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We study photonic band gaps in a one-dimensional optical lattice of laser-cooled trapped atoms. We
solve for the self-consistent equilibrium positions of the atoms, accounting for the backaction of the
atoms on the trapping beams. This solution depends strongly on the sign of the trapping laser detuning.
For red-detuned trapping lasers, the resulting lattice exhibits a one-dimensional photonic band gap for
frequencies between the trapping laser frequency and the atomic resonance. For blue detuning the stop
band extends symmetrically about resonance, typically for hundreds of atomic linewidths, except for the
small region between atomic resonance and the lattice frequency, which is excluded. We calculate the
reflection spectrum for a lattice of Cs atoms for various trapping laser detunings and interpret its
behavior as a function of the lattice size and density. For a mean density of 10! cm ™3, and 1000 planes,
55% reflection of a weak probe beam should be observed. We also consider Bragg scattering in a three-
dimensional optical lattice as a means of probing the long-range order in the atomic density correlation

function.

PACS number(s): 32.80.Pj, 42.50.Gy
I. INTRODUCTION

Laser-cooled atoms can be trapped at periodic spatial
positions in one [1,2], two, or three [3-6] dimensions by
ac Stark shift potential wells created by the interference
of multiple laser beams. These ‘“optical lattices” consti-
tute a form of matter in which atoms are located at
periodic sites separated on the scale of the optical wave-
length. At currently achieved densities, atoms occupy
very few of the available sites. Even so, the strict periodi-
city in the trapping positions should give rise to correla-
tions in the atomic positions over very long distances.

This long-range spatial order will have dramatic conse-
quences for the propagation of light. In a disordered gas
the interference between incident and forward-scattered
waves is described simply by a macroscopic complex in-
dex of refraction. Such a description is no longer valid
when the positions of the atoms are periodically ordered.
The scattered waves are now spatially correlated so that
the coherence length for interference in directions other
than the forward direction will be large. Situations may
occur that are analogous to Bragg scattering of x rays by
solid-state crystals. When a probe beam propagates nor-
mal to a set of planes separated by a A /2, interference be-
tween forward and backward waves can strongly attenu-
ate the incident field and enhance the reflected wave. For
sufficient densities multiple scattering becomes impor-
tant, as in the “dynamic” Bragg scattering of x rays in
crystals, and strong reflection is expected for a wide
range of probe frequencies. This “photonic band gap” in
one dimension is analogous to strong reflection obtained
from multilayer thin-film dielectric mirrors [7].

*Present address: University of Konstanz, Fakultit fiir Physik,
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There is currently active research to develop materials
possessing three-dimensional photonic band gaps that
suppress propagation of light of a given frequency range
in all directions [8]. The key to producing such a band
gap is to engineer a periodic dielectric material with
strong Bragg scattering in all directions. The frequency
and direction of these scattering resonances are described
by the surface of the first Brillouin zone (BZ) in the
reciprocal-lattice space of the periodic structure. The
bandwidth of the three-dimensional band gap is given by
the overlap of all the one-dimensional gaps associated
with each point on the BZ surface over 47 sr. In contrast
to solid dielectric media, the scattering strength of an op-
tical lattice is very weak, except near atomic resonance.
Thus the only points on the BZ surface with a non-
negligible band gap are those whose frequency is almost
equal to the atomic resonance frequency. In addition, the
atomic polarizability is highly polarization dependent,
further reducing the surface of the BZ covered by strong
band gaps. Therefore, an optical lattice will not generally
contain higher-dimensional photonic band gaps, even if it
is densely occupied and very large. Our considerations
are thus restricted solely to the observation of a one-
dimensional gap.

An intriguing aspect of the optical lattice is the propa-
gation of the very light that creates it. For atoms trapped
at the nodes or antinodes of a standing wave, the perio-
dicity appears to be just right for Bragg scattering of the
trapping lasers. In other words, the light seems to create
a structure into which it cannot propagate. This paradox
leads us to a self-consistent analysis of the trapping of
cold atoms in an off-resonance standing wave. Having
done this, we then turn to study how a weak probe propa-
gates in the self-consistent lattice.

The general structure of our analysis is as follows.
First we consider the interaction of the atoms with the
laser beams that define the optical lattice, in order to
determine the equilibrium atomic positions. This is ac-
complished in Sec. II, where we treat the entire system in
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a self-consistent manner, including the effect of the atom-
ic response on the propagation of these beams. The pres-
ence of the atoms modifies the distribution of field ener-
gy, which in turn modifies the equilibrium position of the
atoms. For trapping lasers detuned to the red of atomic
resonance, we find that the self-consistent lattice has a
period slightly less than A /2; for blue detuning the period
is exactly A /2.

Having determined the equilibrium positions of the
atoms in the lattice, we turn to study the propagation of a
weak probe in this medium (one may imagine that the
trapping lasers that define the lattice are turned off dur-
ing the probing phase, which is performed rapidly
enough that the atoms do not significantly move from
their initial positions). In Sec. III we calculate the pho-
tonic band gap associated with an infinite lattice and the
reflection and transmission coefficients of the probe in-
cident on a finite lattice. For an arbitrary trapping lattice
(either red or blue), the trapping laser frequency is on a
band edge so that it can penetrate the structure infinitely
far. The dependence of the reflection coefficient on the
frequency of the probe is governed by two effects: phase
shifts accumulated as the scattered waves propagate be-
tween atomic planes and dispersion in the local atomic
response. In contrast to multilayered dielectric thin
films, the latter effect in the optical lattice plays a dom-
inant role in the mode dispersion. We will see that the
effects of both local dispersion and global interference
will dramatically alter the behavior of the probe
reflection curve as a function of frequency when the
length or density of the lattice is increased.

In Sec. IV we study the feasibility of observing these
effects in the laboratory concentrating mainly on a one-
dimensional lattice, i.e., thin slabs of atoms localized at
periodic positions, trapped by counterpropagating or-
thogonally polarized lasers. For a lattice of cesium atoms
with a density of 10! atoms/cm?, a total of 1000 planes,
and lattice laser beams detuned 10 natural linewidths
below resonance, the peak reflection for a circularly po-
larized probe at the atomic resonance is 55%.

In Sec. V we will briefly explore Bragg scattering in a
three-dimensional lattice. Since the atoms remain at
their periodic locations for some time after the trapping
lasers are turned off, one can perform a transient experi-
ment to observe the decay of the reflected field as the
atomic positions become random, giving unambiguous
proof of the long-range spatial order of the lattice. Previ-
ous spectroscopic experiments of probe propagation in
these structures have exhibited probe reflection [4,9]. Be-
cause the lattice and probe lasers were present simultane-
ously, this observation can equally well be interpreted as
a nonlinear four-wave mixing between the lattice laser
beams and the weak probe in a uniform gas of atoms. By
performing a transient experiment in the absence of the
“pump”’ laser, four-wave mixing is eliminated as a possi-
ble mechanism. However, the lattice lasers may imprint
a “spin grating” on a uniform gas due to optical pumping
associated with the local electric-field polarization, which
would also Bragg scatter a probe beam [10]. We examine
how a particular choice of three-dimensional laser
geometry might provide an unambiguous demonstration

of long-range modulation of the total atomic density. In
Sec. VI we will interpret the predicted effects in terms of
the fundamental processes of spontaneous and stimulated
photon emission and summarize our results.

II. SELF-CONSISTENT OPTICAL LATTICE

Here we consider a one-dimensional optical lattice
formed when ultracold atoms are trapped in periodic po-
tential wells created by the ac Stark shift associated with
a uniformly polarized standing electromagnetic wave.
For simplicity, in the discussion to follow we will assume
that the atoms are maintained at sufficiently cold temper-
atures by an unspecified mechanism and remain trapped
for long times. When studying the propagation of light
in this lattice, the following apparent paradox arises. The
distance between optical potential wells of the standing
wave that trap the atoms is A/2, the spacing at which
light of that frequency would Bragg scatter into the back-
ward direction. If the density were sufficiently high, it
would appear that the trapping laser could not propagate
into the ordered collection of atoms bound at these sites.
The resolution of this paradox lies in the important
backaction of the atoms on the light. The propagation of
the light is modified by interference between incident and
scattered waves. This scattering will redistribute the field
energy, thereby changing the light forces on the atoms.
We therefore seek a self-consistent equilibrium solution
for the entire atom-field system.

Consider first the scattering of a plane wave by atoms
randomly arranged in a plane. For low intensities, all
scattered radiation (resonance fluorescence) is coherent.
We can thus calculate the reflection and the transmission
coefficients by considering the classical scattering of a
wave from a plane of polarizable particles, with surface
density 7 particles per unit area and polarizability a per
particle. In general, the randomly distributed discrete
atoms will give rise to Rayleigh scattering losses due to
the density fluctuations of atoms in the plane. As long as
the distance between atoms is large compared to the opti-
cal wavelength and many atoms are contained within the
coherence area of the beam, the calculation of the fields
scattered solely into the forward and the backward direc-
tions is well modeled by a continuous homogeneous sheet
of equal average density, but with an imaginary part as-
cribed to its polarizability [11]. For the discussion to fol-
low we will be considering atoms excited far from reso-
nance where the imaginary part is small and thus scatter-
ing losses are negligible. We will return to the complete
expression in Sec. III.

The one-dimensional wave equation for a mono-
chromatic wave E(z)e ' propagating at normal in-
cidence to a polarizable plane at z =0 is

[824 k2 ]E= —47k’P= —47k*nad(z)E , (1)

where k =w/c. The electric field tangential to the plane
is continuous and the 8 function localization of the polar-
ization P leads to a discontinuity in the derivative of the
electric field (and the value of the magnetic field). In-
tegrating Eq. (1) on a small interval centered at z =0
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leads to the boundary conditions
E(z=0,)=E(z=0_), (2a)
9,E(z=0_)—0,E(z =0,)=4rk’naE(z =0) . (2b)

Considering a field propagating in the positive z direction
E,.=Epe™ and reflected and transmitted fields
E,;=rEpe * and E,,,,=tE,e™, the boundary condi-
tions give

i 1
= = 3
T ! 1—if”’ (3a)
where

=2mkna . (3b)

Note that for o real, the energy in the forward- and the
backward-going modes is conserved, and is characterized
by the conditions |7|?+[¢t|>=1 and rt*+r*t =0. In that
case, the reflection and the transmission coefficients can
be written as » =i singe’® and t =cos¢e’?, where

d=tan"1(£) )

is the phase shift upon transmission.

Now we can determine the equilibrium position of a
plane of atoms in a standing wave. Consider an atomic
plane placed at z =z, with a traveling wave Eye ~ikz in-
cident from the right and Ege’ from the left. The total
fields, including those scattered by the atoms, on the left-
and the right-hand sides of the plane are
_lk(zvzz°)+tEoe*"kz, z<z, (5a)

ik(z =2z,

E; =Ey e+ rEse

Ep =Ese "+ rEge '+ tEe®e, 222, , (5b)

respectively. The local intensity at the plane is thus
|BL(z=24)>=|Eg(z =2,)|*=4|t|*|Ey|*cos?kz, , (6)

where we have used the relation ¢t =1+r as follows from
Eq. (3a).

If the optical lattice is created with lasers detuned to
the red of the atomic resonance, the atoms are attracted
to regions of high intensity. The atomic equilibrium posi-
tions correspond to a maximum of the local intensity,
which by Eq. (6) corresponds to kzy=0, so that Egs. (5)
become

E; =Eg e ™+ (r +t)Eye ~**=2Ecos(kz —¢)e'? ,

z<0 (7a)
Er =Epe %+ (r +t)Eqe **=2Ecos(kz +$)e’? ,
z>0, (7b)

respectively, where we have assumed that the polarizabil-
ity is real. This field is a standing wave with a “phase
slip” 2¢ at the atomic plane. For red detuning ¢ is posi-
tive, so that the atoms seem to “pull” the nodes closer to
the plane. Repeating this procedure at every antinode re-
sults in a phase slip at every plane and a slight change in
the spatial periodicity of the standing wave (Fig. 1).
Since this configuration is self-consistent, with zero net
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FIG. 1. The self-consistent lattice arises from a redistribution
of photons in a standing wave due to phase shifts induced by
periodically trapped atoms. (a) shows the standing wave in the
absence of atoms. For a standing wave detuned to the blue of
the atomic resonance shown in (b), atoms are trapped at the
nodes and thus the period of the standing wave is equal to its
vacuum value. A standing wave detuned to the red of resonance
traps atoms at the antinodes, which leads phase shifts of the
field. The solution shown in (c) is such that the nodes are
“pulled” closer to the atomic planes and the resulting standing
wave has a reduced effective wavelength with cusps at its an-
tinodes [Eq. (2b)].

force on the atoms, it must represent a state of minimum
potential energy.

For an optical lattice created with lasers detuned to the
blue, the situation is markedly different. In this case the
equilibrium position corresponds to minimum intensity,
or kzy=m/2. Substituting this into Eq. (6), we see that
the self-consistent field is simply a standing wave as if no
atoms were present:

E; =E =E (e**+e¢~*?)=2Ecos(kz) . (8)

Thus an equilibrium configuration for the total atom-field
system for blue detuning results when a plane of atoms is
placed at the node of a standing wave (Fig. 1) [12].

The self-consistent equilibrium solution gives the
period between planes d,

£

T

1....

AL
de=1T"‘§¢L——->d=T
E=1—sgn(d;), (9)

where k; and ¢, are the wave vector and the phase shift
at the lattice laser frequency and §; is the detuning from
atomic resonance. The phase shift ¢; depends on the
atomic density and thus, for red detuning, the lattice con-
stant d will have such a dependence, whereas for blue de-
tuning it is independent of density. According to this
self-consistent solution, the effective wavelength of the
light inside the medium is A.,g=A (1—£¢ /7). A change
in the wavelength of the light propagating in an atomic
gas is not unexpected, given an effective index of refrac-



52 PHOTONIC BAND GAPS IN OPTICAL LATTICES

tion. For a disordered gas with bulk density
N=n/d=nk/m, the index of refraction is
ne~1+2rNa=1+¢/m and the wavelength inside the
gas is Agg=A/n c=A(1—¢ /7). The factor of {1 in the
phase shift arises from coherent interference of the
backward-scattered waves, possible only for the spatially
ordered lattice. For red detuning, atoms at the antinodes
give rise to equal phase shifts for forward- and
backward-scattered waves, while for blue detuning these
phase shifts are equal, but of opposite sign so that £=0.
Alternatively, we may view the equality between the
standing-wave wavelength in the blue-detuned lattice and
in vacuum from the fact that the atoms are trapped at the
nodes and thus do not influence the propagation lattice
light. Note that the sole effect of the detuning of the
trapping laser beam is to determine the periodicity of the
planar positions. In the next section we will see how this
parameter is crucial in determining the boundaries of the
photonic band gap experienced by a weak beam that
probes the lattice. In particular, we will see that the self-
consistent lattice resolves the paradox stated at the begin-
ning of this section: the trapping beams lie at the edge of
the photonic band gap and thus propagate into the struc-
ture as an unattenuated standing wave.

III. ONE-DIMENSIONAL BAND GAP

The propagation of light in an infinite one-dimensional
lattice of atoms perfectly localized in planes is formally
equivalent to the Kronig-Penney model of electron
de Broglie waves in a one-dimensional lattice of &-
function potentials. The resulting modes satisfy Bloch’s
theorem, with a gap in the allowed energies at the Bril-
louin zone edges. Exactly at the band edge, the group ve-
locity of the Bloch wave approaches zero, corresponding
to the condition for Bragg scattering. The resulting wave
function is a standing wave, with antinodes (nodes) at the
scattering centers at the low-frequency band edge for at-
tractive (repulsive) potentials and nodes (antinodes) at the
high-frequency edge. For the case of the optical lattice,
we found that trapping laser beams are arranged in
standing waves such that the total system has a minimum
potential energy. These observations suggest that the
self-consistent assembly of atomic planes will have a pho-
tonic band gap with a low-frequency edge corresponding
to the frequency of the laser used to define the lattice.

Formally speaking, the above discussion applies solely
to the case of an infinite lattice, where Bloch’s theorem is
strictly true. For the case of a finite lattice, band gaps
manifest themselves as “tunneling barriers,” whereby the
transmitted field is exponentially damped for frequencies
inside the gap. For a truly one-dimensional lossless struc-
ture, all nontransmitted energy is reflected. Clearly, in
order to observe substantial reflection over the entire stop
band, the length of the lattice must be longer than the ex-
citation length associated with this tunneling barrier.
Furthermore, competing with the attenuation due to
coherent interference is attenuation due to absorption.
Thus, even in the infinite lattice limit we do not expect a
perfect stop band. We seek a complete expression for the
band-gap dispersion relation and the transmission and
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FIG. 2. The transfer-matrix method relates forward- and
backward-traveling waves on the right-hand side of an arbitrary
linear optical element to those on the left-hand side. This al-
lows for a simple method to calculate the propagation through a
series of elements, automatically accounting for multiple
reflections and all interference effects. A4,B,C, and D are the
amplitudes of the fields.

the reflection coefficients of a finite structure seen by a
weak probe for a lattice composed of periodically spaced
atomic planes. These can be calculated easily by the
transfer-matrix method [13], which relates forward- and
backward-going waves on the right-hand side of any opti-
cal element to those on the left-hand side (see Fig. 2),
thereby automatically accounting for all interference
effects accumulated along the way. The transfer matrix
will also allow us to calculate the band-gap dispersion re-
lations for an infinite lattice.

A. Dispersion relation for the infinite lattice

We consider a lattice of atomic planes trapped by off-
resonance lasers, spaced in its equilibrium configuration
according to Eq. (9). The transfer matrix for a single
period is given by the product of the transfer matrix
across the boundary of an atomic plane and free propaga-
tion for a distance d,

1 [t2=r% r||e* 0
M_T —r 1 0 e i
(1+i&)e’*d  jge—ikd
= _igeikd (l_ié-)e—ikd ’ (10

where we have used the single-plane reflection and
transmission coefficients given in Eq. (3). For any
transfer matrix, the reflection and the transmission
coefficients associated with the entire element are

M, 1

= , ty= , 11
™ M22 M MZZ ( )

as is easily verified for the special case of matrix Eq. (10).
We can gain further physical insight by expressing the
single-period matrix in a simple form. Given that
det(M)=1, its eigenvalues can be written as m . =e*®,
where O is in general a complex number defined by

Tr(M)
2

cosO = =cos(kd)— ¢ sin(kd) . (12)

The matrix can thus be written as
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M=¢"©4=(c0sO)I +i(sinO) 4 ,

(13a)

1 |¢cos(kd)+sin(kd) Lo ~ikd
" sin® —Le'kd —¢ cos(kd)—sin(kd) | ’
(13b)

with I the 2X2 identity matrix, Tr( 4)=0, 4%2=1, and
eigenvalues of 4, a==1. Eigenvectors of M (and thus
any power of M) are the Bloch states of the periodic
structure (in the infinite lattice limit) and the parameter
O gives the corresponding quasimomentum g =6 /d.

For a real nondispersive polarizability {=tan¢, the
problem is reduced to the Kronig-Penney model and Eq.
(12) is the familiar transcendental equation linking the
Bloch quasimomentum to its frequency (energy)
cos© =cos(kd +¢)/cos(¢) [14], with forbidden energies
associated with imaginary ©. Inside the gap the imagi-
nary part of © determines the extinction coefficient, so
that the extinction length is given as L., =d /[2Im(6)].
This situation must be contrasted to the case of realistic
atoms with a complex polarizability. Here the phase ©
always is complex, due to the scattering losses into non-
paraxial modes, and the interpretation of © is generally
not as simple. In particular, for an atomic transition of
linewidth y excited by a probe detuned from resonance
by 8= pohe — @atom» the complex parameter &, Eq. (3b), is
given by

- —28/y+i |_ .70
=&, 14457/ tang +i 5 (14)
where 7 is the surface density of atoms,
A2 1
B)=3—|—"— (15)
o(&)=3 1+(28/7

is the absorption cross section for an atomic transition
with Clebsch-Gordan coefficient equal to one,

tan¢=——787170'(8) (16)

gives the phase shift due to the reactive component of the
dipole response, and

_mo0) _ 3\
o > L (17)

is the resonant scattering parameter. We can now identi-
fy the contributions to the imaginary part of © arising
from purely coherent interference and those due to
scattering losses by substituting the complex scattering
parameter given in Eq. (14) into Eq. (12),

_ cos(Akd —6,+4) | no
cos(¢) 2

cosO =

sin(Akd —&¢; ) .

(18)

Here ¢ and o are the phase shift and absorption cross
section at the probe frequency, ¢; is the phase shift at
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the lattice laser frequency, the detuning of the probe from
the lattice laser is given by Ak =k —k;, and k;d is set by
the lattice equilibrium condition Eq. (9).

As we said earlier, the band-gap frequencies are
characterized by an imaginary quasimomentum, in the
absence of scattering losses. Thus, setting o0 =0 in Eq.
(18) yields the conditions

cos[Akd —E¢; +d(8)]>cos[4(8)],

(inside the band gap), (19a)
cos[Akd —E¢d; +P(8)] <cos[¢(5)]
(outside the band gap) .  (19b)

Note that for either red or blue detuning, the lattice fre-
quency corresponds to one edge of the band gap (¢=¢,,
Ak =0), in which case Re[cos(©)]=—1. This frequency
corresponds to the edge of the Brillouin zone. We thus
arrive at the resolution of the paradox stated in Sec. II.
The self-consistent solution to the problem of atoms
trapped in a standing wave is a structure such that the
lattice lasers lie exactly at the edge of the band gap. At
this frequency, counterpropagating fields, each injected
with the same phase at the incident planes of atoms (as is
the case for the lattice laser beams), will fill the lattice as
a uniform unattenuated standing wave so that this light is
not expelled by the atoms. For frequencies inside the
gap, the fields will be attenuated. Because the band-gap
frequencies are defined in the absence of atomic absorp-
tion, in general the interpretation of the imaginary part
of © as the extinction coefficient is valid only for frequen-
cies such that the real part of the atomic polarizability is
much larger than the imaginary part and for sufficiently
long lattices, as we will see below.

The band-gap dispersion relation is governed by two
effects: changes in the propagative phase Akd character-
ized by the time of flight between planes and changes in
the single-plane reflectivity due to the strong frequency
dependence of the local atomic response characterized by
the natural linewidth. Since yd /c <<1, the former effect
can be neglected for small detunings on the order of a few
v. Since all phase shifts are small we can approximate
Eq. (18) for the case of red detuning,

O, a~T+2V ¢ (¢ —@)—id .m0 /2, (20)

with Ak set to zero. According to Eq. (19), probe fre-
quencies such that ¢(8)> ¢; will be inside the gap. Be-
cause of the resonant response given in Egs. (15) and (16),
one band edge is exactly at the lattice frequency and the
other at a probe detuning @probe ™~ Patom
=92 /(O1attice — Patom) =0 (i.€., this probe detuning has a
magnitude much less than y for far-off-resonance lattice
lasers). The gap frequencies thus extend over the range
between the lattice laser frequency and the atomic reso-
NaNCe Wiaptice < Wyap < Warom [s€€ Fig. 3(a)]. In contrast, for
a lattice detuned to the blue of resonance, to leading or-
der both propagative phase shifts Akd as well as disper-
sion in the atomic response ¢(8) must be taken into ac-
count to establish the boundaries of the band gap. For
small phase shifts, Eq. (18) can be approximated as
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FIG. 3. The frequencies spanned by the photonic band gap
are shown in hash marks beneath the dispersion curves of the
real and the imaginary parts of the single-atom polarizability a.
For the case of the red detuned lattice (a), the band gap extends
between the lattice frequency and atomic resonance. For blue
detuning (b), the band gap is not continuous, extending over
probe detuning between +Awp,,, [Eq. (22)], but with frequencies
between that lattice laser and the atomic resonance excluded.
Typically, Awg,x is on the order of hundreds of atomic
linewidths.

Ope~7+VAkd(Akd +2¢)FiAkdno . @

In this case the band-gap frequencies are determined by
the condition Akd > —2¢(5). Because of the frequency
dependence of ¢, the band gap is not continuous. In the
limit of probe detuning far from the atomic resonance,
where Eq. (16) can be  approximated by
¢(8)= — &y /28), the condition (19) for a blue lattice
yields the maximum and the minimum edges of the band
gap, symmetrically about atomic resonance
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§o7’ Datom
v

|Aw (22)

max !

It also follows from Eq. (21) that there is a band edge at
the lattice laser frequency and another almost exactly at
atomic resonance. Thus the situation for blue-detuned
lattices is nearly complementary to the red-detuned case.
For blue detuning the band gap extends over two regions
Watom Ammax < wgap < WDatom and Diattice < wgap < @yt0m
+ Awy,,, with frequencies between the atomic resonance
and the lattice laser excluded from the gap. For red-
detuned lattices, it is exactly this narrow range that con-
stitutes the band gap [see Fig. 3(b)]. The band-gap
dispersion relations Re[©(8)] and Im[©(8)] for the case
of the cesium D2 6S, ,,(F =4)—6P; ,,(F'=5) resonance
are shown in Fig. 4 for both the red and the blue detuned
lattices. Note that © is always complex due to the imagi-
nary part of §.
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FIG. 4. The one-dimensional band gap dispersion relation
(@probe — Brartice) /Y Vs Re(O) is plotted for lattice lasers trapping
Cs atoms with mean density 10'! cm 3, (a) detuned to the red by
10y and (b) detuned to the blue by 10y. © =gd with g the pho-
ton quasimomentum and d the lattice constant. The band gap is
exhibited at the edge of the first Brillouin zone Re(©)=m over
frequencies in which Im(©) is large. Far from the gap the
dispersion relation is nearly linear as expected for photons. For
the case of red detuning (a), the band gap extends between the
lattice frequency and atomic resonance shown in detail in the
inset in the upper left-hand corner. The imaginary part of ©
near the band gap region is shown in the bottom right inset of
(a). For blue detuning (b), the band gap is not continuous ex-
tending over probe detuning between +Aw,,,, =280, but with
frequencies between the lattice laser and the atomic resonance
excluded. The imaginary part of © near the gap is shown in the
inset to (b). Distortions to these curves in comparison to those
familiar in solid-state physics arise from the rapid dependence
of the local atomic polarizability with frequency near the atom-
ic resonance. The imaginary part of this polarizability leads to
a small imaginary part in © even outside the band gap.

B. Reflection and transmission from a finite lattice

Having determined the character of the band gap asso-
ciated with the infinite lattice, we return to examine the
reflection and the transmission through a finite lattice.
The transfer matrix for a lattice of n periods is given sim-
ply as the nth power of Eq. (13a),

M"'=e"®4=cos(nO) +isin(n®)A4 . (23)
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Using Eqgs. (11) and (23), the total reflection and transmission coefficients are given by

. (Mn)lz _ lsin(ne)A12 _ _ige_i(Akd_§¢L) (24 )
" M™,, cos(n®)+isin(n®)d,  sin®cot(n©)+i sin(Akd —E¢, ) +iL cos(Akd —Edy) 2
= 1 it (24b)

These are the fundamental equations of our analysis,
which we will study in various regimes.

In order to gain some physical intuition into the ex-
pected behavior of the reflection curves as a function of
probe detuning, we must establish the relevant length
scales. The relative strength of the probe attenuation due
to local scattering and that arising from global interfer-
ence is central to the physics, the former characterized by
the absorption coefficient yo and the latter by the band-
gap attenuation coefficient 2 Im(©). The full range of fre-
quencies that define the photonic band gap arises from in-
terference between waves multiply reflected from the
atomic planes. This should be distinguished from ‘kinet-
ic” Bragg scattering, which arises from waves singly scat-
tered from each plane. We will see that the curve of
reflection vs the probe frequency exhibits distinctly
different character in these different regimes.

For an optically thin lattice, the probability of multiple
scattering is negligible. In this case the small difference
in the periodicity of the red and the blue lattices has little
effect on the probe propagation. The reflected light is
then characterized by the interference of the resonance
fluorescence spectrum of each individual atom. Because
the probe is operating in the low-intensity regime, the ra-
diation pattern can be understood by considering a col-
lection of classically oscillating dipoles, thereby recover-
ing the familiar Bragg scattering of a lattice. The optical-
ly thin lattice is characterized by n <<2/no, in which
case Eq. (24a) can be approximated as

2
, &

—_— (25)
1+482/y2

r,~int=I\r,|*=n
The reflection curve is the Lorentzian response of an indi-
vidual atom peaked at the atomic resonance and
enhanced by n? over the single-plane reflectivity Eq. (3a).
The parameters associated with this regime are described
in more detail in the following section and an example is
shown in Fig. 5(a).

As the lattice grows so that it is no longer optically
thin on resonance, but still short compared to the band-
gap attenuation length at gap center [we assume that at
gap center Re(£) >>Im({§), so that the interpretation of ©
is clear], the behavior of the reflection spectrum changes.
Here we see the effects of scattering losses, but the lattice
is still too small to exhibit the effects of multiple
reflections. In this regime nngo ~1, but n|0@—7| <1, so
cot(n©)~=1/n0O and Eq. (24a) is approximated by

_in§ 2 n’6
r, = 2 ——|r, = . (26)
1—ing (1+nE,)?+48%/y2

The result is a broadened Lorentzian peaked at reso-

n (M™),, - cos(n©)+isin(n©)A4,, - sin© cos(n©)+i sin(nO©)[sin(Akd —E¢; 1+ cos(Akd —Ed; )]

[
nance, with a rms width dw~(1+ng,)y [an example is
given in Fig. 5(b)]. The broadened peak arises because,
when compared to the regime described by Eq. (25), there
is a larger probability for a single plane to scatter off-
resonance radiation, which can interfere coherently from
plane to plane. The lattice is still optically thin to this
off-resonance radiation, whereas a larger fraction of the
radiation with frequencies closer to resonance is lost to
absorption, resulting in a ‘“saturation” of the peak
reflectance and a broadening of the wings.

As n increases, the lattice grows large enough that
multiple scattering is non-negligible and the difference be-
tween red- and blue-detuned lattices becomes apparent.
In this regime the peak reflection shifts away from atomic
resonance and begins to move towards the gap center.
For the case of a red-detuned lattice, the center of the
gap is halfway between the lattice frequency and reso-
nance. Given the detuning dependence of Eq. (16), the
phase shift at this point is @ ., =2¢; and the corre-
sponding band-gap extinction coefficient is given by Eq.
(20) with o =0,

Kred ™ 2 Im( ecemer)
z4'Irn['\/¢)L(¢L_-¢<;enter)]=4’¢L . @7

In order to observe large reflection over the entire band
gap, the finite lattice must be long compared to this ex-
tinction length d/k. For probe frequencies such that
Re(£)>Im({), then as n-—>oo the transmission
coefficient (24b) is approximated by

—i sinh(x/2)
—i sinh(k/2)+sin(kd)+ & cos(kd)

lim £, =2e¢ "</

h— ©

(28)
and at gap center |t,|?—4e ~2"%. Thus in this regime
d /k manifestly appears as the coherent extinction length
for propagation inside the band gap. For blue detuning,
the band gap is not continuous. The center of each of the
gap regions will occur at detunings of approximately
Bprobe = T Wmax /2, set by Eq. (22). Clearly, at such large
detunings the atomic response is very weak and the cor-
responding band-gap attenuation coefficient k., as set
by Eq. (21), will be very small. We therefore expect that
the multiple-reflection regime will be more accessible for
red-detuned lattices.

When the lattice length becomes large compared to
d /k the reflection is large over the entire stop band, even-
tually approaching its infinite limit. For the case of red
detuning, since Im(©)>0, cot(n©®)— —i as n— o0 and
Eq. (24a) can be approximated as
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FIG. 5. The absolute square of the reflection coefficient as a function of (@pope — @parrice) /¥ is plotted for a lattice of Cs atoms with

mean density 10" cm™? trapped by laser beams detuned to the red of resonance by 8,,;..= — 10y and for various numbers of atomic
planes n. For n =10 (a), the lattice is optically thin at resonance and the resulting reflection spectrum is the same as that of a single
plane Lorentzian enhanced by a factor n2=100 [Eq. (25)]. For n =500 (b), the lattice is optically thick at resonance, but short com-
pared to the mean free path for multiple scattering, resulting in a broadened Lorentzian [Eq. (26)]. For n =2000 (c), multiple
reflections occur, leading to large reflection over a wider range of frequencies, and interference effects give rise to a band edge charac-
terized by the small dip in reflection at resonance. In the infinite lattice limit [Eq. (29) shown in (d)], reflection is large over the entire

band gap, reaching a maximum value of 83% at the gap center [Eq. (30)].

g
—(©—m)+2¢,—¢

lim r, =

n— o

- §
= ——————— (29)
—2V'¢L (¢ =5 +26,—§

[see Fig. 5(d)]. Note that if £ were purely real, we would
have {=¢; also note that the infinite lattice reflection
coefficient inside the gap (¢ > ¢, ) is a pure phase factor,
corresponding to perfect reflection, as expected. The
imaginary part of § corresponds to a loss mechanism so
that, even for an infinite lattice, reflection will not be uni-
ty at the gap center. We can estimate the maxi-
mum reflection coefficient at the center of the band
83D Dprobe ™ Datom = (Plattice ™ Patom)/2=8, /2. Denoting
quantities at the band-gap center by the subscript ¢ and
those at the lattice frequency by L, using Egs. (14) and
(200 we find ¢.~2¢6,(1—iy/8;) and O, ,—7
~i2¢; (1—iy /28, ) for off-resonance lattice frequencies,
so that Eq. (29) becomes

n el —2i(8, —y)+y

r

487 +v? -8
TA(—8, +yPHy? —8 t2y
(30)

|2

=|r

n— o0,C

In order to see near unit reflection at the gap center we
must have —8; >>2y. As the lattice laser is tuned closer
to the atomic resonance, the imaginary part of the dipole
response becomes significant at gap center. Absorption
losses then reduce multiple scattering and the resulting
structure will act less like a perfect stop band. However,
when the lattice is not very far from resonance, fewer
planes will be required for the probe laser to enter the
“infinite” lattice regime since the band-gap extinction
coefficient characterized by ¢; is larger. In the next sec-
tion we will explore the viability of these different re-
gimes in the laboratory.
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IV. NUMERICAL EXAMPLES

A. Red-detuned lattice lasers

Consider a one-dimensional lattice of laser-cooled cesi-
um atoms created by counterpropagating identical fre-
quency laser beams, having orthogonal linear polariza-
tions (the linllin geometry), detuned to the red of the
6S,,(F =4)—6P; /,(F'=35) (D2, 852 nm) resonance. In
the absence of the atoms, the field can be decomposed
into two standing waves of opposite circular polarization,
displaced from each other by A/4. For the case of red
detuning, the spatial dependence of the resulting light-
shift potentials and optical pumping rates act in concert
to cool and trap the atoms in thin slabs perpendicular to
the direction of the lasers, by the process of polarization-
gradient Sisyphus cooling [15]. Observations of reso-
nance fluorescence spectra [2] and Raman spectroscopy
[1] exhibit strong Lamb-Dicke narrowing, indicating a lo-
calization of the atomic slabs to a small fraction of the
optical wavelength (a localization better than A/15 was
reported by Jessen et al. for a lattice of rubidium atoms
[2).

In a laboratory realization, atoms are precooled in a
magneto-optical trap (MOT), with densities of N~ 10!
cm 3. The MOT fields are then turned off and the lattice
beams are turned on. Atoms are trapped at the antinodes
of circular polarization where they are optically pumped
into the “stretched” Zeeman sublevels (My==F), with
planes of alternate sign of M separated by approximate-
ly A/4. Assuming near perfect one-dimensional trapping,
the surface density of atoms in a slab is approximated as

N=NA/4=2X10° cm~2. The exact equilibrium posi-
tions of the trapped planes of optically pumped atoms as-
sociated with each circularly polarized standing wave can
then be analyzed as in Sec. II, leading to a self-consistent
solution [Eq. (9)] for each. By probing this lattice with
o, polarization, the scattering rate of photons by atoms
pumped into M= —F will be % that of the rate for
atoms pumped into Mp=ZF, due to their respective
Clebsch-Gordan coefficients, so we will neglect the form-
er atoms in evaluating the probe response. The remain-
ing atoms and fields then constitute the simple picture of
polarized atoms trapped in a standing wave as described
in Sec. II.

In Fig. 5 we plot the square of the reflection coefficient
[Eq. (24a)] as a function of probe frequency for a lattice
laser detuning 8, =—10y and in Fig. 6 for §, =—3y.
We see that the behavior of the reflection spectrum de-
pends strongly on the number of planes n (the length of
the lattice is L =nA/2=0.43n um) as discussed in Sec.
III. For the parameters at hand, the polarized atoms
present a resonant scattering constant £,=3.7X1073.
The optically thin regime is characterized by n§,<<1 or
n <<270. The reflected intensity is a Lorentzian peaked
at atomic resonance, enhanced by the factor n?2 over that
reflected from a single plane and a factor n over the in-
tensity reflected from a sample of planes with a random
spacing (a situation that well approximates a randomly
ordered gas of equal average density when the average
spacing between atoms is greater than the optical wave-
length). This behavior is seen in both Figs. 5 and 6 for
n =10 or a lattice length of 4.3 um, where the reflected
intensity is already 0.13% of the probe. In the regime de-

FIG. 6. Same as Fig. 4, but
for a lattice laser detuning
Siattice= —3y. For lattices too
short to see multiple reflections,
(a) n=10 and (b) n =300, the

reflection spectrum is indepen-
dent of the lattice laser detuning
[a change in lattice detuning
causes only a small change in the
spacing between atomic planes
according to the self-consistent
solution Eq. (9)]. For n =2000
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scribed by Eq. (27), the lattice is no longer thin at the
atomic resonance, but is still short compared to the mean
free path for multiple scattering, corresponding to lattice
lengths such that 1/{,<n <<1/4¢,. The scattering
phase shift at the lattice laser detuning 8, = —10y is
¢, =1.85X10~* with the corresponding band-center at-
tenuation length x«~'=1350 planes =580 pm and for
8, =—3y, ¢, =6.15X10"* with k=407 planes =174
pm. Examples of broadened Lorentzians in this regime
are shown in Fig. 5(b) with » =500, corresponding to a
lattice length L =213 pum, where the peak reflection
given by Eq. (4.2) is 42% at the atomic resonance, and in
Fig. 6(b) with n =30, L =150 um, and peak reflectivity
26%. For lattices longer than 1/4¢; , multiple scattering
is no longer negligible and reflection is large over the full
range of the band-gap frequencies. The peak reflectance
shifts away from atomic resonance towards the center of
the gap. Eventually we approach the infinite limit ap-
proximated by Eq. (29), with the peak value given by Eq.
(3.24). For 6; = —10y, this requires very large lattices
(L >>580 um), giving a maximum reflection of 83%. In
contrast, for a lattice laser detuning of &, = —3y, the
peak reflectance at gap center is 53% and the band edges
are less sharp since scattering losses are substantial over
the entire band gap. On the other hand, the reflected in-
tensity is significant over all frequencies in the band gap
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when L > 150 um and approach the infinite limit for L on
the order of 500 ym.

For large lattices, exactly at the edge of the band gap
as defined by Eq. (19), the reflection coefficient can be
quite large (> 50%). This seems to be in contradiction to
the self-consistent solution, which we stated allows for
the existence of unattenuated lattice laser beams. It must
be emphasized that the reflection coefficients calculated
here are for a probe beam injected into the lattice only in
one direction. In that case one can show that for a probe
frequency exactly at band edge, the field inside the finite
lattice consists of a standing wave with an algebraically
decaying envelope (in the absence of absorption) together
with a small traveling-wave component that represents
the transmitted field.. The trapping configuration corre-
sponds to two lasers incident from opposite sides of the
lattice with the same phase at the input planes. In that
case one can show that the steady-state solution is indeed
a uniform unattenuated pure standing wave.

B. Blue-detuned lattice lasers

Examples of the reflection curve for a lattice created
with a laser detuned ten linewidths to the blue of the
atomic resonance are shown in Fig. 7. Such an optical
lattice cannot be formed from the usual polarization-
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FIG. 7. Same as Fig. 4, but for a blue lattice laser detuning 8,,,;..= + 10y. For lattices (a) n =10 and (b) n =500, the reflection
spectrum is the same as that plotted in Figs. 5(a) and 5(b), since multiple scatterings are negligible. For blue detuning the band-gap
extinction length is much longer than that for red-detuned lattices and therefore one requires long lattices to see multiple reflections
[e.g., n =8X10* (c)]. For n =10° (d), the reflection spectrum approaches the infinite limit, with near unity reflection inside the non-
continuous band gap extending between tAw,,,=+280y [Eq. (22)], but with frequencies between the atomic resonance and the lat-
tice frequency excluded, as is revealed by the dip in reflectivity seen in (d) near zero detuning. Notice the resemblance between this
curve and the reflection spectrum for a multilayer lossless dispersionless dielectric.



1404

gradient Sisyphus mechanism on an atomic J—J +1
transition. For the purpose of illustration here we will
assume that one can produce a blue-detuned trapping lat-
tice and do not concern ourselves with the exact mecha-
nism of loading it. Recall that within our model, we
neglect the processes that lead to laser cooling or heating,
so that the sole effect of the detuning of the lattice laser
beams is to determine the equilibrium spacing between
the atomic planes according to the self-consistent solu-
tion Eq. (9) [16]. The small difference in the lattice
periodicity nonetheless has dramatic effects on the
reflection spectrum.

As in the red-detuned case, the reflection curves shown
in Fig. 7 exhibit the expected behavior as a function of
lattice length. For thin lattices the reflection curve
resembles the single-atom resonance fluorescence spec-
trum. When multiple scattering is negligible, the
reflection spectrum is independent of the lattice laser de-
tuning (sign and magnitude). Evidence of the small
changes in the atom’s equilibrium positions requires
many multiple reflections for the probe to accumulate a
significant phase shift (e.g., for » =10, planes Figs. 5-7
are equivalent). For very long lattices, interference be-
tween multiply scattered waves dominates and reflection
becomes large over the noncontinuous band gap de-
scribed in Sec. III. Because the band gap extends over

frequencies far from resonance where the atomic
1
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response is relatively lossless and nondispersive, the
reflection curve closely resembles that observed for multi-
layer dielectric structures. It must be emphasized that at
these large detunings the atomic response is very weak
and thus observation of the total stop band would require
extremely long lattices, much longer than for red detun-
ing. For the parameters here, the far edges of the gap are
given in Eq. (22) by the detunings Aw,,, =+280y. At
probe detunings at the centers of the two gap regions
6, =tAwp,,/2, the band-center attenuation length is
given by x '=1.5X10° planes. Observation of strong
reflection at this detuning would require a lattice length
of L>6.5 cm, which would be extremely difficult to
achieve experimentally. Notice the small dip in the
reflectivity near atomic resonance spanning the frequen-
cies between the atomic resonance and the lattice laser
frequency, which are excluded from the photonic band
gap. This dip does not bring the reflectivity exactly to
zero because of the scattering losses.

C. Comparison with Beer’s law

The discussion above concentrated on the reflection
spectrum since the observation of a significant fraction of
the incident intensity in the reflected beam would be a
signature of spatial ordering. We may also consider the
behavior of the transmitted beam as a function of the

FIG. 8. The transmission coefficient (dot-
ted) curve at the two edges of the band gap: (a)
the atomic resonance and (b) at the lattice laser
frequency. The parameters of the Cs lattice
are given in Sec. IV, trapped by lattice lasers
detuned to the red by ten linewidths. Plotted
simultaneously in solid curves is Beer’s ex-
ponential decay law for a disordered gas of the
same averaged density. The transmitted inten-
sity in the lattice at atomic resonance (a) is
larger than that of the disordered gas, whereas
the transmission is less at the lattice frequency
(b) due to interference of forward- and
backward-scattered waves.
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probe detuning. If the gas were disordered, then the
transmission coefficient for the intensity would follow
Beer’s law T'(8)=-exp{ —nmno(6)}. In this situation, light
that is not transmitted is lost to absorption (scattered into
nonparaxial modes) and a negligible fraction is reflected
when the density of atoms is small compared to 1/A3. In
Fig. 8 we plot the absolute square of the transmission
coefficient as a function of the sample length, for a lattice
created with lasers detuned to the red by ten linewidths
[see Eq. (24b)], simultaneously with the prediction given
by Beer’s law for an equal average density of atoms. We
consider probe frequencies at the two edges of the band
gap (i.e., at the lattice laser frequency and at the atomic
resonance). At the lattice frequency the transmitted in-
tensity is less than Beer’s law prediction. This is not
surprising since a large fraction of the energy is reflected.
On the other hand, at the atomic resonance frequency the
transmitted intensity is actually larger than it would have
been in a disordered gas at the same time that the
reflected intensity is substantial. This result appears
surprising since one might assume that in traversing the
sample, scattering losses are inescapable and thus that
Beer’s law would set a maximum for the transmitted en-

ergy.

The resolution to this problem lies in the coherent in-
terference of the backward-scattered wave, characteristic
of spatial ordering of the lattice. In contrast to propaga-
tion in a disordered gas, the light propagating in the lat-
tice will have a standing-wave as well as a traveling-wave
component. As we pointed out in Sec. III, for a red-
detuned infinite lattice, the eigenmodes at the band edges
are standing-wave solutions; at the low-frequency edge of
the band gap (i.e., at the lattice frequency) there are an-
tinodes at the atomic planes and at the high-frequency
edge (i.e., at the atomic resonance) there are nodes at
these planes. In a finite lattice there will always be a
traveling-wave component so that the eigenmodes at the
band edges have neither perfect nodes nor antinodes.
Nonetheless, the positions of the minima and the maxima
of the intensities are as described above, as is dictated by
the self-consistent solution described in Sec. II. The end
result is that scattering losses are actually reduced at
atomic resonance since the coherent interference reduces
the intensity of the field seen at the position of the
scatterers; scattering losses are slightly enhanced at the
lattice laser frequency since the atoms experience a
stronger field. When the lattice grows longer than the
band-gap extinction length, scattering losses will always

FIG. 9. The total fraction of intensity in the
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reflected and transmitted beam, R, + T, as in
Fig. 8, (a) at the atomic resonance and (b) at
the lattice frequency. For sufficiently short lat-
tices, the scattering loss in the lattice is smaller
than Beer’s law prediction, but larger than
Beer’s law at the lattice frequency because of
interference effects described in Sec. IV. When
the lattice is much longer than the band gap
extinction length, the incident field does not
penetrate any deeper into the lattice, so
scattering losses saturate, where they tend to
100% in the disordered gas.
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be less than they would have been in an equal density
disordered gas since the majority of the incident intensity
is reflected. The incident field only penetrates the or-
dered gas to a “skin depth” set by the band-gap extinc-
tion length and thus additional planes beyond this length
will not result in scattering loss. These results are shown
clearly in the piots of the sum |r,|2+ |z, |? as a function of
n, presented in Fig. 9. In a disordered dilute gas we
would expect |r,|*+|t,|?~exp(—nmno) (since the
reflected intensity is negligible). Figure 9(a) reveals the
suppression of the total scattering losses at the atomic
resonance for lattices short compared to d/« and Fig.
9(b) shows the slight enhancement at the lattice frequen-
cy. For n>>k"!, in the ordered gas most of the incident
intensity is reflected and the total scattering losses satu-
rate, whereas in the disordered gas |7, |*+ ¢, |*—0.

D. Other experimental considerations

At this point we have considered the ideal lattice con-
sisting of infinite atomic planes that are §-function local-
ized. We now consider how a more realistic geometry
would affect the predicted results. Atomic planes with a
finite diameter D will scatter a diffraction limited beam
with an angular divergence on the order Byg=~A/wD. If
the off-axis waves are to be effectively scattered, they
must lie within the angular width of the Bragg peak
Bpragg set by the condition 1—cosfBp,g,~1/nkd (exclud-
ing multiple scattering) or for small angles By,
~(A/mnd)!/?. If we assume that the total volume of
atoms is essentially spherical so that the transverse and
longitudinal sizes are equal, D =nd. Since D >>A, we al-
ways satisfy By <PBpr,g, and diffraction effects will not
limit the Bragg scattering responsible for the band gap.
For n =2000, the acceptance angle is approximately
BBragg=~13 mrad. In addition, the polarization depen-
dence of the scattering for nonnormal incidence does not
impose unreasonable collimation constraints on the beam
(see the Appendix).

The fact that the atoms are not perfectly localized in
planes also has potential for diminishing the strength of
the observed band gap. The spread in position of the
atoms results in a reduction in the strength of the Bragg
scattering in a manner analogous to the effect of a finite
slit width in an n-slit diffraction grating [7]. The
diffracted peaks are reduced by a factor set by the
Fourier transform of the slit function. In previous mea-
surements in a one-dimensional lattice of rubidium [2],
the rms localization of the atoms was measured to be
~A/15. Assuming that the center of mass wave func-
tions of the atoms that are deeply bound in the light-shift
potential well can be approximated by states of a simple
harmonic oscillator, the probability distribution of the
atomic position is Gaussian. The Bragg peak will then be
reduced by a factor f =exp(—4k2Ax?), where k =27 /A
and Ax =A/15, or £ =0.5, a reduction that should not
pose any experimental difficulties.

The considerations above indicate that substantial
reflection from the optical lattice should be observable in
the laboratory. We note that in previous pump-probe
Raman spectroscopy experiments on optical lattices [9],
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off-axis scattering into the direction of maximum Bragg
reflection has been observed. These results do not give
unambiguous proof of the long-range spatial ordering in
the lattice since the scattered beams are produced in the
direction for phase-matched four-wave mixing (.e.,
phase-conjugate reflection off population or spin grat-
ings). Our proposed experiment differs in the following
respects: The frequency difference between the pump and
the probe beams is on the order of several natural
linewidths, or tens of megahertz, far from any vibrational
resonance of atoms trapped in the wells (kilohertz scale).
Moreover, the most compelling demonstration of the
effect of spatial ordering can be seen in a transient experi-
ment by scattering the probe from the atomic lattice after
the lattice laser beams have been turned off. If the atoms
were spatially ordered they will remain so for many mi-
croseconds due to their extremely low temperature.
After a very short time (a few natural lifetimes) all the
atoms are in the ground state, so spatial gratings in the
ground-excited state population difference, irrespective of
true spatial ordering of the atomic positions, have been re-
moved. Eventually the atoms travel over sufficient dis-
tances to wash out the coherent backscattering. Accord-
ing to the discussion above, the Bragg peak will be re-
duced to 10% when the spread in atomic positions about
a plane is Ax =0.12A. Assuming a temperature associat-
ed with three to four recoil velocities v, =%k /M, or
1-1.5 cm/s, atoms will diffuse over this distance in 7—10
us. This time scale is much longer than the inverse of the
band-gap width and thus should allow full exploration of
the curve of reflection vs probe frequency.

Although this experiment can remove four-wave mix-
ing as a possible mechanism for the observed Bragg
reflection, we still may not rule out coherent scattering
from a “spin grating” created in a cold but spatially
homogeneous gas by the local optical pumping associated
with the spatially periodic polarization of the optical lat-
tice light field. Propagation of a probe in an optically
pumped polarized gas was first studied by Cohen-
Tannoudji and Laloé [10(a)] and specialized to a laser
cooled sample whose ground state is ““optically oriented”
by Bezverbnyi, Smirnov, and Tumaikin [10(b)]. In order
to distinguish (by the existence or nonexistence of Bragg
reflection) the spatial ordering of the atom’s internal de-
gree of freedom from a density grating associated with its
center of mass position, we must consider higher-
dimensional lattices. The spin lattice may be at least par-
tially separated from the atomic-density lattice by an ap-
propriate choice of probe polarization. Such a system is
analyzed in the next section.

V. BRAGG SCATTERING
IN THREE-DIMENSIONAL LATTICES

Up until this point we have been considering a lattice
in which atoms are trapped only along one dimension
and randomly distributed in the plane. Atoms can also
be trapped in three-dimensional lattices through the in-
terference of multiple laser beams. Bragg scattering then
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has potential as a useful tool for studying the long-range
and the short-range spatial order of the lattice. We con-
sider a configuration of four linearly polarized beams,
represented by the ordered pairs (polarization, wave vec-
tors): (e, k;=k e, +ke,), (e, k,=—k e, +ke,), (e,
k;=k e, —ke;), and (e,, k,=—ke,—kje,) with

ik, x

e=[(e +eik2‘x)ex—i(eik3'x+eik“'x)ey]/\/§

cos(k,y)+cos(k x)
2

=e_

cos(k“z) +i sin(k”z)

cos(k,y)—cos(k;x)
2

—e. |cos(kz)

The result is interleaved lattices for each of the two circu-
lar polarizations o, and o _. Each lattice is centered
tetragonal, with the two lattice constants a”=?»/2 cosf
and a, =A/sinf. These polarization lattices give rise to
periodic o, and o _ light-shift potential wells, which can
trap and optically pump atoms into the respective
stretched states.

Bragg scattering occurs when the difference between
the momenta of the probe and scattered photons is a
reciprocal-lattice vector. For optical lattices, a primitive
basis for these vectors will always be given by the
difference between the k vectors of these beams [4]. In
the Raman spectroscopy experiments of three-
dimensional lattices performed by Grynberg et al. [4], a
probe counterpropagating against one of the lattice
beams results in Bragg reflection along another lattice
beam. However, these experiments can equally well be
interpreted as phase-matched four-wave mixing. As our
goal is to use Bragg scattering as a tool to study the spa-
tial order of the atomic positions, we want to remove this
ambiguity by considering experiments in the absence of
lattice light, as in the experiment proposed in Sec. IV. As
we noted there, even after the lattice laser beams are re-
moved, observation of a reflected beam still would not
give unambiguous proof of the spatial order of the atomic
positions because of the existence of the “spin lattice” as-
sociated with the local polarization of the optical lattice.
By a spin lattice we mean a periodic variation in the mul-
tipole moments associated with the internal Zeeman state
distribution of the atoms (orientation and alignment) [17].
This ambiguity cannot be removed in the one-
dimensional (linllin) case since the spin lattice and the
atomic density lattice seen by the probe are always coex-
istent. In particular, in a one-dimensional lattice the
orientation associated with an optically pumped but oth-
erwise homogeneous cold gas in a linllin field, when aver-
aged over a plane corresponding to a phase front of a
probe, will vary periodically in the same way as the hy-
pothesized density distribution of trapped atomic planes.
The extra degrees of freedom available in three dimen-
sions allows us to create a system in which these two phe-
nomena can be separated. '

Consider scattering a probe propagating in the z direc-

cos(k,y)—cos(k x)

k =k cosf and k, =k sinf. This geometry can be en-
visaged as a simple modification of the standard one-
dimensional linllin geometry [6]. Each of the counter-
propagating beams is “split” into two beams by an angle
0 in directions perpendicular to their polarizations, giv-
ing rise to a three-dimensional lattice

cos(k,y)+cos(k x)

2

+isin(kuz)

(31

2

tion and linearly polarized (e.g., €,ope=€,). It follows
from Eq. (31) that there exists a set of atomic planes that
give rise to reflection by Bragg scattering when the wave-
length of the probe is A jpe=Ajaice/(2 c0s0). Since the
scattering is minimal except for frequencies near atomic
resonance, it is practical to choose 8=m/3. All planes
perpendicular to z will contain an equal amount of o
and o_ polarized light, in contrast to the one-
dimensional lattice, which has planes with alternating
pure helicity. The orientation of the resulting optically
pumped atoms averages to zero over these planes. A
linearly polarized probe incident in the z direction, con-
taining an equal amount of o, and o _ polarized light,
will therefore not experience a periodic variation in the
atomic orientation, which could backscatter the light. In
contrast, a true center of mass grating arising from the
long-range density correlations of trapped atoms should
give rise to substantial coherent backscattering as calcu-
lated in the previous sections. Finally, it remains to con-
sider the quadrupole moment (or alignment) of the opti-
cally pumped atoms in the field given by Eq. (31). A
periodic variation of this parameter, when averaged over
the planes perpendicular to the z direction, could also
give rise to coherent backscattering, even in the absence
of a density grating. Such a calculation is beyond the
scope of this article and requires further research, though
it seems likely that the average alignment would only
weakly scatter the probe in contrast to the strong Bragg
scattering predicted for localized trapped atoms. Until
such a calculation is done we cannot unambiguously dis-
tinguish the observation of Bragg scattering off a lattice
of localized atoms from Bragg scattering off a spin lattice.

VI. DISCUSSION

We have seen that an optical lattice can potentially
reflect a large fraction of the intensity of a weak probe
and that the characteristics of the reflection spectrum
vary as a function of the lattice length. In this section we
interpret these results in terms of fundamental processes
of absorption and emission of photons. For short lattices,
the probability of multiple reflections is negligible and
thus the reflection spectrum is characterized by the
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scattering off a single plane. In that case, the indi-
vidual atoms spontaneously scatter light according to
their dipole response, which is dominated by the imagi-
nary part near resonance. Although these scattering
events correspond to spontaneous emission, it is well
known that at low intensities the resonance fluorescence
is coherent, so we can calculate the expected pattern as if
the atoms were classically polarizable particles. Interfer-
ence in the resonance fluorescence of two trapped Hg*
ions has previously been observed [18], yielding a classi-
cal Young-type two-slit interference pattern. In the lat-
tice geometry, the coherent addition of individual dipole
patterns in a plane results in light scattered mainly into
the forward and the backward directions (there is some
light scattered into nonparaxial modes, which results in a
loss) and the spatial ordering of n planes then enhances
the reflected wave intensity by n2. Thus, for thin lattices
where multiple scattering can be neglected, it is the imag-
inary part of the atomic response that dominates. This is
revealed in the reflection spectrum seen in plots (a) and
(b) in Figs. 5-7.

The imaginary part also gives rise to losses. For a sin-
gle plane, the intensity not radiated into either the
transmitted or reflected beams follows from Egs. (3) and
(14),

1—[r1|2_|11l2: 1720 2 .
1+no +tan“¢+(no)*/4

No photons are truly “lost” after propagating through
the gas of atoms (i.e., converted to heat in some other
form of energy such as phonons); they are only rescat-
tered into nonparaxial modes. Since all the radiated
fields are phase coherent, it would seem that the superpo-
sition of all the individual dipole patterns in a plane can

(32)
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only have components propagating in the forward or the
backward direction. The resolution to this puzzle lies in
our simple model of the plane of atoms as a continuous,
homogeneous polarizable sheet. Our situation is analo-
gous to the Mie scattering by small lossless dielectric
spheres. It is well known that the propagation of light in
a gas of such particles can be modeled by a bulk homo-
geneous medium with a complex index of refraction [11].
The losses represented in Eq. (32) should thus be attribut-
ed to the diffuse scattering resulting from the random lo-
cations of the atomic positions in the plane, assumed
sufficiently sparse that the average number of atoms per
area is small compared to the scattering cross section. If
the atoms in a single plane are themselves arranged on a
regular two-dimensional grid, these “losses” would be at-
tributed to higher-order diffraction peaks.

We therefore conclude that the large reflection over
the entire band gap arises from the real part of the atomic
response. In Fig. 10 we plot the reflection dispersion
curve given by Eq. (24) for the same parameters as in Sec.
IV, a lattice detuning of §; = — 10y, but with the imagi-
nary part of { artificially set to zero. Note the resem-
blance between these curves and those given in Fig. 5 in
the long lattice regime. Whereas the artificial system
leads to unity reflection inside the band gap, for true
atomic response the imaginary part leads to scattering
into nonparaxial modes, which prevents the multiple
reflections needed to produce a perfect stop band.

In summary, we have shown that an optical lattice can
exhibit a one-dimensional photonic band gap due to the
long-range periodic ordering of the atomic positions on
the scale of the optical wavelength. The backaction of
the trapped atoms on the lattice laser beams leads to a
self-consistent solution that determines the equilibrium

FIG. 10. The absolute square
of the reflection coefficient as a
function of (@prope — @iattice) /7 18

plotted for the same parameters
as Fig. 5, but with the imagi-
(@probe — Dlartice) /Y nary part of the atomic polariza-

(b) bility a set to zero. We see the
evolution from the thin lattice
regime (a) n =10 and (b) n =500
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to multiple reflections (c)
n =2000 and the infinite lattice
(d). In the absence of Im(a),
there are no scattering losses and
the lattice acts as a perfect stop
band inside the band gap.
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positions of the Bragg planes and always has a photonic
band edge at the lattice laser frequency. For lattices
trapped by red-detuned lasers, the band gap extends from
the trapping laser’s frequency to atomic resonance. The
case of a blue-detuned trapping laser is complementary;
the frequencies between resonance and the lattice laser
are excluded from the gap. Otherwise the gap extends
over a large range, typically on the order of hundreds of
atomic linewidths, centered at resonance. We see that
the curve of reflected intensity as a function of probe fre-
quency associated with Bragg scattering in a thin lattice
follows the Lorentzian resonance fluorescence spectrum
of a single atom, whereas the curve becomes distinctly
non-Lorentzian in the infinite lattice limit. The transmit-
ted energy also differs in the ordered gas from Beer’s ex-
ponential attenuation expected for a disordered gas. At
atomic resonance, interference between forward- and
backward-scattered waves gives rise to standing waves
with intensity minima at the atomic planes, thereby
suppressing scattering loss (and increasing transmission);
the opposite is true at the lattice laser frequency. Finally,
we considered Bragg scattering in a three-dimensional
lattice.
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APPENDIX

In this appendix we generalize the reflection and the
transmission coefficients of the probe from a plane of
atoms to the case of nonnormal incidence in order to
determine their sensitivity to the electric-field polariza-
tion. Consider a monochromatic wave incident on a
plane of polarizable particles at z =0_with wave vector
k=k,e, +k,e, and frequency w=cV k2+k2 Using the
symmetry of the problem we can express the fields on the
left- and the right-hand sides of the plane by the ansatz

ik z —ik,z

ELz(EOe z +E,e

ik, x

)e R (Ala)

ik,z ik x

Egx=E,e “e *, (A1b)
where E,, E,, and E, are the vector amplitudes of the in-
cident, the reflected, and the transmitted fields, respec-
tively. These can be expressed in terms of the com-
ponents in the plane of incidence u,=cosfe, —sinbe,,
u, =cosfe, +sinfe, and perpendicular u;=e,, with 6
the angle of incidence. In general, the atomic response
will be birefringent and thus these will not be the eigen-
polarizations of the problem. We thus seek the eigenvec-
tors and eigenvalues for transmission through the plane.
As in Sec. II, this can be simply calculated through the
boundary conditions for propagation. Expressed in terms
of the {p,q,s} components, the amplitude of the tangen-
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tial components of the fields in Eq. (A1) at z =0 are
E.(z=0_)=cos0(E,, +E,), (A2a)
E,(z=0,)=cos0E,, , (A2b)
E (z=0_)=Ey+E,, (A2c)
E (z=04)=E . (A2d)

These tangential E fields are continuous across the plane,
while the induced current sheet results in a discontinuity
of the magnetic field, or equivalently the electric-field
derivative, which can be determined from Maxwell’s
equations.

The propagation of the field in the plane of incidence is

governed by the wave equation
V(V-E)—V?E—k’E=4rk*P=4wk*y‘E, (A3)

where y is the susceptibility tensor. Substituting in the

ansatz E=E(z)e e *, the Cartesian components
read
d’E, —ik, d,E,+k’E, = —4rk’e,.-x'E, (Ada)
(2+k}E,=—4nk’, X E, (Adb)
—ik,d,E, +k2E,=—4wk?,-xE . (Adc)

For atoms optically pumped into the Zeeman sublevel
with maximum angular momentum along the z axis, x
can be approximated by the dyadic

x=na,.b(z)e ek , (AS)

where a is the polarizability of the pump atom to ot
light, n is the density of atoms per unit area, and
es= Fle,tie,)/ V2 are the usual unit vectors of circu-
lar polarization. The right-hand side of Eq. (A4c) van-
ishes and the E, can be eliminated in terms of the E,.
Equations (A4a) and (A4b) become a coupled set of one-
dimensional wave equations

(2+k}E,=—2mkna,8(z)E, —iE,),
(2 +k}E,=—i2wk’na 8(zNE, —iE,) .

(A6a)
(A6b)

The boundary conditions on the fields and their deriva-
tives are then

E (z=0,)—E,(z=0_)=0, (A7a)
3,E,(z=0,)—3,E,(z=0,)
=—2wkna,[E,(0)—iE,(0)], (A7b)
E,(z=0,)—E,(z=0_)=0, (A7c)
9,E,(z=0,)—3,E,(z=0,)
=—i2wk*na[E,(0)—iE,(0)] . (A7d)

Using these and Eq. (A2) we arrive at the transmission
coefficient matrix for the p and s components
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P 29 P
1+12c050 2cos19 EOp

EOr

ip

, (A8a)

ol

ts

— g—cosa 1—I—i€—

where

9 (A 8b)
cos@—ig—(cosze—k 1)

i

p

and § is defined in Eq. (3b). The transmission eigenvalues
and corresponding eigenpolarizations are

‘o= cos6
1 ’
cos@——i%(cos20+ 1)
1 (A9a)
e = — ———/{cosfu, +iu,} ,
! V'1+cos?0 { ?

t2:1 N

] (A9b)
€= — —=———=={u, —icosbu,} .
V'1+4cos’0

Similarly, one finds the reflection coefficients for these
eigenmodes,

: 2
r= i£(1+cos“0)/2 . r,=0. (A10)

cosf)—i%(coszo—i- 1)

For normal incidence (6=0) the eigenpolarizations are
positive and negative circular polarizations, with
reflection and transmission coefficients for o reducing
to Eq. (3a). Furthermore, it is clear from Eq. (A10) that
for small angles the reflection coefficient deviates from
the normal incident case only to order 62, thus imposing
no stringent requirements on beam collimation.
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