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We present an investigation of the cesium magneto-optical trap, with particular regard to the
best combination of atomic density and temperature that can be produced. Conditions in the trap
depend on four independent parameters: the detuning and intensity of the light, the gradient of the
magnetic field, and the number of atoms trapped. We have varied all these parameters and measured
the temperature and density distribution of the trapped cloud. Both the nonlinear variation with
position of the restoring force and the reabsorption of photons scattered in the cloud limit the
maximum density, and we present an empirical model that takes this into account. This in turn
limits the density in phase space p (defined as the number of atoms in a box with sides of one thermal
de Broglie wavelength). We have observed a maximum p = (1.5 + 0.5) x 10,with a spatial density
of about 2 x 10 atoms/cm .

PACS number(s): 32.80.Pj

I. INTRODUCTION

The magneto-optical trap (MOT) is now widely used
as a convenient source of cold, dense clouds of atoms such
as alkali metals and noble gases. Much work has been
done to determine the limitations on the cooling one can
obtain in the MOT. The restrictions on the compression
have also been studied, but less thoroughly. This paper
describes a detailed experimental study of the MOT, with
the aim of discovering the best possible combination of
temperature and density that can be attained; in other
words, the maximum phase-space density of the trapped
atoms. In pursuing this aim, we found that a number
of separate processes combine to produce the limitations
on the phase-space density. We present a model that
generalizes existing treatments of the MOT in order to
embrace a wide range of its behavior.

The MOT consists of a combination of four or more
laser traveling waves and a quadrupole magnetic Geld

[1]. The most common geometry is six laser beams ar-
ranged to form three mutually perpendicular standing
waves, intersecting at the zero of the magnetic Geld; this
is the geometry assumed throughout this paper.

The Grst experiments were interpreted using a
"Doppler" model of the MOT [1], in which the force on a
trapped atom arises from the imbalance in radiation pres-
sure forces in each of the three pairs of laser beams, these
imbalances arising from the Doppler and Zeeman shifts
of the beam frequencies in the rest frame of the atom.

*Present address: Clarendon Laboratory, Parks Road, Ox-
ford OX1 3PU, England.

This type of model is acceptable for atoms in the process
of being captured by the trap, but does not describe the
important region at the center of the trap where the cap-
tured atoms settle. Here, the dominant force on the atom
is caused by the "sub-Doppler" mechanisms that occur in
polarization gradients, and involves a complicated com-
bination of optical pumping and atomic-state-dependent
transition rates [2].

In the case of low spatial density of trapped atoms, a
qualitative understanding of the MOT has been obtained
theoretically [3,4], and experimental measurements are
used to obtain quantitative results [3—7]. Scaling laws
for some of the properties, such as the temperature and
radius of the trapped cloud, have been obtained from
simple theoretical descriptions and these laws are found
to predict fairly well the trends observed in practice. In
this way one can construct semiempirical formulas for the
various parameters of the trap, using experimental results
to supply the proportionality factors. However, there is
still some uncertainty in the literature as to the correct
values of fundamental parameters such as the spring con-
stant at the center of a MOT, so we have addressed this
in our own work.

One only obtains the low-density regime in practice
if one takes pains to produce it. In normal operation
the MOT is not a system of independent particles, since
interactions between the trapped atoms are important.
The most signiGcant of these are the reabsorption of scat-
tered photons ("multiple scattering") and collisions be-
tween trapped atoms in which the internal state of one of
the collision partners changes ("cold collisions" ). With
the effects of polarization gradients, multiple scattering,
and cold collisions, the MOT is a very complicated sys-
tem, and it is extremely dificult to construct a complete
theoretical model from first principles [8]. In such a sit-
uation, we rely on the technique just described, that of
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combining simple theories with experimental results to
produce a set of semiempirical formulas describing the
MOT [9]. Such a set of formulas is presented in this
paper.

Attaining the highest possible phase-space densities in
a MOT is an important step towards the observation of
collective quantum eKects such as Bose-Einstein conden-
sation. For an atom of mass M the "thermal de Broglie
wavelength" A is deGned by

n/2
QMkgyT

(1)

where 6 is Planck's constant divided by 2' and k~ is
the Boltzman constant. If n is the spatial density of
atoms, then we deGne the "density in phase space" as
the dimensionless quantity

p=nA .

This can be considered, roughly, as the number of par-
ticles in a box of size h in phase space. For spin-zero
particles confined in a box, Bose-Einstein condensation
occurs when p = 2.612.

A promising route to achieving the necessary compres-
sion and cooling is to load a conservative trap (such
as a magnetic, dipole-force, or gravitational trap) and
then perform evaporative cooling. The value of the final
phase-space density obtainable after evaporative cooling
usually increases as a function of its value before cool-
ing, so it is important to start from the highest possible
initial value. In work with laser-cooled atoms, the MOT
may be used to provide this initial condition to start the
evaporative cooling process.

A recently proposed method to increase the phase-
space density of atoms on a MOT is the so-called "dark"
MOT introduced by Ketterle et al. [10] (see also Ander-
son et al. [11]),in which the unwanted efFects of multiple
scattering are reduced by shelving most of the trapped
atoms in a long-lived state that is only weakly coupled
to the trapping light Geld. The regime where the nor-
mal MOT reaches its highest phase-space density is also
one where multiple scattering is much reduced, so there
is no reason a priori that the normal MOT should not
produce phase-space densities as high as those possible
in the dark MOT.

A general introduction to the magneto-optical trap is
provided by Steane, Chowdhury, and Foot [3]. Drewsen
et al. [4] provide precise calculations in one dimension
as well as many useful measurements on a cesium MOT.
Wallace et al. [5] and Kohns et al. [6] describe measure-
ments for trapped rubidium. Other works on more spe-
ciGc aspects of the MOT will be referred to as they arise
in our own discussion.

This paper is organized as follows. In Sec. II we de-
scribe our model of the MOT, which includes various dif-
ferent regimes of behavior. This model assumes a steady-
state operation of the MOT. In Sec. III we consider the
possibility of increasing the phase-space density in a tran-
sient way by suddenly changing the parameters of the
MOT (laser detuning, intensity, magnetic field gradient).
Section IV describes our experimental investigations and
results.

Our experiments using cesium atoms conGrm the gen-
eral features of our model of the trap and supply the re-
quired empirical factors. The main results are as follows.
We provide measurements of the temperature in optical
molasses (equal to that in a low-density MOT [4,5,12]),
showing agreement with a previous study [4]. Difficulties
arising in measurements of the spring constant at the
center of the trap are discussed, and our own measured
values reported. Our model takes into account the spatial
capture range of the strong restoring force at the center
of the MOT; the trapped cloud can easily extend beyond
this range. Measurements of this capture range are re-
ported, showing reasonable agreement with our simple
model. Observations of the atomic density and velocity
distributions in a cloud extending beyond the capture re-
gion of the conGning force are also reported for the first
time. Finally, we provide a set of measurements of the
density n in the MOT and consider the limitations on
the phase-space density p. It is known that the presence
of many atoms in a MOT leads to an increase in both
the volume and the temperature of the trapped cloud.
Our results show that p is limited primarily through the
volume rather than the temperature. Densities up to
2.5 x 10 atoms per cm were observed, and the max-
imum phase-space density was p = (1.5 6 0.5) x 10
We find that the density in the trap scales with laser de-
tuning b and Rabi &equency 0 roughly as n oc b 0
which is much slower than the variation one expects &om
a simple theory. The breakdown of the MOT at low light
shifts is also apparent in our results and is discussed.

II. THE STATIC NOT

In this section, we consider the MOT in a steady state.
That is, a dynamic equilibrium between capture and loss
processes maintains a Gxed number of atoms. We assume
that heating can be modeled by a single momentum dif-
fusion constant D, and confinement and damping by a
force f. We suppose a basic trapping and damping force
f (r, v), which is present even when only one atom is
trapped, plus a force f (r, v, n) arising from the inffu-
ence of other atoms on the local radiation Geld:

f(r, v, n) = f (r, v) + f (r, v, n).

These forces are averaged over a box with sides of one
wavelength. It is usual to consider the motion close to the
origin (the center of the trap) and at low velocities, and
assume a linear dependence of f0 on r and v (a damped
harmonic oscillator model). However, the nonlinearity of
the force as a function of r is an important feature of
the MOT and will be taken into account in our discus-
sion. In order to avoid building into our model too many
assumptions about the variation of f with r and v, we
deGne the spring constant tensor v;~ as the negative of
the gradient of the force at the origin,

(4)
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where the derivative is evaluated at r = 0, and the angle
brackets denote an average over the velocity distribution
of the atoms in the central part of the trap (the "cen-
tral part" will be defined more precisely later). The axes
i = (x, y, zf are chosen along the laser beams, and the
axis of the magnetic field coils is along z (Fig. 3). One
expects e;,. to be proportional to the magnetic Geld gra-
dient, leading to the anisotropic form v. = r» ——e„/2
in a magnetic quadrupole field.

We do not propose any particular model for friction
and difFusion in the trap. We assume merely that in
a steady state (still supposing f to be negligible), the
standard deviations Jb,r, Av) of the velocity and position
distributions are linked through

1 2=1 . 2

2 ' 2"—MLv- = —K;;Dr. . (5)

This equation is modeled on the equipartition theorem.
This theorem cannot be applied directly to the trapped
cloud of atoms, since the cloud is not an isolated system
in thermal equilibrium, but (5) is found to be useful in
practice in a wide range of conditions. Our experimental
measurements of ~ are, in fact, measurements of the ratio
MAv /Arz, so the assumption we make is that the r
appearing in Eq. (5) is the same as the r appearing in
Eq. (4). Care must be taken to be sure that experimental
conditions are such that this assumption is valid (that is,
f and higher-order terms of fo(r, 0) are both negligible).

The "interatomic" force f is a shorthand for the
change in the local radiation force on a given atom,
brought about by the presence of all the other atoms in
the trap which inHuence the local radiation field [13,14].
The main influence they have is to extract photons
from, and change the phase of, the incident laser Geld,
and to create a "background Geld" of scattered photons
[8,15,16]. This has complicated effects on the small-scale
structure of the cloud [17], which we will not attempt
to model. However, for the large-scale properties such as
the average density and temperature of the cloud, the net
efFect can be roughly modeled as a change in e combined
with a repulsive photon pressure between atoms [14], and
this is the model we will discuss in Sec. IIB below.

Throughout, the discussion is not intended to be pre-
cise in detail but to give a description that will enable
most properties of the trap to be derived to within 50%
accuracy. As we will show, the behavior of the trap can
be divided broadly into four regimes. At small numbers
of trapped atoms (typically less than 104), the density
is low and multiple scattering efFects are insignificant.
We call this first regime "temperature limited, " since
the volume of the trapped cloud depends on its temper-
ature; this is discussed in Sec. IIA. At higher num-
bers of trapped atoms, we reach the multiple scattering
regime discussed in Sec. IIB. At still higher numbers
of trapped atoms, or at low light shifts and high field
gradients, the nonlinearity of the spatial dependence of
the trapping force is important, and the trap enters a
"two-component" regime, discussed in Sec. IIC. Finally,
when there are many atoms in the trap, and the detun-
ing is not too large, the trapped cloud of atoms becomes
optically thick. This is not taken into account in our em-

pirical model, and represents a fourth regime (discussed
in [9]) which we have chosen not to investigate.

In discussing the magneto-optical trap, we will use
b' for the absolute value of the detuxung ~~L, —~o~ of
the laser frequency with respect to the atomic resonance
frequency. (All our experiments use "red" detunings,
tuL, ( uo. ) The natural linewidth of the atomic excited
state 6Psy2 is I' = 2' x (5.22+ 0.01) MHz for cesium [18],
and the Rabi frequency 0 in a light field of intensity I is

0 = I'QI/2', (6)

where

4~'L r
6/3 (7)

and c is the speed of light. The saturation intensity Ip ——

l.1mW/cm for the transition 6Siy2F = 4, M~ = 4 -+
6P3/2E —5 Mp —5 in cesium. Throughout this paper,
0 will refer to the Rabi &equency of a single laser beam;
the total Rabi frequency of all six laser beams in the trap
is denoted by 0«&.

A. Temperature limited regime

At small numbers of atoms, the atomic density is low
and interatom efFects can be neglected: the trapped gas
acts as a collection of N independent atoms. In this
regime, the atomic spatial and momentum distributions
are close to Gaussian and can be characterized by three
radii r, r„, r and a temperature T. The radius along
each axis (i = z, y, z) is given by the equipartition theo-
rem [cf. Eq. (5)]

(8)

The subscript T on r is to emphasize that the radius is
limited by the temperature of the cloud. At the center of
a quadrupole magnetic Geld formed by two coils, the field
gradient along the coil axis (the z direction) is twice that
along the x or y axes, so that K = ~, = 2K~ = 2e„, since ~
is proportional to the Geld gradient. This means r = r
r /~2 = r„/~2, since the temperature is assumed to be
isotropic. With N atoms, the peak spatial atomic density
(at the center of the elliptical Gaussian distribution) is

2 (+2vr r~)

Note that since the temperature does not depend. on the
number of trapped atoms, the cloud radius is indepen-
dent of N and thus the density is proportional to ¹ This
is not the case in the other regimes discussed below. In
terms of N, v, and T, the phase-space density is

NA3 K,

2k~3 T3 M

Since we are interested in obtaining high phase-space
densities, we consider the case of low temperatures: these
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TABLE I. Reported r. measurements, converted into values for rp. The final two rows give
the results of a semiclassical, three-dimensional numerical calculation for an idealized atom having
parameters (such as the wave vector) appropriate for cesium.

Value of Ko
(1O-"N/m)
0.4
1
0.5
2.7
0.2
2.5
2.0
3.0
3.3

Atom

Cs
Cs
Cs
Cs

"Rb
8'Rb
"Rb
'Cs'
'Cs'

Transition

4m 5
4 + 5
4 —+5
4-+5
3m 4
3-+4
2m3
1 m2
4 —+5

Method

measured r k T
measured r Q T with few atoms
imposed oscillating H field
beam imbalance
imposed oscillating B field
measured r 4 T; beam imbalance
measured r 0 T; beam imbalance
numerical calculation
numerical calculation

Reference

[4] Fig. 14
[4] Table I
[71

[5]

[26]
[26]

are produced in the MOT when the saturation of the
atomic transition by the laser light is small. In this
regime, the spring constant v arises from optical pumping
among the Zeeman sublevels of the ground state, which
produces a difI'erence in the scattering rates of photons
from one laser beam compared with another. A one-
dimensional semiclassical analysis [3,12] then shows that
rc is independent of laser intensity and inversely propor-
tional to detuning for b ) 2I'. It can therefore be written

I' b
K = Kp ——

bbp
(for b ) 2 I'),

where 6 = dB/dz is the gradient of the magnetic field,
ep is a constant of proportionality, and we will take
bo ——1G/cm. A quantum analysis performed in one
dimension [4] confirms this prediction. We will discuss
later the way in which this equation breaks down at very
low light shifts (high detuning and low Rabi frequency).
Measurements on three-dimensional traps appear to be
in agreement with this overall dependence, although v. is
difFicult; to measure, since it is hard to retain a measur-
able signal while being sure that the trap is in the simple
temperature-limited regime and in the linear region of
the confining force.

Assuming that Eq. (11) does indeed apply in three-
dimensions (3D), the reported measurements of K can be
converted into measurements of vp as shown in Table I.
There is a wide variation in these values. One should
resist the temptation to take an average of the values in
Table I —it is possible that any one experiment is in
fact more precise than the average of all the others put
together. SufFice it to say that experimental knowledge
of e remains somewhat problematic.

An early work [12] showed that the temperature in
a cesium magneto-optical trap at low atomic density is
similar to that in the corresponding molasses, i.e. , to that

(b & 5 r, o.o2 r & n'/b & o.4 r). (i2)

This expectation was originally based on measurements
[20] and numerical analysis [21] of an optical molasses
with linearly polarized beams. The recent studies [4,5]
confirmed this behavior for circularly polarized light.

We have made many measurements of the temperature
in the molasses obtained after the magnetic quadrupole
field of a MOT is switched ofI', which we describe in the
experiment section of this paper. The results are repro-
duced here in order to use them to build our semiempiri-
cal model. We observe a slight departure from a linear de-
pendence on the light shift, for values of 0 /r8 between
0.05 and 0.4. However, we can nevertheless fit a straight
line through all our data having 0.05 & 0 /rb & 0.4 (i.e. ,
temperatures up to about 30 @K), to obtain Co/k~
1 + 0.5 pK, C = 0.28 + 0.05. In the following this pair
of values for Cp and C is used.

When the constant term in (12) can be neglected,
T oc 0 /h, leading to a cloud radius independent of de-
tuning as well as number, and proportional to the Rabi
frequency [3,4]

hC I'0 bp

p
I' (i3)

obtained in the same physical system but with zero field
gradient. More recently, two studies [4,5] have shown
that the t;emperature in the MOT is indeed exactly the
same as that in a molasses of the same laser-field config-
uration (for low atomic density and field gradients of or-
der 10 G/cm). For detunings larger than a few linewidths
and light shifts in the range indicated, the temperature
is expected to vary as

02
&aT = Cp+C h

b

Note that in Ref. [4], the cloud radius at one standard de-
viation, o', is correctly included in Eq. (29), but erroneously
described in the text as the "1/e radius;" the latter should
read "1/v e radius" [19].

B. Multiple scattering regime

With a medium number of atoms in the trap (typically
above 10 ), reabsorption of scattered photons within the
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trapped cloud is an important effect. The restoring force
and friction are still produced by sub-Doppler mecha-
nisms, as for the case of a small number of atoms, but
these mechanisms are themselves modified. No simple
model for this situation is presented in this paper. In-
stead, we use an empirical scaling law for the density in
the trap, which we And to vary for detunings above a few
linewidths approximately as n~s oc b b 0

K, 5 rbri"'
"'~~'r5 ~ nAhr bo (n') (14)

Here, C~s is a dimensionless parameter whose value is
given by experiment (our experimental measurements
give a value of order t Ms 50). The parameter va is
included in Eq. (14) because we expect that if the MOT
has a large spring constant in the temperature-limited
regime, then it will produce proportionately large densi-
ties in the multiple scattering regime. However, we do not
make any particular assumptions concerning the scaling
of the spring constant in the multiple scattering regime
other than that it is proportional to the magnetic field
gradient.

We find experimentally that the density in the multi-
ple scattering regime is almost independent of the num-
ber of atoms trapped. Walker, Sesko, and Wieman [13]
originally observed this, and proposed a simple model in
which the restoring force remained simple harmonic, but
with an additional inverse-square law repulsive force be-
tween atoms. Using Gauss's theorem, it is easy to show

[14] that this leads to a uniform density distribution in
the trapped cloud, which grows in volume as more atoms
are added, maintaining a constant density independent
of the number. The repulsive interatomic force arises
from reabsorption of scattered photons in the cloud and,
according to this model, the density is given by [14]

3KC
nMs— (»)I, ,o~~ (o.R/o. L,

—1)
'

Here, I& t ——2Isn~ t/I is the tota/ light intensity due
to the six trapping beams (averaged over a wavelength-
sized box), oL, is the optical cross section for absorbing
photons &om the laser field, and o.~ is the optical cross
section for absorbing photons reradiated from atoms in
the trapped cloud. Using a two-Level model for the atom,
the expression for o L, is

3A I /4
2~ b2 + I'2/4 + n2„/2

2I'2 b2+ 0, ,

The calculation of crR is more involved: it was performed
numerically in [14] and approximated analytically in [3].
To improve on the calculation in [3] we proceed as follows.
We consider a two-level atom illuminated by a single trav-
eling wave and deduce the fluorescence spectrum in the
limit nq t, b )) I' using the dressed atom approach [22].
This leads to a complicated expression for o.~, which can
be fitted, to within 30+& accuracy, by the formula

(4b'+ r'+12n')' &b'+ 6n2q
18~sr n4

8 Ko bl
9Ahl b, 04

(1s)

The question mark in Eq. (18) is there because our exper-
imental results, described in later sections of this paper
and summarized by the scaling law mentioned above, are
not consistent with this equation. In other words, the
relatively weak dependence of n~s on b and 0 that we
observe is surprising. We do not have a good understand-
ing of this, but suppose that it indicates that the simple
model of multiple scattering is not a good guide to the
real situation.

A difference between our observations and those in [14]
is that we rarely observe a uniform distribution of den-
sity in the MOT in the multiple scattering regime. We
have observed fairly uniform distributions when the de-
tuning and magnetic field gradient are small, but for most
parameter values the density distribution is well approx-
imated by a Gaussian function. The signature of the
multiple scattering regime is then not the spatial form of
the density distribution in the trap, but the appearance
of a maximum density that is almost independent of the
number of atoms trapped.

If there are N atoms in the trapped cloud, then the
limiting density n~s dictates the cloud radius. Since the
density is now proportional to b, one might expect a ra-
dius scaling as the cube root of b, which would imply that
the ellipticity of the trapped cloud is reduced, compared
with the temperature-limited regime. We assume that
we can approximate the cloud as a spherical distribution
with rms radius given by

rMS =
+2vr (iiMs)

(20)

This is to be compared with the radius r~ given by
Eq. (8). These two radii define the boundary between
the temperature-limited and multiple scattering regimes.
When r~s ) rz, the cloud is not compressed to the
temperature-limited radius but remains fatter due to the
multiple photon scattering.

Figures 1(a) and 1(b) show "phase diagrams" for a
MOT at b = 4 F and 8 = 8 I', respectively, with 02 =
0.5I' . Figures 1(c) and 1(d) show diagrams for the same
conditions but higher laser intensity, 0 = 2I' . We
see that with 10 atoms, the trap is in the temperature-
limited regime for most values of detuning and Beld gra-
dient, while with 10 atoms it is mostly in the multiple
scattering regime. The other delimiting lines in Fig. 1
will be explained in the next section.

Multiple scattering also causes the temperature of the
atoms to be different from that predicted at low densities.
Two studies have shown temperatures increasing in pro-
portion to the cube root of the total number of trapped
atoms [4,23]. This is due to an enhanced momentum dif-

Substituting this in Eq. (15), one may deduce the den-
sity in the MOT in the presence of multiple scattering of
photons:
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FIG. 1. DifFerent regimes of behavior of a magneto-optical
trap. The curves show the positions of the boundaries
between the temperature-limited, multiple scattering, and
two-component regimes, marked T, MS, and 2, respectively,
on the diagrams. Each diagram (a)—(d) is for a difFer-
ent combination of Rabi frequency and detuning, as fol-
lows. (0'/1', 8/I') = (a) (0.5, 4), (b) (0.5, 8), (c) (2, 4),
(d) (2, 8). The parameter values used are eo = 1 x 10
N/m, CMs = 50, C& = 1.4. The field gradient (on the y axis)
is in units of G/cm.

fusion and reduced &iction caused by the multiple scat-
tering [8,15,16], although a quantitative model remains
to be worked out. We will show later that multiple scat-
tering limits the density before it significantly raises the
temperature, so we will not need to take this temperature
rise into account in establishing the boundary between
the temperature-limited and multiple scattering regimes.

To conclude this section, we note that the denomina-
tor in Eq. (18) goes to zero at 8 = i/2I'. For detun-
ings below this value, the simple theory predicts that the
presence of multiple scattering tends to compress rather
than expand the cloud. This is because near b = 0 the
sidebands in the Mollow triplet fluorescence spectrum are
shifted away from the atomic resonance frequency so that
the cross section for reabsorbing them is less than that
for absorbing the nearly resonant laser light. One might
expect this general argument to apply also in the real
case of cesium atoms with multiple Zeeman sublevels,
and a three-dimensional radiation field. We have looked
for such a compression efFect experimentally but found
no sign of it.

C. Two-component regime

The restoring force in a MOT is not a linear function
of position. The force gradient df/dz is high in a small
region near the center of the trap and low outside this re-
gion [3] see Fig. 2. The strong confinement in the small
central region is due to the influence of the magnetic field
on optical pumping between the Zeeman sublevels of the
atomic ground state, while the weaker confinement in the

FIG. 2. Force on a stationary atom in a MOT, as given
by a semiclassical numerical calculation. The points are cal-
culated, the line is a spline 6t to guide the eye. The cal-
culation used b = 6I', 0 = 0.91 and was performed for a
J = 4 —+ J = 5 transition. Full details of the method will
be published elsewhere [26]; the figure illustrates the general
form of the variation of the force with magnetic field.

rest of the trap is due to the Zeeman shifts of the vari-
ous transitions to the excited state. As more and more
atoms are loaded into the trap the cloud becomes fatter
and fatter, until eventually it fills the central, strongly
confining region. If further atoms are added the cloud
then spills over into the weakly confining surrounding
volume, spreading out to a much larger radius. With a
suKciently large number of atoms, almost all the atoms
are in this large surrounding volume. When this happens
the trap is essentially a simple "Doppler theory" system.
The presence of polarization gradients in the laser field no
longer determines the average temperature and density
in the trap.

Semiclassical [24] and fully quantum-mechanical [25]
calculations have shown that the boundary between the
central and outer regions in a one-dimensional MOT oc-
curs at a radius such that the Zeeman shift is of the same
order as the light shift in the ground state. Preliminary
results of calculations predict the same behavior in a 3D
trap and yield a numerical value for the relevent radius:

h02
pB~ rl —+l

b

We choose to define rI as the radius at which the restor-
ing force reaches a local maximum see Fig. 2. C~ is a
constant proportionality factor. A semiclassical numer-
ical calculation [26] for a 1 = 4 -+ 5 atomic transition
gives C~ 0.9. The calculation assumed the same Lande
factor for the ground and excited states, which is not ap-
propriate for cesium, but at low saturation the result is
not expected to be sensitive to this.

The radius rI allows us to define further boundaries
on our phase diagram for the MOT (Fig. 1). When the
radius of the trapped cloud reaches r~, the MOT enters
the two-component regime. The signature of this regime
is a density distribution consisting of two components: a
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diffuse Gaussian ball extending out to a large radius, with
a small, much more dense clump in the center. The large
diffuse ball is sensitive to imbalances in the intensities of
the trapping beams, while the central clump is not [3].
The boundary rMS ——r~ defines the transition between
the multiple scattering and two-component regimes. In
thus defining the boundary, we recognize that rMs, as
given by Eqs. (14) and (20), underestimates the true
extent of the trapped cloud when the MOT is near the
boundary between regimes, so that when rMs ——r~ about
half the atoms will be in the diffuse ball extending out
beyond r~ . At low numbers of atoms the trap can also
pass directly from the temperature-limited to the two-
component regime when rT ——r~ .

Equation (21) introduces another numerical factor for
which an empirical value is supplied by our experiments
(described below). Petrich et al. [27] have also recently
reported two-component density distributions in a trap
working at high magnetic Beld gradient and high detun-
ing. We find that our model reproduces the position of
the boundary between the multiple scattering and two-
component regimes in their results (taken at higher laser
beam intensities) as well as in our own.

D. Summary

Let us now summarize our understanding of the
steady-state MOT. For the range of behavior considered
in this paper, the cloud of atoms in a MOT is a physical
system described by four parameters. The parameters
are the laser Rabi frequency 0, detuning b, magnetic
Beld gradient 6, and number of trapped atoms N. A use-
ful parameter derived &om these is the light shift 02/b,
since this appears in the formulas for temperature [Eq.
(12)], density [Eq. (15)], and sub-Doppler capture range
[Eq (») ]

The temperature and confinement at the center of the
trap are determined by polarization-gradient forces and
by multiple scattering of photons between atoms. In spe-
cial conditions, the density can be limited by the temper-
ature and the number of atoms, but this is rare; usually
the density is limited by multiple scattering and is in-
dependent of ¹ The spatial distribution of the atoms
also changes when the trap passes from the temperature-
limited to multiple scattering regimes, but experimen-
tally we Bnd that the cloud departs from its Gaussian
shape well after the density has already become indepen-
dent of N (as more and more atoms are loaded). In other
words, a Gaussian profile is not in itself a sign that the
cloud is temperature limited. Multiple scattering of pho-
tons also raises the temperature, the excess heating being

proportional to % / A combination of high magnetic
field gradient and small light shift, or else a sufBciently
high number of trapped atoms, will cause the trapped
cloud to spill outside the central strongly confining region
of the MOT, leading to a two-component density distri-
bution and the eventual disappearance of sub-Doppler
temperatures. The three regimes we have discussed are
summarized in Table II.

The equations for the curves shown in the phase dia-
grams of Fig. 1 are given in the Appendix.

E. Limitations ef the madel

There are two important limitations of our model. The
first is its failure to consider in detail the behavior when
the cloud of atoms becomes optically thick, even though
the search for high densities may tend to put the MOT
into this regime. The effect of increasing optical thickness
is taken into account to some extent, however, by our em-
pirical formula for the density in the multiple scattering
regime. The second limitation of the model is the in-
evitable breakdown of the sub-Doppler cooling and com-
pression processes at low light shifts. This breakdown
will be considered as we discuss our experimental results.

Note that although we have talked of a phase diagram
for the MOT, we are only using this thermodynamic con-
cept in a very loose way. The closed thermodynamic
system present in a MOT is not the trapped cloud of
atoms, but the combination of the atoms and the radi-
ation field. The boundaries indicated in Fig. 1 do not
define sharp transitions from one behavior to another;
the changes are smooth. For example, when the cloud
fills up the central sub-Doppler region and approaches
the two-component regime, the confining force is not a
linear function of position, so that the value of df/dz,
when averaged across the radius of the cloud, will pro-
duce an "average spring constant" smaller than the value
predicted by Eq. (11), thereby hastening the onset of the
two-component regime.

III. TIME-DEPENDENT MOT

In the preceding section, we have given a steady-state
description of the MOT with four independent parame-
ters: the number of trapped atoms N, the field gradient 6,
the laser Rabi frequency 0, and detuning b. Experimen-
tally, the maximal number of atoms N in a steady state
is determined by a balance between the capture rate B
and losses due to either collisions with room-temperature
atoms in the background gas of the vacuum chamber, or

TABLE II. The various regimes of the MOT. The radii rT ) rMsp and r( are defined in Eqs. (8))
(20), and (21), respectively.

Small N
Medium N
Large N

~MS + &T + ~l

&T ( &MS + ~I

ri ( greater of (rr, rMs)

n oc N, r independent of N
n independent of N, r cx N
two-component density distribution



1430 C. G. TOWNSEND et al. 52

collisions between trapped atoms.
In order to reach the highest d.ensities it is often con-

venient to work in a transient way. The trap is loaded
at parameters bi, Qi, bi leading to the highest steady-
state number Ni of trapped atoms, and is then switched
rapidly to new values 62, 02, b'2 which, according to the
analysis of the preceding section, lead to a higher den-
sity. However, since the trap is now being operated in a
transient way, it is not clear that the previous treatment,
which was a stationary analysis, is still valid. Indeed, the
number of trapped atoms will not remain equal to Ni,
but will tend to a new value N2 which is much smaller
than Ni, since the conditions which maximize the num-
ber are no longer met. We need to determine whether
the conclusions of Sec. II remain of interest.

When the trap parameters b, 0, b are changed with N
kept constant, the atomic cloud relaxes to a new equilib-
rium shape, with a new density at the center n(0). The
time constant for reaching the new value for n(0) is of the
order of w~, /3 10 ms, where 7~, is the relaxation time
for an atom initially displaced away &om the trap center
to move back towards r = 0. The calculation of n(0)
using the previous analysis will be valid if the number of
atoms has not varied significantly during this relaxation
time ~~, /3. Indeed, in this case we can consider W(t)
as the slow variable of the problem, and the state of the
trap adjusts adiabatically as N decreases.

Two time scales enter into the evolution of N(t). The
first is the lifetime associated with collisions with back-
ground gas atoms; this lifetime is longer than 1 s for the
pressures used in our experiments. It is therefore always
much longer than the position relaxation time. The sec-
ond time scale is related to collisions between trapped
atoms, and can be quite short if the density is high. This
time scale can be estimated as 1/Pn(0), where the loss
rate coefficient P for cesium is in the range 10 ii —10
cm s [28]. For densities at the center not exceeding a
few 10 cm, as found in our experiments, this second
time scale is also larger than the position relaxation time
w&, /3. It is, therefore, a good approximation to consider
the time-dependent MOT as a quasistatic system evolv-
ing to a new equilibrium, its state being described at any
time as a particular equilibrium state studied in Sec. II.

IV. EXPERIMENTS

A. Experimental setups

We performed numerous measurements of the spatial
density in three separate magneto-optical traps, and of
the temperature in one of them. We considered the possi-
bility that the density in a MOT is unexpectedly sensitive
to the quality of the alignment, spatial profile, and polar-
ization of the laser beams. This is why we pursued our
investigation on three independent traps, one of them in
Oxford, and two in Paris. We will label these three traps,
in what follows, as traps A, B, and C, respectively. For
all the traps the basic geometry was of three mutually
perpendicular beam pairs, intersecting at the zero of a
quadrupole magnetic field produced by two coaxial coils.

Each beam was circularly polarized, those in each pair
having opposite polarizations.

Trap A was formed in a large stainless steel vac-
uum chamber pumped by a diffusion pump and liquid-
nitrogen-cooled shield. The trapping light was spatially
filtered using single-mode optical fibers. Light from one
fiber was split to produce two horizontal trapping beams;
light from a second fiber produced a vertical beam. Each
beam was retroreflected outside the vacuum chamber
(angular alignment to better than 3 x 10 s rad). On a
single pass through the chamber, deviations &om perfect
Gaussian profiles typically consisted of 10' fluctuations
in the intensity, with a spatial period of a few hundred
micrometers. The chamber windows were antireflection
coated and of high optical quality. Two different methods
were employed to load the trap, enabling a wide range
of steady-state trap numbers and background pressures
to be attained. The first method was to capture &om
a background vapor of a few 10 mbar. This typically
loaded 10 —10 atoms, with trap lifetimes in the range
0.25—3s. The intensity imbalance due to absorption by
the background cesium vapor was typically 15%%up, and was
removed by slightly converging the beams. The second
method was to load &om an unslowed thermal cesium
atomic beam. With this method, background pressures
down to a few 10 mbar could be reached, reducing trap-
ping beam imbalances to a few percent. Steady-state
trap numbers could be varied in the range 10 —10 by
changing the flux of atoms in the beam.

Trap B was formed in a glass cell pumped by a 251/s
ion pump, which produced a pressure ( 3 x 10 mbar.
The trap was loaded from a second magneto-optical trap
about 60cm above it, housed. in another chamber of the
same vacuum system. The upper trap collected atoms
&om a cesium vapor at a pressure 3x10 mbar for 2s.
The collected atoms were then cooled to 3 pK and allowed
to drop through a tube down to the lower trap, where
they were caught. About 20% of the atoms collected in
the upper trap could be transferred to the lower trap in
this way. The lower trap (our trap B) was formed using
retroreflected laser beams; the walls of the glass cell were
not antireflection coated and were not of good optical
quality; neither were the beams spatially filtered.

Trap C was formed in a glass cell pumped by a 25 1/s
ion pump. The cell was roughly spherical with six flat
regions (uncoated) to form windows for the trapping
beams. The trapping light was spatially filtered and di-
vided. into six independent beams before being passed
into the cell. The background gas in the cell was pre-
dominantly cesium at a presure of a few 10 mbar; the
trap captured slow atoms &om this vapor.

We used a calibrated CCD video camera to observe the
fluorescence of the trapped cloud of atoms, and in this
way measured the radius of the cloud (see Fig. 3). Trap
A was observed with two cameras looking simultaneously
along the (1, 1,0) and (1, —1,0) directions; trap B was
observed by a single camera looking along a d.irection at
20' to the y axis (and occasionally at right angles to this);
trap C was observed along the (0, 1, 1) diagonal. The
resolution of the CCD optics was 25 pm for trap A, and
12 pm for traps B and C. This was measured by imaging
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FIG. 3. Experimental setup. Trap A is iBustrated, having
beams spatially filtered and retrore8ected. Not shown are the
waveplates and the CCD cameras observing along the (1, 1, 0)
and (1,—1, 0) directions.

FIG. 4. Temperature measurements on atoms released
from a o+—o optical molasses made from three mutually
perpendicular beam pairs. The symbol shape indicates the
detuning as follows: b/I' = 1.9('W), 3.8(o), 5.7(~ ), 7.6(~),
11.4(k).

a series of pinholes of various sizes. The finite optical
resolution was taken into account when interpreting our
measurements.

In all experiments, the light was provided by diode
lasers locked to the correct detuning &om the cesium res-
onance using saturated absorption spectroscopy. Each
trap had light near resonant with the 6S&y2E = 4 ~
6P3/2E 5 transition in cesium, and repumping light on
the E = 3 —+ E = 4 transition, to pump atoms out of
the lower hyperfine level of the ground state. Since the
tixne-dependent measurements could extend over several
seconds, it was important to ensure that the laser detun-
ing was stable to within a MHz on this time scale.

The results are shown in Fig. 4. We find that when
T & 10@K, a linear fit to our results [see Eq. (12)] yields

Cp/k~ = 1.9 + 0.5 pK, C = 0.24+ 0.05

(0 & T & 10 qK), (22)

in agreement with the results of [4] in this range of tem-
perature. However, in addition, we observe a slight de-
parture &om a linear dependence on the light shift. If
we force a straight line 6t through all our data having
02/r & 0.4 (i.e. , temperatures up to about 30 pK), we
obtain

Cp/k~ = 1 + 0.5 pK C = 0.28 6 0.05

(0 & T & 30 pK). (23)

B. Temperature measurements

Temperature measurements on trap A were performed
using a time-of-flight (TOF) technique (Fig. 3). To mea-
sure molasses temperatures, a small number of atoms,- 5 x 10, was loaded with the detuning set to 8 = 2I',
Rabi &equency 0 = 1.5 I', and magnetic field gradient 10
G/cm. The laser parameters (b, 0) were then switched
to the required values. After a wait of a few ms the mag-
netic Geld gradient was switched ofF, followed by the light
about 10 ms later. The atoms fell down to a standing-
wave probe beam positioned 42 cm below the trap and
the Buorescence &om the probe was recorded as a func-
tion of time. At this distance of the probe from the
trap, the slight uncertainty in the initial size of the falling
cloud of atoms contributed negligibly to the uncertainty
in the temperature measurements. The probe beam cross
section was 2cmx2mm (full width at half maximum).

The uncertainty in C is almost entirely due to a 15%
uncertainty in the average intensity of the laser field at
the position of the trapped cloud.

C. Investigating the fluorescent emission

r n'/2
2 b2 + I'2/4 + 02/2 (24)

The total power scattered by an atom can be written
P = ~L,I'II~ ~, where II~'~ is the total population of all
excited states (i.e., all the Zeeman sublevels), assuming
these all decay at the same rate I', and uL, is the laser &e-
quency (all the transitions involved have approximately
the same frequency). For a two-level atom illuminated
by a single traveling wave of Rabi &equency 0, detuning
h, a textbook calculation yields [22]
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To calculate the power scattered by a cesium atom in a
MQT, on the other hand, one must calculate an aver-
age over all the transitions between the various Zeeman
sublevels in the ground and excited states. The Rabi
&equency and electric field polarization are both compli-
cated functions of position, as is the internal atomic state.
The usual way [29] to handle this situation is to assume
that the total scattering rate per atom can approximated
as

I' C, 0, , /2
2 hz + I'z/4+ CzzOtz, /2'

where O~ ~ is determined by the average light intensity
in the trap (six times that of any one of the trapping
beams), and Ci and Cz are average Clebsch-Gordan co-
efIicients. One expects Cq and C~ to be of the same order
of magnitude, although not necessarily equal.

To measure C~ we monitored with a photodiode the
fluorescent power scattered by atoms in the MOT (a fixed
fraction of the tota1 emitted power being imaged onto
the diode), while the detuning was suddenly switched
between two values. Using Eq. (25) and taking the ratio
of the signals for two difFerent values of b allows C~ to be
deduced knowing Aq~q.

To ensure an accurate measurement, we took into ac-
count efFects on the beam intensity such as loss during
the retroreflection, convergence of the laser beams, and
absorption by the trapped cloud. To ensure that condi-
tions in the trapped cloud were reasonably constant, the
change in detuning used for the measurements was fairly
small; typically a switch from 2 I' to 3I' was used.

To measure Cj, one possible method is to measure
again a change in fluorescent power incident on the pho-
todiode, but this time while all but one of the trapping
beams are rapidly switched off (in less than a microsec-
ond), all other conditions being unchanged. The single
remaining (circularly polarized) beam quickly optically
puinps the atoms into the stretched state ~I" = 4, M = 4),
and one measures the scattered power, now given by Eq.
(24), before the atoms are pushed away by this beam.
Taking into account the factor of 6 change in the average
light intensity, and the value of C~ already measured, the
ratio of the photodiode signals before and after cutting
the beams allows Ci to be deduced. We carried out this
procedure for the case of high saturation of the atomic
transition, where the signal is large, but our detection
was not suKciently sensitive to enable us to measure Ci
at low saturation.

Our results are shown in Fig. 5. All measurements
were done for Rabi frequencies between I' and 21', and
detunings between 2I' and 3I'. We found Cq and Cq
to be equal, within experimental uncertainty: Ci/Cz ——

1 + 0.25, and the mean of all the measurements of Cz
gave C& ——0.73 + O.l.

At first, one might reason that the light in the three-
dimensional interference pattern has all kinds of polar-
izations at difFerent places, so the value of C& and Cz
must be close to an average for all the transitions and
all the polarizations, yielding C& C& 0.4. Our re-
sults show that this reasoning is not valid. The measured

values indicate that the coupling between the atoms and
the radiation field is stronger than a simple average over
all possible coupling strengths. This can be explained
as arising from optical pumping among the Zeeman sub-
levels: at any given point in the radiation field the atom
is optically pumped towards the state that interacts most
strongly with the local Geld, therefore raising the overall
fluorescent scattering rate. This process is at the heart
of the Sisyphus efFect, which produces the friction in the
MOT. In addition, optical potential wells will cause the
atoms to spend more time in the regions where their in-
teraction with the light is the strongest, since the light
shift of the ground state is most negative for the atomic
state having the greatest coupling with the light (for a
laser field detuned red of the atomic resonance). Our
measurement can, therefore, be interpreted as experi-
mental evidence that one or both of these physical pro-
cesses is indeed present.

A numerical calculation, using the quantum Monte-
Carlo method, for an atom of transition E = 4 m 5 in a
three-dimensional optical molasses of the relevant polar-
ization, yielded an excited-state &action consistent with
Ciz ——0.9 + 0.1, at b' = 5I, 0 = 0.711 [30]. Note that
the phase difFerences between the three standing waves
were constant in the calculation, while they are fluctuat-
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FIG. 5. Squares of the average Clebsch-Gordan coeKcients,
deduced by the methods described in the text. Filled circles
are measurements of Cz, the open circle indicates the aver-
age of several measurements of Cz, with error bars indicating
the total uncertainty, which is mainly due to systematic er-
ror in the laser intensity at the trap. The Cz value at the
same value of 0/I' was measured in the same experimental
run. The solid line marks the average Cz ——0.73. The data
represent measurements made over a six month period with
numerous different trap alignments and two different trapping
beam geometries. The main cause of the scatter is the spa-
tial Quctuation in Rabi frequency at the trap position due to
the 5—10+0 spatial inhomogenities of the retrore8ected beam
profiles.
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ing in the experiment, and the parameter values in the
calculation were different &om those in the experiments.

To interpret our measurements of number and density
in the trap, we took our experimentally measured value
of C,' = 0.7+0.2.

D. Measurements of e
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We obtained some information on the value of ~, in or-
der to reduce the present uncertainty illustrated by Table
I, and to help in interpreting our density measurements.
Our method was to measure the cloud radius for a given
temperature and to deduce K from Eq. (8). However, in
order to use this method one must be sure that the trap
is indeed in the temperature-limited regime, and so one
must use some combination of small number of atoms,
low Beld gradient, low laser intensity and high detuning.
These all tend to reduce the intensity of the CCD image
of the Huorescence &om the trap, and this limited the
range of our measurements. With a high beam intensity
(0 = 2.2I'), Fig. 6 shows unambiguously the transition

from temperature-limited to multiple scattering limited
behavior. We observed the transition equally clearly with
other parameter values for trap A, as listed in Table III.
At lower beam intensities, however, we never saw a trap
unambiguously in the temperature-limited regime. As
the trap emptied, the last radius measured before our
signal disappeared was always smaller than the previous
value (with more atoms loaded), so we could not be sure
that the radius did not continue diminishing when even
fewer atoms were present. This means that many of our
measurements give a lower limit for e rather than an ab-
solute value. Table III lists our results. To deduce x
&om the measured cloud radius, we did not always si-
multaneously measure the temperature T, but we found
that those temperature measurements that we did make
were sufBciently reproducible to allow us to regard Fig.
4 as a reliable indicator of T. Each value of the radius
and number of atoms in the trap is the average of several
measurements; the statistical uncertainties in the radius
measurements were about 10%%uc.

As well as providing values for e, the data in Table
III lead us to a deduction. This is that as the number
of atoms in the trap increases, the cloud radius starts to
increase well before the temperature does. This is shown
clearly by Fig. 6 (results for trap A at 0 = 2.2 I ), and
by Table III (results for trap C at 0 = I'). In the former
case, multiple scattering has increased the trap volume
by a factor of more than 3 when there are 5 x 10 trapped
atoms. The study of temperature in [23I, on the other
hand, implies a temperature increase of less than 10%%uo

with this number of atoms. In the latter case, the den-
sity remained constant at 8 x 10 cm, for numbers
of trapped atoms between between 10 and 10 . This im-
plies that multiple scattering is limiting the density when
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FIG. 6. Trap density and volume versus number. The trap
was loaded from an unslowed atomic beam. The trapping
parameters were $ = —3.4I', 0 = 4.4I' per beam, and
dB/dz = 10 G/cm. The volume quoted is the 1/e full width
volume. Each point represents an analysis of one field (one
half frame) of the video signal obtained while the trap emp-
tied. Three separate experiments with differing initial number
of trapped atoms and aperture size on the camera are shown.

Trap 0 /I'

A
A
A
A
B
B
G"

0.5
4.9
5.2
5.2
0.87
0.87
0.28

b/I' dB/dz
G/cm
5
10
10
30
58
31
9.5

2.8
3.4
3.4
3.4
2.2
2.2
3

1V/10 r Kp

0.1
0.1
0.01
0.36
1
2.4

ym (10 N/m)
35 16 09
50 2.5 0.84
51 3.5 1.2
40 5.9 0.7
23 12 0 44
37 (4.7) (O.33)
47 (0.95)

9.5
9.5
9.5
9.5

1
2.5
30
100

37
49
99
150

(1.5) (0.78)
(o.95) (o.5)

3.5 71 (0.4) (0.4)

TABLE III. Information pertinent to deducing the spring
constant e. In the 6nal columns, the spring constant is cal-
culated by assuming the trap is in the temperature-limited
regime and taking the temperature from Fig. 4. When the
trap is obviously not in the temperature-limited regime no
value is given, and when the trap is close to but not yet tem-
perature limited the value is given in brackets.
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there are as few as N 10 atoms in the trap, for these
parameter values, while the studies of temperature in [4]
and [23] both indicate that T increases negligibly with so
few atoms. The conclusion for the phase-space density
is that multiple scattering limits the phase-space density
first by limiting the density; the temperature increases
only at higher numbers of trapped atoms.

The results in Table III with the smallest N are those
that give the most reliable lower limit for vp. There-
fore, our conclusion is that Ko ——(1 + 0.2) x 10 Nm
for trap A, xp ) 0.4 x 10 ' Nm for trap B, vp )
0.8 x 10 Nm for trap C. Our results are inconsistent
with the lowest values indicated in Table I. We believe
we have avoided the two main problems that can lead to
underestimates of vp, namely, residual multiple scatter-
ing of photons and excursions of the trapped cloud into
the nonlinear region of the trapping force.

E. Nonlinearity of the con6ning force

160

(a)

120—

80—

40
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Indeed, the two component regime appeared just in the
expected region of the MOT's phase diagram (Fig. 8).
We observed this regularly simply by watching the video
image of the fluorescing cloud while the trap parameters

In this section we discuss measurements on traps A
and B, in which we observed the transition between the
multiple scattering and two-component regimes. This
was done by observing the trap at fairly high magnetic
field gradients (up to 60 G/cm).

The characteristic behavior as one passes into the two-
component regime was described in Sec. IIC and is also
reported in [27]. Figure 7(a) shows a sample density dis-
tribution of the fluorescing cloud in trap A. This distri-
bution was obtained from a horizontal line of the CCD
image of the cloud. It can be fitted by two superposed
Gaussians of differing radii and peak density. Note that
the ratio of the radii of these two Gaussian distributions
can be larger than ten, so that even if the more diffuse
Gaussian component has a peak density 100 times smaller
than that of the denser component, making it difFicult to
see on the CCD image, it will nevertheless still contain
almost all of the atoms. In Fig. 7(b) we show a time-of-
flight signal obtained from trap A under the same con-
ditions as for Fig. 7(a). We observe that the velocity
distribution can also be modeled as the superposition of
two Gaussians, and we find that the number of atoms
in the colder of the two velocity distributions is equal
to the number of atoms in the narrower of the two den-
sity distributions. This represents experimental evidence
that only those atoms confined in the central region of
the trap are more efBciently cooled by the sub-Doppler
mechanism, as one would expect.

We studied the onset of the two-component regime by
loading trap A or B under normal conditions, then si-
multaneously ramping the laser detuning and magnetic
field gradient to some chosen value. The duration of the
ramp, about 20 ms, was slow enough compared to 7~,/3
to allow the atoms to follow, and thus reach the new equi-
librium conditions. On the other hand, it- was suKciently
fast compared to the characteristic time for loss that only
a small reduction in the number of atoms occurred dur-
ing the ramp. The two-component density distribution
appeared only when both the fi.eld gradient and detuning
were increased above their normal values (15 G/cm, 3 I').
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FIG. 7. (a) A horizontal line from the CCD image and
(b) the corresponding tiine-of-fiight signal, for trap A, with

z = 0.56 I', 8 = 5.7I', % = 2 x 10 atoms. In (a) the CCD
image is shown for two values of the magnetic field gradient:
dB/dz = 10 G/cm (open symbols, &) and dB/dz = 45 G/cm
(filled symbols, ~). The line through the latter signal is a
fitted curve consisting of the sum of two Gaussians. In (b)
the TOF signal is shown only for the case dB/dz = 45 G/cm
(points), with a fitted curve which is the sum of two Gaus-
sians (line). The TOF signal at the lower field gradient (not
shown) was well fitted by a single Gaussian. We interpret
this data as showing an example of the multiple scattering
and two-component regimes. For the lower 6eld gradient, the
trap is in the multiple scattering regime and has a roughly
uniform density distribution. For the higher field gradient,
the density and velocity distributions consist of two compo-
nents, as described in the text.
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FIG. 8. Parameter values at which density measurements
were made. (a) Measurements on trap A, with fl = 0.561
1V = 2 x 10 atoms. (b) Measurements on trap B, with
0 = 0.8I', N = 5 x 10 atoms. The symbol shape in-
dicates whether the observed density distribution consisted
of a single narrow component +, two components () (one
narrow, one broad), or an intermediate distribution (~). The
density distribution was also observed at other parameter val-
ues; the figure indicates only those values for which a careful
analysis was carried out. The solid curves in (a) and (b) show
the position of the boundary rMs ——r~ between the multiple
scattering and two-component regimes, as predicted by our
model with the empirical values roCMs = 5 x 10 N/zn (see
Sec. IVF) and C~ = 1.4 for trap A, C~ = 1.2 for trap B.
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were changed. In addition, we carried out a detailed pro-
gram of data acquisition and analysis for a subset of all
the possible parameter values. The values at which pre-
cise measurements were made are indicated in Figs. 8(a)
(trap A) and 8(b) (trap B).

Figure 9 shows the density at the center of the trap,

and the number of atoms in the central component of the
density and velocity distributions, as a function of mag-
netic Geld gradient. Our model predicts a density pro-
portional to Geld gradient if the atoms are in a regime
limited by multiple diffusion inside the sphere with ra-
dius r~. This is only observed for Geld gradients up to
about 30 G/cm. At the higher magnetic field gradients
the scaling law suggested by the model clearly no longer
applies. This may be due to a breakdown of the static
model at high Geld gradients caused by large collisional
loss rates (Sec. III). The results imply that a useful in-
crease in the density is only obtained for field gradients
easily produced in the lab, less than 100 G/cm.

The results in Fig. 9 for the number of atoms in the
central peak show the expected fallo8' as the magnetic
field gradient is increased. The reduction is not as rapid
as predicted for a MOT in the two-component regime,
however. The observed number follows a law approxi-
mately oc b i (the inverse of the field gradient), rather
than oc b [Eq. (A4)j. We interpret this as the behavior
in the transition region between the multiple scattering
and two-component regimes. The observed radius of the
central peak in this transition region varies roughly as
b
—0.6

For a MOT well into the two-component regime, we
expect the radius of the central component of the den-
sity distribution to be roughly equal to the radius rI of
the sub-Doppler region of the MOT [Fig. 2, Eq. (21)],
and therefore to scale as 6, not 6 . By using only
measurements when the MOT is certainly well into the
two-component regime, and not close to the boundary be-
tween regimes, we find results consistent with Eq. (21),
although the restricted set of data points (see Fig. 8)
is now not large enough to conGrm this equation unam-
biguously. At a field gradient of 40 G/cm in trap A, the
radius of the central component was 84 p,m and 64 pm for
detunings 8.61 and 11.4I', respectively, at 0 = 0.75I'.
These figures are consistent with r~ oc I/O, and imply
C&

——1.4 + 0.3. Closer to the boundary between regimes,
the radius of the central component varied more slowly
with b. In trap B with a field gradient b = 62 G/cm, the
radius of the central component was 45 pm at b = 9.5 I',
0 = 0.9 I'; these figures imply C~ ——1.2 + 0.3.

F. Density measurements
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FIG. 9. Density at the center of the cloud (~ ) and number

of atoms in the central component (open symbols) as a func-
tion of magnetic 6eld gradient, in the two-component regime.
The laser parameters were 0 = 0.56I', b = 5.7I'. The open
squares show the number in the central component of the
density distribution, as deduced from the CCD signal, while
the triangles show the number in the cold component of the
velocity distribution, as deduced from the TOP signal. The
fact that these two numbers agree is evidence that the colder
atoms originate from the central part of the cloud.

We measured the density at numerous diferent points
in parameter space (see Fig. 8), each density value be-
ing the average of between 3 and 10 measurements. To
measure the spatial density of atoms in the trap, we used
two related methods. The Grst was to measure the total
number of trapped atoms and deduce the density using
the cloud radius already measured, n cc %/rs. The total
number of atoms was deduced by measuring the power
of the Buorescent light emitted into a known solid angle
with a photodiode. This relies on one knowing the for-
mula for how much light is emitted per atom for a given
incident laser-beam intensity and detuning for this we
used our measurements of the relevent Clebsh-Gordan
coefBcient, described in Sec. IV C. The second method
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was to calibrate the light sensitivity of the CCD cam-
era and use just the CCD signal to gain all the required
information. Once again, we need to know how much Hu-

orescent power is emitted per atom, but the advantage of
this second technique is that it is less sensitive to errors
in the measurement of the cloud dimensions. Assuming
the cloud is well imaged onto the CCD array, the video
signal S is proportional to the integral of the number
of atoms along the "line of sight" (see Fig. 10), so the
atomic density is deduced using the equation n S/r
the radius no longer appears in the third power. Further-
more, because we no longer average over the whole trap
volume, the measurement is much less sensitive to un-
certainties in the three-dimensional shape of the density
distribution. Finally, our CCD video signal had a better
signal-to-noise ratio than our photodiode signal when the
atoms' fluorescent power was small.

We have listed several advantages of the second
method (Fig. 10) over the first. The one disadvantage is
that the second method is more sensitive to lens aberra-
tions in the imaging onto the CCD array. We took special
care to ensure that such aberrations were not a8'ecting
our measurements. We imaged a glowing tungsten fila-
ment onto the CCD array and investigated aberrations in
the optics by increasing an aperture fixed to the front of
the camera objective. The recorded CCD signal (at the
pixels where the filament is imaged) should be propor-
tional to the area of the aperture. For small apertures
this is the case, but at larger apertures it is not, even
though the resolution (indicated by the width of the im-
age) remains almost unaffected. This is because spheri-
cal aberration causes o8'-axis rays to be distributed over
a relatively wide area in the image plane. The measure-
ments on the MOT were performed using an aperture of
diameter 13mm on the camera objective, positioned at a
distance of 280 mm from the MOT for trap A, and aper-
tures of 12 mm at distances of 120 mm for traps B and C.
The CCD sensitivity was calibrated using a laser beam
of known intensity (observations on traps B and C), and
light imaged from a cesium discharge lamp (observations
on trap A). Comparing the total number of atoms in
the trap, as deduced from the CCD signal alone, with
the number deduced ftom the photodiode signal alone,

provided a consistency check of our calibrations.
We used the video signal to examine the time depen-

dence of the density as well as to look at the steady state.
For trap A a part of the video signal was digitized in real
time using a fast frame grabbing board. For traps B
and t a single horizontal line from the CCD signal was
chosen and digitized in real time.

The results of our density measurements on trap B in
the regime limited by multiple diffusion are summarized
in Fig. 11. We find that the density scales approximately
as b b for most of the measurements shown. In our
model we chose to approximate this dependence by the
simpler scaling law of Eq. (14). A least-squares fit of Eq.
(14) to the observations gives the value

CMsvp ——(5 + 1) x 10 N/m. (26)

4 I I I I
I

I I I I
I

I I I I
I

I I I I

Taking its ——(1 6 0.5) x 10 N/m (see Sec. IVD), this
implies CMs ——50 + 25 for trap B.

Measurements at lower intensity (02 = 0.56 I'2) in trap
A are shown in Fig. 12. We find that when the detuning
is above about six atomic linewidths, the density begins
to decrease with detuning, so the scaling law nMS oc b
is no longer obeyed. We interpret this as evidence of a
limitation on the confinement at the center of the MOT
for low values of the light shift 0 /b'. Our results suggest
that at low light shift, not only is the capture range of
the compressive force reduced (putting the MOT in the
two-component regime), but also the confinement at the
center of the trap is less eKcient. This confinement is
produced by a balance between the restoring force asso-
ciated with the spring constant v and multiple scatter-
ing processes which limit the density. Our results could
be explained in terms of a reduction in the spring con-
stant within the central region of the MOT. This would
be in agreement with the findings in [5], in which mea-
surements of such a reduction were presented. However,

IH
cloud

@en

I I I

0 2.5 5.0 7.5 10.0

FIG. 10. Density measurement technique. By precisely
imaging the trap fiuoresence, using a small aperture to avoid
spherical aberration, a CCD signal is obtained, at each pixel,
which is proportional to the integral of the atomic density
along a single line through the Quorescing cloud.

FIG. 11. Density measurements in trap B, with
0 = 0.8I', N = 5 x 10 . The symbols indicate the mag-
netic field gradient dB/dz = 19 G/cm (~), 31 G/cm (&),
and 60 G/cm ( ). The lines are the model prediction, using
CMs ~o —5 x 10 N/m.
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tical error, which was larger in trap C than in the other
traps because we only imaged the cloud from one direc-
tion rather than &om two perpendicular directions. We
obtain

&Ms~o = (12 + 3) x 10 N/m. (28)

This value is 2.4 times larger than that obtained in the
other two traps. That is, trap C produced clouds about
two and a half times denser than those in the other traps
under the same conditions. The main difference in the
optical setup of trap C was that it was composed of
six independent laser beams, while the other two traps
used three retrorefIected laser beams. We think that
the higher densities observed in trap C demonstrate that
the independent-beam setup gives improved confinement.
This could be because the refraction and diffraction of
the trapping beams by the cloud of atoms in the MOT
changes the retroreQected traveling wave sufIiciently to
halve the confining force on the atoms.

I"IG. 12. Density measurements in trap A. dB/dz = 10
G/cm, and the symbol shape indicates 0 = 4.4I' (~ ) and
2.3 I' (o).

in the previous work it was not possible to ascertain
whether or not the reduction was because the MOT was
entering the two-component regime and so experiencing
a reduced average restoring force or whether, as our own
results suggest, the confinement process was vanishing
completely.

The results at b = 6 I in Fig. 12 can be used to deduce
the parameters in the model for trap A. We find

&Msro = (4 + 1.5) x 10 ' N/m,

where the large error bar is because the result is based
on fewer measurements than for trap B. The result is
consistent with the one we obtained for trap B, so the
two traps were producing similar densities in similar cir-
cumstances. Using Ko ——(1 6 0.2) x 10 N/m, which
is the value we measured for trap A (see Sec. IVD), we
deduce CMs ——40 + 20.

Density measurements for trap C are listed in Table
IV. The final column gives the deduced value for CMs ~0.
The spread in the values of CMS Ko indicates the statis-

0
p2

1
1

0.3
0.3
0.3

b

r
5
5

3
3

dB/dz
G/cm

5
9
5
9
14

10 atoms/cm
0.5
0.8
1.1
0.9
1.5

~oars
10 ' N/m

13
12
16
9.5
10

P10-'
0.3
0.5
1.7
1.0
1.6

TABLE IV. Density measurements in trap C. The final
column shows the phase-space density, assuming that the tem-
perature was equal to the relevent value indicated in Fig. 4.

G. Comparison with previous work

Many authors have reported densities in a magneto-
optical trap of the order of several times 10 atoms per
cm . This is for traps under conditions normal for load-
ing. There are not many reported measurements of com-
pressed traps. Measurements at high magnetic field gra-
dients were reported in [27], with results of order 2 x 10 i
atoms per cm, in broad agreement with our own find-
ings. A set of careful measurements is reported in [4],
on the other hand, which is not in agreement with our
results. In this work a MOT made from six indepen-
dent beams was used and so is comparable with our trap
C. At low laser intensities (0 ( 0.5 I' ) the densities re-
ported in [4] are from 4 to 6.5 times higher than those we
measure under comparable circumstances in trap C. At
higher intensities, 02 I', the density reported in [4] is
more than 20 times higher than our results. It is not clear
how to explain such a large discrepancy. We believe it
may be due to a high sensitivity of the MOT in the mul-
tiple scattering regime to the quality of the laser beams,
especially when the laser field saturates the atomic tran-
sition. The MOT is much more sensitive to imbalances
between the laser beams (caused by irregularities in the
beam profile for example) when the atoms are saturated,
since the restoring force at the edge of the trapped cloud
is then of the same order as the scattering force that
would be exerted by each laser beam acting alone. At
low saturation, on the other hand, the restoring force
is produced by the sub-Doppler process related to the
polarization gradient, and this force is relatively insen-
sitive to imbalances between the traveling waves [3,25].
We suggest that the factor 5 difference between our
measurements at low light intensity and those previously
reported may, nevertheless, be explainable in terms of the
trapping beam quality. The factor 2.4 difference that we
ourselves observed between different traps suggests this
line of reasoning. We hope to elucidate this in future
research with an improved optical setup.
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H. Density in phase space 10' I I I I I I I—

Figure 13 shows the results of measurements in trap
A in which both the density and the temperature of the
cloud were measured. We observed a phase-space density
of p = (1.1+0.2) x 10 with a magnetic field gradient
of 40 G/cm, 02 = 0.5I'2 and 8 = 7.6I'. This is the
value of the phase-space density at the peak of a Gaussian
distribution of atomic position and velocity. There were

3 x 10s atoins in this Gaussian distribution (a small
&action of the total number of atoins in the trap).

Since trap C produced higher spatial densities than the
other traps, we believe it also produced higher phase-
space densities, although we did not measure the tem-
perature in this trap. We argue that the temperature in
the MOT is reliably indicated by Fig. 4 (which agrees
with previous work [4]), so we can assume the tempera-
ture in trap C was equal to the value indicated by Fig.
4 for the relevent light shift and detuning, as long as
the Beld gradient and number of atoms in the trap were
not too high (below 20 G/cm and 10 atoms, respec-
tively). Using this assumption, the final column of Table
IV indicates the phase-space density in trap C. We find
p = (1.6 + 0.5) x 10 at 6 = 14 G/cm, Az = 0.312,
S =3r.

Figure 14 shows a graph of the density in phase space
in trap A as a function of light shift, normalized to a
field gradient of 30 G/cm. All our density measurements
are plotted, and in the case where the density was mea-
sured at a field gradient 6 other than 30G/cm, the re-
sult has been rescaled by (30bo/b) ' to obtain the nor-

1.5x 1O-'

&0'

0.0 I 0.1

n2/5r

FIG. 14. Phase-space density [Eq. (2)] in trap A as a func-
tion of the light shift, normalized to b = 30 G/cm. The
symbols are as follows: 0 /I' = 0.56('7), 0.6(o), 1.3(~ ),
2.3( ). The line is the prediction of the model, using
CMs so —4 x 10 ' N/m.

malized value. Figure 14 indicates that at high light
shifts the density in phase space p increases as the light
shift decreases, but p reaches a limiting value of about
(1.5+0.5) x 10 at 0 /b 0.11. Our discussion above
has shown that this limitation occurs because of a re-
duction of the confinement in the trap in the multiple
scattering regime at low light shifts, which causes the
spatial density to decrease. The density in phase space
thus reaches a maximum value even though the tem-
perature continues to decrease at lower light shifts (see
Fig. 4).

V. CONCLUSION
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FIG. 13. Phase-space density [Eq. (2)] iu trap A. Mea-
surements of the density and temperature of the central com-
ponent of the phase-space distribution are combined. For this
data, Il = 0.5 I', aud the symbols indicate h = 5.7I' (~ ) and
7.6 I' (o).

In summary, we have presented an empirical model
of the magneto-optical trap which is a useful guide to
identifying how the trap will behave under a variety of
experimental conditions. The model helps us identify
which experimental conditions lead to the highest phase-
space densities in the trap. The model is based on a
large number of experimental findings, which we have
presented.

We measured the temperature in the optical molasses
obtained after the magnetic field of the MOT was turned
oÃ, for a range of values of the laser detuning and inten-
sity. We find temperatures in agreement with previous
studies.

We measured the radius of the cloud of atoms trapped
in the MOT when the number of trapped atoms was low.
This enabled us to deduce the spring constant K, for one
of our traps (trap A) when the laser beam intensity was
fairly high and. enabled us to obtain lower limits for the
spring constant in the other two traps. There is a range
of about a factor 10 in previously reported. measurements
of r (shown in Table I); our value is towards the upper
end of this range. These measurements lead to a value
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for ~p, the first of three parameters in our model.
Our model predicts that when sufhcient atoms are

loaded into the MOT, the distribution in position and
in velocity will consist of a dense, cold, central part, sur-
rounded by a relatively diffuse and hot part. This lim-
its the number of atoms that can be confined at high
phase-space density. We have observed this effect un-
der a variety of experimental conditions and confirmed
the qualitative description provided by the model. Our
observations include measurements of the distribution of
atomic velocity as well as position. They lead to a value
for C~, the second parameter of the model.

We have measured the density in three different
MOT's, under a range of conditions, and deduced the
third parameter CMS in our model. We find that the
maximum density in the MOT varies much more slowly
with laser detuning and intensity than one would expect
on the basis of a very simple model of multiple scattering
of photons in the trapped cloud.

We find that the multiple scattering process limits the
phase-space density mainly by its inHuence on the spatial
density of the atoms, rather than by increasing the tem-
perature. The phase-space density reaches a maximum
value when the light shift parameter n /br is decreased
to around 0.1. This phase-space limit is caused by a re-
duction of the spatial density, rather than an increase of
the temperature. It indicates that the confinement pro-
cess in the MOT breaks down before the sub-Doppler
cooling mechanism does.

We have obtained evidence that the maximum density
one can obtain in a MOT depends significantly on the
exact optical arrangement used to construct the MOT.
Two of the three different MOT's we examined used a
geometry consisting of three retroreHected laser beams,
while the third used six laser beams divided outside the
vacuum system and directed independently to form the
three standing waves of the MOT. While the first two
traps gave similar densities, the third gave densities 2.4
times higher under equivalent conditions.

The highest phase-space densities we have observed are
of the order of p = nA = 1 5 x 10 . This is about a
factor of 10 below the values reported in [4], a fact which
we have not been able to explain satisfactorily. However,
we believe it may be due to a difference in the quality of
the optics used to create the MOT.

The densities we have observed were small enough that
we could consider the MOT to be in quasiequilibrium at
any time, even in its compressed phase. However, a factor
of 10 increase in the density would bring the MOT into
the regime where the dynamics due to cold collisions will
be as fast as the equilibration time for atomic position.
These collisions would then be the limiting factor on the
density achievable in a compressed MOT.
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APPENDIX

Here we bring together various equations delineating
the various regions of the trap.

The boundary between the temperature-limited and
multiple scattering regimes is defined by r~ ——rMS. We
can express this as an equation for the number of trapped
atoms when the cloud just reaches this boundary. Using
Eqs. (8) and (20), which define the two radii, we obtain

f 2vrk~T l
N =nMs

K ) (Al)

2vrk~T
bp I' Kp KN

(A2)

This equation is used in Fig. 1.
The boundary between the mutiple scattering and two-

component regimes is defined by rMs ——rI. Using the
defining Eqs. (20) and (21), we find that the number of
trapped atoms when the cloud enters the two-component
regime is

)nr &' s (n2 bp)
nMs (42~ &r)k»bp)

(A3)

In the limit b )& 0, I', the number fulfilling the boundary
condition scales as

(A4)

The condition rMS ——r~ can also be expressed as a for-
mula for the field gradient, as follows:

b (/2~Ci&r~ (&MsKoI (n'&

) ~ ~arm) &br)
(A5)

This is used in Figs. 1 and 8.
Finally, the boundary r~ —— rI between the

temperature-limited and two-component regimes (which
becomes important at low n, high b) is given by

The same condition rz ——rMS can also be expressed as
a formula for the field gradient in terms of the other
parameters:
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