotic region [6]. If we know the
expansion coefficients yi(k, t, ) such that the expression
of yi(R, t, ) at time t, is

yz(R, t;) = f dk gz(k, t;)ug(R, t;, t), ,

which reduces to the Fourier transform

yi(k, t;) = — dRpi(R, t;)e2'
then the later evolution of yi(R, t) (t & t, ) is sim-

(9y (R, t) h 0 y (R, t) eE(t)R
2p OB~ 2

As the two equations (5) are the same, except for the
sign change in the field term, we restrict the following
discussion to Eq. (5a). To obtain the results for the sec-
ond equation, we just have to change the electric field
E(t) by —E(t) in the first one.

The equation giving the time evolution of yi (R, t), Eq.
(5a), is formally analogous to the equation describing the
motion of a free electron in an electric field E(t) (where R
is now to be interpreted as an electronic coordinate). It
is well known [20,21] that the Volkov states are solutions
of this equation. Let uI, (R, t, t;) be the time-dependent
Volkov states which reduce to a plane wave at time t, :

ply determined by the time evolution of the basis set
(u, (R, t, t;) ):

yi(R, t) = f dk gi(k, t;)ug(R, tt;) ., (10)

Another way of showing this is to look for the time
evolution in momentum space, thus defining the Fourier
transform of yi (R, t) at time t:

1
y, (k, t) = — dR y (iR, t)e

27r

Using Eq. (10) and the definition of the u~(R, t, t;) Eq.
(6) we obtain

yi(k, t) = gi(k —A(t, t, ), t;)

x exp i d—t' [—k —E(t, t')]
2p t;

(12)

Therefore the time evolution of y2(k, t) which is de-
fined as yi(k, t) in Eq. (11) is given by

~, (k, t) = ~,(k+ A(t, t;), t;)
5

x exp —i— dt' [k + A(t, t')]
2p t;

(13)

We see that the time evolution of the y~(k, t) (j
1,2) functions (i.e. , in momentum space) is very simple.
To obtain y~(k, t) at any time t & t;, we just have to
shift in k space the initial yz(k, t;) by the laser pulse
area A(t, t;) and to multiply by a phase factor. The
asymptotic momentum wave functions can be recovered
using Eq. (4).

C. Propagation algorithm

The wave packet propagation algorithm is divided into
the following steps.

(i) Deffne the initial wave function @~ (R, t = 0) (j =
1, 2), sampled on a grid extending from 0 to R

(ii) Propagate numerically (with the split operator
method, for instance) the two coupled wave packets until
their values at the end of the grid reach a fixed value e

[i.e. , until ~@~(R „,t)~ & e (j = 1 or 2)]. The time at
which this condition is satisfied defines the time t; of Eqs.
(12) and (13).

(iii) Split the wave packets [Eq. (2)] using f(R)
(iv) Propagate analytically the asymptotic part of the

wave packets from t, to t [Eqs. (12) and (13)].
(v) Go to the first step with the interaction part of the

wave packets as initial wave functions.
During the propagation, the pulse area A(t, t') has to

be calculated as well as its integral. Every time step (iv)
is reached the propagated asymptotic part of the wave
packet is added to the previous ones. At the end of the
propagation we can reconstruct the full wave packets,
adding the remaining interaction part vP (R, t) to the co-
herent sum of the asymptotic parts. Contrary to the
propagation methods consisting of a full description of
the wave packets on the grid, we see that here, regard-
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less of the length of the pulse, the extension of the grid
and therefore the number of points required to represent
the wave function at a given resolution is Gxed once and
for aH.

III. NUMERICAL RESULTS

A. Proton kinetic energy spectrum calculation

The &agment wave vector probability distribution is
given by

P(k)dk = hm [!@",(k, t)!'+!@,"(k, t)!']dk .

The "symbol denotes Fourier transform:

Q, (k, t) = —f dB Q~(R, t)e

and limq~ means that t is such that the laser electric
Geld is oK and the remaining interaction part of the wave
packet is a superposition of bound states only. We have
seen in Sec. II that asymptotical part propagation is done
in momentum space [Eqs. (12) and (13)), therefore at
the end of the propagation we obtain directly the needed
@. (k, t ~ oo) wave functions in k space. The fragment
kinetic energy spectrum is then given by

8(E)dE = — P! /2pE !—2E l5 (16)

The total photodissociation probability may be obtained
by summing P(k) over k:

Pg —— dkP A:

The conservation of the wave packet norm provides an-
other way to obtain Pg.

Ps = hm
~

1 —/dR)g, (B,t)~*
~

(18)

B. Computational features

The numerical wave packet propagation is performed
using the three term split operator in conjunction with

The theory presented in the preceding section will be
applied to the multiphoton photodissociation of the H2 +
molecule. It is well established. that the photodissocia-
tion of H2 + exhibits above threshold dissociation (ATD).
This process has been invoked. to explain the proton
kinetic energy spectra obtained. experimentally. These
spectra are typically asymptotic observables, as discussed
in Sec. I, and constitute a good test of our method. The
calculation of the photodissociation probability distribu-
tion as a function of the proton kinetic energy will be the
subject of the Grst part of this section. In the second part
we will compare our method. to the propagation method
of Ref. [6] and with the results of Ref. [19].

fast Fourier transform (FFT) [22,23] and approximating
the exponential of the operators by the Cayley formula
[24). Time integration of highly oscillating terms, such as
b, (t, t'), are conducted by the so-called Filon technique
[25].

Wave functions are sampled on a grid of N~ ——512
points extending to R~ „= 15 A. The highest ki-
netic energies that can be reached with this sampling
(AR = 3 x 10 2 A.) are greater than 3 x 105 cm ~. The
time step is taken as At = 0.02 fs, .which allows for a
good description of the oscillating field (50 points per
period for a 330 nm wavelength). A larger time step
might be taken by using a recently developed split op-
erator method involving more than three exponentials
[18,26]. Every time the splitting procedure is applied, a
Fourier transform is performed on the asymptotic wave
packets [steps (iii) and (iv) of the propagation algorithm]
to apply Eqs. (12) and (13) in momentum space. As sug-
gested by the authors of Ref. [6], to increase the momen-
tum resolution LA:, the wave packets in momentum space
are represented in a larger grid with NI, ——2048 points
and with the same resolution LA. We will see that the
asymptotic propagation is applied very few times, then
increasing the number of points does not acct the efB-
ciency of the algorithm. At the end of the propagation, it
is checked that Eqs. (17) and (18), for the total photodis-
sociation probability, give the same result. The value of
e in step (ii) is taken as 10

The splitting function Eq. (2) is taken as [6]

f(R) =
I
1+exp

where Bo represents the point dividing the interaction
and the asymptotic region and o controls the extension
of the transition zone between these two regions. In our
calculations we choose Rp = 11 A. , such that for R ) Ro
the wave packet cannot return to the interaction region,
which is an implicit requirement of the algorithm. This
can be tested at the end of the calculation by verifying
that the asymptotic wave packets do not contain negative
momentum components [i.e., v)+(k, t -+ oo) = 0 for k (
0].

A compromise has to be made to assign a value for
the o parameter. Indeed, if we want to sharply split up
the internal &om the asymptotic region we must choose
a very small value for cr, but if this value is too small
then the variation of the f (R) function will be too sharp,
introducing high momentum components and thus accel-
erating temporarily the wave packets. Of course, such
an artifact does not modify the result of calculation but
increases the number of splitting operations required. A
good compromise is obtained with 0 = 0.1 A. .

A Gaussian shape for the laser electric Geld is taken:

(t —4~& '
E(t) = Eo exp

I I
cos(u)L, t).

The Born-Oppenheimer potential energy curves corre-
sponding to the Zg, Z„electronic states of H2 + are
taken from Ref. [27] and the transition dipole moment
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&om Ref. [28] which have the correct asymptotic behav-
ior.

C. Tests of the xnethod

As a first test, we compare the present method with
the method of Ref. [6], where the asymptotic part of the
wave packet is propagated as a &ee wave packet. In
other words, the wave packet is expanded in terms of
plane waves instead of Volkov waves (which corresponds
to setting A = 0 in the algorithm presented here). Be-
cause this method assumes that no force acts within the
asymptotic region, it must be applied only after the field
interaction ends. Actually, during the laser pulse, due to
the divergent coupling, no force &ee region exists. Thus
the full wave packet has to be numerically propagated
during the whole duration of the field interaction.

For a very short laser pulse the two methods lead to
almost the same results. Actually, if during the laser in-
teraction the wave packet has no time to reach the end
of the grid, then the splitting of the wave packet will be
done only after the laser pulse is switched ofF, even in
the present method. Table I shows the photodissociation
probabilities for such a very short pulse (7 = 5 fs and
I = 8.75 x 10 W/cm ), and the kinetic energy spec-
tra calculated with both methods are presented in Fig.
1. The same B-grid and time sampling parameters have
been used for the two methods, resulting in the same
CPU time. A very good agreement is obtained for such
a very short laser pulse.

For a longer laser pulse (w = 20 fs), a larger B grid
must be taken to use the method of Ref. [6]. Indeed,
during these 20 fs the grid needed to represent the full
wave packet is very large (B „=120k.), thus requiring
N~ ——4096 points so that the sampling rate is the same
as in the present method.

The kinetic energy spectra calculated with the two
methods are presented in Fig. 2 and the branching ra-
tios for one-, two-, and three-photon transitions, as well
as the total photodissociation probability calculated with
the two equations (17) and (18) are presented in Table II.

We see that the present method reproduces perfectly
the results of the Heather-Metiu method. Moreover, the
analytical asymptotic propagation during the laser pulse
reduces by a factor 12 the required computing time. (6
min vs 1 h, 15 min on an IBM RS6000 350 worksta-
tion). Actually, our method allows to use eight times
fewer points for the grid and the splitting operation fol-
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FIG. 1. Proton kinetic energy spectra with a very short
laser pulse (7 = 5 fs and I = 8.7510 W/cm ). (a) Spectrum
obtained with the present method. (b) Method of Ref. [6].
Bashed vertical lines represent energy position of one-, two-,
or three-photon absorptions.
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lowed by the Fourier transform with Np points is done
only 64 times, which is negligible when compared with
the total number of iterations (40 000) for the whole prop-
agation. [The gain factor in CPU time can be estimated
by considering that the complexity of the algorithm is
only due to Fourier transforms and thus is proportional
to %~ ln(K~). ]

Essentially, the method proposed here (as in Ref. [6])
is based on a matching procedure. Indeed, the numerical
wave packet is matched with a superposition of Volkov
waves which are then propagated analytically. Match-
ing procedures always involve some errors. These errors
can be checked by comparing results obtained with dif-
ferent values of e [step (ii) of the algorithm]. Indeed,
decreasing the value of e increases the number of split-
ting operations (and then of matching procedures) during

20000 40000
TABLE I. Dissociation branching ratios for one-, two-, or

three-photon absorptions. P~ t 1 is the total dissociation prob-
ability. Comparison between the present method and the
method of Ref. [6].

(%%uo')
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FIG. 2. Proton kinetic energy spectra with a longer laser
pulse (v = 20 fs and I = 8.75 x 10 W/cm ). (a) Spectrum
obtained with the present method. (b) The full line is ob-
tained by applying the method of Ref. [6] only after the laser
pulse interaction has ended. The dashed line is calculated
with the same method but during the laser field interaction.
Dashed vertical lines represent energy position of one-, two-,
or three-photon absorptions.
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TABLE II. Dissociation branching ratios for one-, two-,
or three-photon absorptions. Pt t ~ is the total dissociation
probability. Comparison between the present method and
the method of Ref. [6].
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I'»- ('%%uo)
I
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0148x10 '
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Present method.
Method of Ref. [6] after the end of the laser pulse.

'Method of Ref. [6] during the laser pulse.
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the propagation. Two calculations have been made, one
with e = 10 which includes 52 splitting processes, and
a second one with e = 10 which corresponds to 1700
splittings of the wave packets. The tmo kinetic energy
spectra are almost the same except for very small dis-
crepancies and the maximum relative error obtained on
the branching ratios is of 5/p.

In Table II we have also collected the results corre-
sponding to a calculation done with the Inethod of Ref.
[6] but without waiting for the end of the laser pulse and
using the same grid as the one used for our method. Sig-
nificant discrepancies are obtained. The deviation &om
the correct calculation is clear in Fig. 2 where the corre-
sponding kinetic energy spectra are presented (dashed
line). The wings appearing in the two-photon peaks
correspond to molecules dissociating in the excited elec-
tronic state Z~, which is not the expected result; this
anomaly is due to the incorrect asymptotic propagation
which does not take into account the mixing of the two
electronic states during the laser pulse duration. More-
over, the shape of the fragment kinetic energy spectra
is very dependent upon the number of splitting opera-
tions performed during the propagation. This demon-
strates that it is necessary to take into account the cor-
rect asymptotic behavior (Volkov wave), during the laser
pulse, to obtain correct results.

As a second test we mill compare our calculations with
those of Ref. [19]. In this paper the authors calculate
the &agment kinetic energy spectra resulting from the
photodissociation of the H2+ molecule for several field
intensities. The methods used consist of calculating an

1.5x10
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5 x10
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0 20000 40000 60000
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FIG. 3. Proton kinetic energy spectrum with varying in-
tensity. The intensities are (a) I = 3.5 x 10 W/cm,
(b) I = 3.15 x 10 W/cm, (c) I = 8.75 x 10 W/cm,
(d) I = 1.71 x 10 W/cm, (e) I = 3.5 x 10 W/cm .
Dashed vertical lines represent energy position of one-, two-,
or three-photon absorptions.

energy resolved Hux and. of absorbing the asymptotic part
of the wave packets with the help of' an optical poten-
tial. Figure 3 shows our results for the kinetic energy
spectrum for five different intensities (from 3.5 x 10i2 to
3.5 x 10 W/cm ); the pulse duration and the wave-
length are the same as in Ref. [19] (w = 8.6 fs and
A = 329.7 nm). The transformation of the spectrum
with the laser intensity is the same as the one presented
in Ref. [19], changing &om a predominant three-photon
spectrum at low intensity to a one-photon peak at high
intensity and passing by a two-photon dominant peak
at intermediate intensity. Peak positions and widths are
also very well reproduced. The evolution of the width of
the peaks as the laser intensity increases and as the pulse
duration changes has been recently discussed in Ref. [29].
Another striking feature appears, if we compare the spec-
trum of Fig. 1 with the one of Fig. 3 corresponding to
the same intensity (I = 8.75 x 10 W/cm ). Not only

TABLE III. Dissociation branching ratios for one-, two-, or three-photon absorptions for varying
intensities. Pt t l is the total dissociation probability.
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0.669 x 10

Present method.
From Ref. [19].
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the widths of the peaks are different but also their po-
sitions. Indeed, we can see that the one-photon peak is
shifted to higher energy by 7400 cm and the two-
photon peak is shifted to lower energy by 2400 cm
when the pulse duration decreases &om 7 = 100 fs to
~ = 8.6 fs. These shifts which may be related to the
uncertainty principle (r = 8.6 fs corresponds to an en-
ergy width of 7700 cm ) are not yet well understood
and will be the subject of a forthcoming paper. The
branching ratios for peaks corresponding to one-, two-,
and three-photon transitions and the total photodisso-
ciation probability for several field intensities calculated
with the two methods are collected in Table III.

The deviations observed in the total photodissociation
probability may come &om the different transition dipole
moments taken in this work, indeed, we must take a tran-
sition dipole moment which has a correct asymptotic be-
havior. The different momentum space resolutions used.
in the two calculations (512 points in Ref. [19] and 2048
points here) may be the origin of the small disagreements
obtained in the branching ratios. It is important to note
that not only the fragment analysis methods but also
the propagation methods are different in the two calcula-
tions. The general good agreement obtained. between the
two methods (the absolute error is of the order of 1', this
implies that the relative error on small numerical values
may be large) demonstrates the validity of our asymp-
totic fragment analysis but also shows the consistency of
the two different propagation schemes.

and Metiu [6] for finite range interaction molecular sys-
tems. It is clear that this method can be applied to
any photofragmentation which presents an asymptotic
coupling or interaction varying linearly with the inter-
fragment separation. For instance, the calculation of the
electron kinetic energy spectrum, resulting from the pho-
toionization of an atom by an intense laser Geld, may be
done with the same type of method.

The analytical propagation to infinite time of the
asymptotic wave packet's parts allows a description of
the full wave packets and restricts the numerical effort to
the propagation in a previously fixed region of space, re-
gardless of the laser pulse duration. The method has been
successfully tested by calculating the fragment kinetic en-
ergy distribution resulting from the photodissociation of
the H~ + molecule. Good agreement has been found with
already published results [19]. By comparison with the
efBcient method of Ref. [6], it has been shown that our
method reduces by a factor 12 the required computing
time. Recently many experimental and theoretical stud-
ies have focused on the rotational motion of the molecule
during the photodissociation. The inclusion of this ad-
ditional degree of freedom requires heavy numerical cal-
culations. The extension of the method presented here,
to take into account the rotation of the molecule and
therefore for calculating energy resolved fragment angu-
lar distribution, is in progress and will be the subject of
a future work.

IV. CONCLUSION

We have presented an eKcient method to solve the
problem of intense field photodissociation of homonuclear
ions, which possess an electronic transition moment di-
verging with the internuclear separation. The method.
is a generalization of the scheme d.eveloped by Heather
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