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The close-coupling approximation for electron-atom scattering is extended to include the eKect
of one-photon radiation damping at a level nonperturbative in the wave function. The complex
potential is derived and introduced directly into the set of integro-di8'erential equations used to
calculate the S matrix. The formulation is ideal for inelastic scattering and photoionization with
radiation damping and can be used to calculate photorecombination cross sections. The numerical
solution of the resulting difI'erential equation is accomplished through a combination of B-matrix,
perturbation theory, and analytic techniques. Some of the implications of this method are discussed.
The connections to previous theoretical approaches are discussed.

PACS number(s): 34.80.Kw, 31.30.Jv, 31.10.+z

I. INTRODUCTION

The effect of radiation damping on atomic dynam-
ics has both a practical and a theoretical interest for
atomic, plasma, and astrophysical [1] situations. The
most difficult situation to describe theoretically occurs
when a scattering electron is temporarily captured into
a resonance state; the competition between autoioniza-
tion and radiative decay as well as possible interference
between indistinguishable paths should be accurately de-
scribed. Most of the calculations that include radiation
damping are based on the independent processes isolated
resonance approximation and second-order perturbation
theory [2]. In these calculations, all interference effects
(interference or interaction between resonances, interfer-
ence between resonances and continua, etc.) are ignored,
which means radiation damping of autoionizing states
contributes additional width to resonances and causes a
rechanneling of flux &om electron scattering channels to
photon emission channels. Methods that sum probabil-
ities work fairly well for total photorecombination cross
sections but can have radical failures for photoionization,
electron impact excitation, or partial dielectronic recom-
bination cross sections even for highly charged systems.
Photorecombination is the capture of an electron by an
atom or an ion with the simultaneous emission of a pho-
ton. The mere sophisticated theories of radiation damp-
ing [3—6] have not been utilized extensively because of
the difficulty in constructing general computer programs
based on these methods. Methods that are based on the
application of detailed balance to photoionization cross
sections [7] will only be accurate for near-neutral systems
because radiation damping effects are much smaller than
electrostatic effects.

The general status of radiation damping in atoms has
prompted us to develop an approach that includes non-
perturbative, radiative damping effects in the wave func-

tion in a form that could be computationally efficient [8].
A basic step of the method is the identification of the
nonlocal radiation damping potential (to lowest order in
the coupling to the radiation field) without reference to
any representation of the wave function. The effect of
the different types of final decay states can be examined
in detail and different styles of computational tools can
be exploited as necessary. We have modified existing
R-matrix programs to include the effect of all types of
radiation damping on the atomic dynamics. Test runs
on multielectron systems have required roughly the same
amount of computer time with radiation damping as the
unmodified codes take with no damping. The modifica-
tions should allow the trivial inclusion of radiation damp-
ing into calculated atomic parameters.

In this paper, we focus on the derivation of the radi-
ation damping potential and the general implications of
this potential for the atomic part of the wave functions.
As with all previous methods for treating the effect of
radiation damping on the wave function [3—6], we use
the pole approximation to obtain finite results for the
radiation damping potential (i.e., only the eff'ects of real
one-photon emission are included while virtual photon
emission and absorption are ignored). This potential de-
scribes one-photon damping but does not include quan-
tum optics or Lamb shift terms. This approximation be-
comes increasingly problematic at higher residual charge
due to the rapid increase of the Lamb shift and other
virtual photon effects. The effects of radiation damp-
ing on the wave function are included in three different
ways: (i) the change in the Hamiltonian due to type-
I transitions (i.e. , radiative decay of the core state) is
included analytically by changing the core energy &om
E, ~ E, —il', /2, where I', is the total radiative decay
rate; (ii) the change in the wave function due to type-IIS
transitions (see Sec. VI) is included through a numeri-
cal procedure (the B-matrix method); and (iii) the type-
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III transitions (see Sec. VI) are included perturbatively
in unphysical wave functions (unphysical wave functions
are solutions of the Schrodinger or Dirac equation that
do not have the correct boundary conditions at r ~ 0
or r M oo); the physical wave functions are constructed
from a linear superposition of the unphysical solutions [9]
and include nonperturbative effects.

The main goal of this paper is to describe the implica-
tions of the current method and the numerical methods
that are needed to calculate the solutions of the atomic
Hamiltonian with the radiation damping potential. In fu-
ture papers, we will explore the effects of radiation damp-
ing on specific atomic systems, especially those related to
electron scattering experiments.

We have endeavored to keep the description of the
physics of this paper self-contained. We feel that there
are several aspects of this work that deserve attention.
The derivation of the radiation damping potential with-
out reference to any particular representation is the base
upon which the rest of the paper is constructed; oppor-
tunistic exploitation of different representations allows
the compact description of many different types of ra-
diation damping. We have derived a simple approx-
imate expression for the photorecombination probabil-
ity near one resonance embedded in one electron contin-
uum with many possible final states for radiative cap-
ture; our simple expression is a very good approxima-
tion to more exact and complicated expressions derived
by others. We have found that the effect of radiative
decay of a core state on a Rydberg electron should be
incorporated by replacing the core state energy E, in the
close-coupling equation for the Rydberg electron with
E, —iT', /2, where I', is the total radiative decay rate;
this replacement contradicts the accepted method for de-
scribing radiative decay of core states. We have shown
how the radiation damping potential can be incorporated
into the close-coupling equations by using a variation of
the usual B-matrix method; this variation preserves the
rapid calculation of scattering parameters and thus al-
lows the inclusion of radiation damping with relatively
little effort. We have examined the effect of radiation
damping utilizing multichannel quantum defect theory
(MQDT), which clearly shows the connection between
radiative and dielectronic recombination; this examina-
tion showed that radiation damping can be nonpertur-
batively included into the physical wave function if it is
perturbatively included in the unphysical wave function.

II. B.ADIATI(3N DAMPING PC)TENTIAL

(e.g. , the projection operator formalism [ll] applied to
atomic resonances). In this section, we give a derivation
of this potential to introduce notation that will be used
throughout the rest of the paper. The derivation below is
not truly rigorous because we will set to zero the interac-
tions that cause the Lamb shift; the only effect that will
be retained is the damping due to photon emission. This
is the pole approximation applied to radiation damping.
In Sec. VB, we will rederive the results of this section
using the projection operator formalism of Feshbach [11]
as applied to radiation damping without reference to the
type of atomic wave functions in the P space; the results
from Sec. VB will be used in Sec. VC. Atomic units
will be used throughout this paper.

The wave functions ~4&.) will be the solutions of the
Hamiltonian equation [Eq. (2) below] for an atom or an
ion coupled to the radiation Geld; the + superscript rep-
resents the situation that as t ~ —oo there is an electron
coming towards the target ion in channel j and as t ~ oo
there are amplitudes for the electron to have elastically
or inelastically scattered from the target or a photon was
emitted. The —superscript represents the situation that
as t —+ oo the electron leaves the target only in channel
j with no emitted photons and for t + —oo there is a
linear superposition of incoming waves in the photon and
electron channels. Most of the practical calculations of
electron scattering from atoms or ions separate the time
dependence of the wave function &om the spatial and
spin dependence. Following this tradition, we write the
wave function

n, k,e

where E is a real energy, ~@& ) is an unknown atomic
scattering wave function, the ~g„& are known atomic
bound-state wave functions, a&~, is the raising operator
for a photon of wave vector k and polarization i, ~V) is
the radiation field vacuum, and B+i„.(E) are c-number

)g
coeKcients. The wave function can be written in this
form because the ~g&.) are scattering-type functions and
the radiation field decouples &om the electron at large
distances; if the ~@@& were bound-state functions the en-
ergy E would need to be complex if there were a lower
state coupled to ~@~& through the radiation field.

The ~4&.) is a solution of

Several authors [3—6] have obtained equations that de-
scribe the effect of an optical potential for one-photon ra-
diation damping, although it has not often been used in
close-coupling equations or methods to date. Reference
[10] is an exception for an isolated resonance embedded
in one continuum. The derivation of the optical poten-
tial for radiation damping has often been linked with a
specific method for obtaining the atomic wave function

where H~ is the atomic Hamiltonian, H~
P&,- wi, a& ai,; is the Hamiltonian for the radiation field,

and Hr = —gi, , /2ir/Vui, (e . Pai,; + a* . Pait„. ) is the
part of the Hamiltonian that couples the electronic mo-
tion to the radiation field. The electron momentum op-
erator is P. We quantize the radiation field in a cube
of volume V and take the limit V —+ oo in all physical
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parameters.
We solve for the scattering part of the wave function

~g&. ) by substituting the form of the total wave function
from Eq. (1) into Eq. (2). We project onto Eq. (2) with
(V~ag;gr„~ to obtain

set it to zero. The residue from the pole of the integral
can be easily obtained to give

/&7—r/V~g(@„~~* P~gz+ )/(E —E„—~q + ib),

where (E —H~)~@ ) = 0 and we will take the limit
b —+ 0+ in any integrals. Finally, we project onto Eq.
(2) with (V~ to obtain the differential equation for which
/v)&. &

is a solution:

Equation (8) is extremely important because it gives the
diff'erential equation for ~v)&. ) and clearly shows that

~@& ) is the solution of a difFerential equation diferent
from the ~v)&. &

wave function. This equation is also im-
portant because it does not presuppose any representa-
tion for the scattering function. The right-hand side of
this equation can be written in terms of the nonlocal op-
tical potential

nk, k

(4)

n, k, R

2'
X

V(dA,
(E —E„—(ug + i6),

where the right-hand side of Eq. (5) suggests an. opti-
cal potential. The modes of the radiation field can be
summed over exactly to lowest order in V by converting
the sum to an integral

) = d k d(u) V(u /(2vrc)
k, R

In this form it appears the ~g&.&
are the solutions of

inhomogeneous differential equations. However, the B+
depend on the ~g&.), which somewhat complicates mat-

ters. By substituting the expression for B+&, -(E) from

Eq. (3) into Eq. (4), we obtain an equation for ~g&. &

that has the form

which we will call the radiation damping potential. This
radiation damping potential is spherically symmetric and
it is anti-Hermitian. This potential can be derived using
a projection operator formalism [ll] as applied to the
second quantized radiation field; this derivation is given
in Sec. VB.

There have been several methods that have been pro-
posed for including radiation damping in electron-ion in-
teractions [3—6]. Although it is sometimes difficult to
see the connection between all of the different methods,
every method can be expressed as an attempt at solv-
ing Eq. (8) because all of the methods derive f'rom the
same approximations utilized in this section. The nonob-
vious connections with other methods are discussed in
Sec. VC.

III. PROPER,TIES OF THE %TAVE FUNCTION

In this section, we derive some of the properties of the
wave function. Some of the questions about the scatter-
ing form of the wave function are addressed.

with c being the speed of light. We sum over the polar-
izations and integrate over emission angles to obtain

The real part of the integral diverges. This term gives
the shift in the energy position due to the interaction
with the radiation field (when it is handled properly using
renormalization theory); for electron scattering it gives a
change in phase shift. This is analogous to the Lamb
shift for bound states and is typically a small correction
(except at very high charge) when it is correctly included
in the equations of motion. The proper treatment of the
Lamb shift term is beyond the scope of this paper so we

A. Normalization

The normalization properties of the scattering func-
tions are examined in detail because the normalization
of the wave functions and the photoionization cross sec-
tions are intimately related. This is a nontrivial question
arising &om the non-Hermitian nature of H~ + VR.

We will begin by focusing on the normalization of the
~@& ) atomic scattering functions. If the Hamiltonian is
Hermitian the most important scattering functions are
the ~g&.) functions that have the asymptotic form (as
r —+ oo) [12]
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where A is the antisymmetrization operator, SI i is the S
matrix connecting channels j' and j, ~4I ) are the channel
functions that include the target state as well as any an-
gular momentum of the outer electron, and the f,+, (r. ) are
the radial functions that are the solutions of the asymp-
totic Schrodinger or Dirac equation. All of the channels
in Eqs. (10) and (ll) are open. If the asymptotic poten-
tial is Z/r—, then these are Coulomb functions at energy
e~ = E —E, „,I with the properties [9]

the functions, the ]@&+.) are eigenstates of H, and the

~Q&.) are eigenstates of Ht.
The ~@&.) are not normalized per unit energy when the

Hamiltonian is not Hermitian; the overlap integrals can
be obtained by applying Green's theorem to the overlap
over a Gnite volume and then taking the limit that the
volume becomes in'. nite. These normalization integrals

f+
( ) ~ 1/ k +Zi/k r +i(k iv+q i) (12) (@+,~i/+, , ) = — b, ,'+ ) S,*„,S, , 8(E —E'),

where kI ——/2@I. and qI is the long-range Coulomb
phase shift for channel j' and charge Z. In terms of
Seaton's s and c functions f+(r) = c(r) + is(r) and
in terms of the f and g functions (see Fano and Rau)
f+(r) = [—g(r) + if(r)]/i/2. The (f+)* = f at real
energies. Since the f,+ are solutions of the same diKer-
ential equation, the Wronskian of these two functions is
independent of position and can therefore be evaluated
at r ~ oo:

W (f+, f,, ) = —2i/7r.

This Wronskian will be used in conjuction with Green's
theorem to And integrals involving the solutions of the
Schrodinger equation with the form of Eqs. (10) and
(»)

When the Hamiltonian is Hermitian, the S matrix is
unitary, which gives Q.„SI I.S*„, = hII . Using the
unitarity of the S matrix and the properties of the f+
one can show

I&a, ) =) l&~, )S* = l@~,)*

(&Z, l&~, )=
2

-~II'+).(S'),*' (S')I-' ~(E —E').

When the S matrix is unitary (i.e. , the Hamiltonian is
Hermitian), these results reduce to those given in Eq.
(»)

To show the origin of the nonunitarity of the S matrix
we examine the properties of

(&~,KH~+ VII.)&z, ) —((H~+ VII.)&z, l&~, ) = 0.

(i9)

Since the VII is anti-Hermitian, Eq. (19) is identical to

(&z, IH~&z, ) —(H~&z, l@~;) = 2(@z, I &~I&-z,').
(20)

where in the last equality the complex conjugation is only
for the radial part of the wave function. Finally, the ~@& .)
are normalized per unit energy when they are the solution
of a Hermitian Hamiltonian

WLi~. , ) = ~(E E')~„-
To obtain this result, one can use Green's theorem ap-
plied to a 6nite volume and then take the limit as the
volume becomes infinite to obtain the b function of en-
er gy.

When the Hamiltonian is not Hermitian, none of these
relationships hold. First, if ~g&.) is a solution of the
Hamilt onian H: H& + V& with aIl S matrix SjIj y

the
~g& ) given by Eq. (10) is not a solution of the Hamil-

toiuan; it is a solution of (E —H )~v)&. ) = 0. This is

fortunate because in Eq. (8), the ~@& ) are defined as

the solutions of (E —H )~@& ) = 0 since the Hermitian
conjugate of H~ equals H~ and the Hermitian conjugate
of VR equals —V~. The one relationship between the
~Q~, ) functions that still holds is

16,) = I@a,)*

where the complex conjugation is for the radial parts of

W ~+, IH. @~+,, ) —(H~y~+, ~q~+, )

--) ~(f+~,-, - f-„S',f-„~, ,' f+, S, , ). -

If we use Eq. (13) for the Wronskian of each term in Eq.
(21) and substitute this expression into Eq. (20), we find

b, , —) S,*„,S, , =4~i(g+, ~V ~@+,, ). (22)

The radiation damping potential V~ is —i times a posi-
tive definite operator, which means 2. —StS is a positive
definite matrix as it must be (electron flux is lost due

The H~ contains Hermitian potential terms and kinetic
energy operators; the contribution &om the potential
cancels out in Eq. (20). The contribution Rom the ki-
netic energy terms goes to a constant at Gnite distance
because the two wave functions are at the same energy;
by using Green's theorem, the contribution from the ki-
netic energy can be expressed as a surface integral as long
as the surface is large enough to completely contain the
effects from the core electrons:
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to radiation damping). We can substitute Eq. (22) into
(17) to obtain

&&~, I@~, ) = (~" —2~'&@z, l&RI&z;))~(E —E').

(23)

(27) allows us to use the results from usual scattering
theory, except we use the wave function IC'& ) instead of
the I@a.), although we will be able to express all of the
physical parameters of interest in terms of the functions

l@a,).

This equation clearly shows the efTect of radiation damp-
ing on the normalization of the atomic scattering func-
tion. The I@&+.) in Eq. (22) is the solution of Eq. (8).
Radiation damping can be calculated at the perturbative
level [7] by utilizing Eq. (22) with the lg&+. ) being the
solution of (E —H~)lvga ) = 0.

Now we turn to the diFicult question of finding the nor-
malization of the total wave function I4'&. ) that includes
both zero- and one-photon terms. To reduce notational
diFiculties we will find the normalization for the "+" so-
lution only. We use the expression for the total wave
function from Eq. (1) to obtain

&+', I+., ) = W", I&'., )+ ).B.',*;,, (E)B.,;,, &E')
n, k,R

B. Photon em, ission probability

In the scattering formulation of radiation damping the
total probability for photon emission can be obtained
from the S matrix of the electron scattering wave func-
tion Eq. (11). The S-matrix element Sii is the ampli-
tude for the electron to scatter flLom channel j to channel
j' without emitting a photon. The probability for the
electron to scatter from channel j to any channel j' is
P., ISii I

and is equal to 1 if the Hamiltonian is Hermi-. 2'
tian. Radiation damping reduces this probability because
there is a nonzero probability for emitting a photon. The
probability for approaching the nucleus in channel j and
emitting a photon is

(24) &~(E) = 1 —) ISii I' = 4~i&&x,
l V~I&z, ). (28)

We have already derived an expression for (@&.I@@, , ) so
it is only necessary to find an expression for the second
term of this equation. We substitute the form of B from
Eq. (3) to obtain

n, k, k

lim ) (@+,. Ie Pl/„) &@„Ie' . Pl/+. )"-' -,k,.- "
x [(E—E„—(ul, —i8) (E' —E„—(uI, + i8')]

Using Eq. (6), the sum over k and e can be converted to
an integral to give

This probability can be written as the sum of the par-
tial probabilities P~, which are the probabilities for an
electron to approach the nucleus in channel j, emit a pho-
ton in any direction and polarization, and be captured in
state n. The P~ are given by

P'-(E) =,. "
W'z, lPI@-) &&-IPI@z,) (2 )

These probabilities can be related to the total photoion-
ization cross section through simple factors. The total
probability for photon emission is Pz ——P Pz . The
P~ can be expressed as reduced matrix elements and
geometrical factors that depend on the type of angular
momentum coupling that is appropriate for the scatter-
ing problem. In IS coupling the expression is

) B.;.-,,(E)B...-, (E')
n, k, i;

4(E —E„)ilim
b, b'~o+ 3c3

x8', IPI@-) (&-IPI@';)/(E'- E+'~+'~')
= 2 '&@+,IV I@+, )~(E —E'). (26)

where I is the total angular momentum of channel j. A
final probability that may be of interest is the probability
for the electron to approach the core in the z direction
with the target in state c' and emit a photon in direction
k with polarization e and captured in state lg ). This
probability is

Substituting the overlap of the atomic scattering func-
tion from Eqs. (23) and (26) for the overlap of the B
coefficients into Eq. (24), we obtain

(E) = ( —, -)1&~.+,,I;.Pl~ (31)

(O'+,. lC+, ) = h, , h(E —E').

A similar treatment would show the I4'&.) to be normal-
ized per unit energy. This treatment demonstrates that
the full wave function is energy normalized as it must be
to be useful in atomic scattering calculations. Equation

where the I@&...) is the superposition of states lg& ) that
gives an incoming wave in the z direction on the target
in state c'. This probability can be rewritten in terms of
standard angular factors and reduced matrix elements in
exactly the same fashion as differential photoionization
cross sections.
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IV. PHYSICAL PARAMETERS

Radiation damping changes some of the standard prop-
erties of wave functions. Therefore, we would like to com-
pletely specify how to obtain physical parameters &om
wave functions that have included the efFects of radiation
damping.

many difFerent forms that are equivalent when no damp-
ing is present (e.g. , using standing-wave solutions of the
Schrodinger equation). Some of these forms do not give
correct results when radiation damping is present.

C. Photorecombination cross section

A. Elastic and inelastic scattering cross sections

The elastic and the inelastic scattering cross sections
are obtained by comparing the rate of scattering into
certain directions and/or channels to the incident flux
of electrons [12]. This idea does not change when there
is radiation damping present; photon emission is simply
another channel. The application of these ideas involves
the l4&,.) wave functions of Eq. (1); the probability for
scattering from channel i to channel j and not emit a
photon is simply lS,~ l2 (whether or not radiation damp-
ing is included) since the electron flux toward the nu-
cleus in channel i is 1 and the flux away &om the atom
in charinel j is lS;~ l

. The formulas for elastic and inelas-
tic cross sections with radiation damping are identical to
those with no radiation damping as long as the S matrix
is used (or the T matrix is obtained from the S matrix).
Radiation damping changes the S matrix but does not
change the formulas used to calculate the scattering cross
sections.

The photorecombination cross section can be obtained
&om the lili& ) wave functions in a very simple inanner.
The cross section is obtained by comparing the rate for
emitting photons compared to the incoming electron flux.
In the scattering formulation of radiation damping, the
photorecombination cross section is a simple extension
of the usual inelastic scattering cross section. From Sec.
III B, we can obtain the probability for emitting photons
during one electronic collision. The cross section for pho-
ton emission when the target ion is in state c' is

o, (E) =, ) g, P~(E),
C

(34)

g, = (2J, +1)/2(2J. +1), (35)

where k2, = 2(E —E, ) is the squared wave number of
the incoming electron, g~ is a statistical factor, and P~ is
&om Eq. (28). The sum is over all channels j for which
the target state of channel j is the state c'. The factor
g~ is

B. Photoionization cross section

The photoionization cross section is obtained by com-
paring the rate of electron ejection in a certain direction
and/or channel to the incident photon flux [13]. The
usual method is to use a representation of the wave func-
tion in terms of the solution with incoming wave bound-
ary conditions, i.e. , the l4&.). In this representation,gg
there are outgoing waves only in channel j. The dipole
matrix elements between these states and the initial state
give the amplitude for ionization into channel j. The re-
duced dipole matrix elements can be obtained &om

where J I is the total angular momentum of the core and
J~ is the total angular momentum of channel j when jj
coupling is used and

g~ = (2L~ + 1)(2S~ + 1)/2(2L, + 1)(2S,' + 1), (36)

where L, (S, ) is the total orbital angular momentum
(spin) of the core and Lz (S~) is the total orbital angular
momentum (spin) of channel j when LS coupling is used.

The partial and the differential photorecombination
cross sections can be obtained in a similar manner by us-
ing the partial and difFerential photorecombination prob-
abilities &om Sec. IIIB.

dz, = (@E,IIDII@s)

(32) V. CONNECTIONS TO OTHER METHODS

dz, = (@z,lloll&a)*. (33)

The dipole matrix element give by Eq. (32) or (33) is
used in the usual cross section formulas to obtain the dif-
ferential, partial, or total photoionization cross sections.
The formulas for the photoionization cross section do not
change, but the radiation damping changes the d&. and
can therefore change the cross section.

The photoionization cross section can be written in

wh~~~ l@g) = l@g)l~) and the (II& —VR Z)l@z, ) = 0
[with asymptotic form given by Eq. (10)]. We have used
the equivalence of Eq. (16) to obtain photoionization
cross sections in terms of the l@&+.),

In this section, we sketch the connection of the present
formulation to other theoretical methods.

A. Fano pro61e with damping

We would like to examine the eEect of radiation damp-
ing when there is one resonance embedded in one contin-
uum. We will use the formalism that was utilized by Fano
[14] to describe scattering near an isolated resonance. In
this treatment we will only account for the main efFect
of the resonance on the wave function and obtain the
probability for recombination &om Eq. (22).

We construct the wave function using a representation
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(H —E)I&&& = o

where H = H~ + VR and Ig&) has the form

I&a) = ~(E)I&.&+ dE'I J~ )b~ R. (38)

of states that are solutions of the Hamiltonian when the
coupling of the resonance to the continuum and all photo-
decay channels are neglected. I et

I f„& be the resonance
state and

I f@& be the real, energy normalized continuum
function. We will find the solution

Note that the integral term is simply GoVI f„), where Go
is the standing-wave Green's function for the unstruc-
tured continuum. For distances larger than the interac-
tion range of H, this Green's function term can be ob-
tained IIrom the solution that oscillates 90" out of phase
from

I fR) (we denote this function Ig~)),

I&~+) = ~(E)V~Z(E) [le) + ~Ig~)/Z(E)] r & r, . (48)

To find an expression for a(E), we use the asymptotic
form of Ig&) and the expressions for

I f@) and Ig~). This
procedure gives

We need to know the matrix elements of the Hamiltonian
in this representation

(f, lHI f„& =—E„—iI'R/2,

(&~IHI&.) = v~ (40)

(&~ IHI&~& = E~(E —E')

where we have neglected the small amount of radiative
recombination in the last relationship. E„ is the energy
of the resonance and I'R is the full radiative width of
the resonance, which may have contributions from many
final states. Projecting on the left-hand side of Eq. (37)
with (f„I

gives

a(E) = Vg, /(E —E, + il"R/2+ il'~/2),

where we have substituted in the autoionizing width
I'~ = 2~IV~1'.

%"e now turn to an exploration of the squared dipole
matrix element, which is important for both photoioniza-
tion cross sections and the probability for photorecombi-
nation. For this exploration, we will be careful of con-
tributions from interference terms because we only have
one dipole matrix element. Following Fano, we write the
reduced dipole matrix elements as

D. = (f.IIDII@.) + P dE'&~ D~ /(E —E') (5o)

(E„—iI'R/2 —E)a(E) + dE'Vg b~ ~ = 0

and projecting on the left-hand side with (f~ I
gives

V~ a(E) + (E' —E)ba R = O.

(42)

(43)

DR = (&RIIDII&s).

The matrix coupling the ground state to the Anal state
1s

WRIID114'~&* = ID:Vz+ D&(E —E-
+iF /R2)]/[E —E„+i(F& + FR)/2] ( 2)

The formal relationship between 6~I@ and o, (E) in Eq.
(43) can be recast in the form

P
6@i@ = + Z(E) b (E —E ) V@&a(E), (44)

Z(E) = (E —E-+ iI'R/2)/IV~I'

E„=E„+P dE' V@ E —E'

is a slowly varying function of energy.
To find the wave function we substitute this value for

Z into 6@ @ and b@ @ into Eq. (38) to obtain

l&~) = ~(E) I&-) + l&~)&~z(E)

+P dE'IfR )(f~ IHI&-&/(E —E') (47)

where P indicates the principal part of any integration
with this term. Substituting this expression for b~ @ into
Eq. (42) shows that

If we choose the normalization of If„) and
I f~) appro-

priately, the elements V, D„, and D~ will be real and
thus

IHzllDlllg) I' = 4[vD. + (E —E.)D~]'
+D' ~'/4)/[(E E.)'—
+(I'R + I'~)'/4]

= DR[(qR+ s)'+ V']/(~'+ I) (53)

where qR = 2D„V/[D~(1 R+ I ~)], s = 2(E —E )/(I ~ +
I'R), and p = I"R/(I'R + I'~). Note that the usual
Fano profile obtains when I'~ ~ 0. Also, as the ra-
diative rate increases, q~ —+ 0 and p ~ 1, which gives
f(vP&+IIDI Ig&)12 = D&~ (i.e. , as the radiative rate increases
all of the eR'ects of the resonance disappear from the pho-
toionization cross section). This formula shows the q for
a resonance changes in the presence of radiation damp-
ing q„= ql"~/(I'R + I'&) (i.e. , the asymmetry parameter
with damping equals the asymmetry parameter w'ith no
damping times the branching ratio for autoionization).
The parameter p is equal to the branching ratio for pho-
torecombination and is zero when there is no radiation
damping. Note that without damping the photoioniza-
tion cross section goes to zero at c = —q due to the in-
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terference between direct and resonant ionization paths.
With radiation damping, p g 0 and the ionization cross
section does not go exactly to zero. It is well known that
damping destroys coherence and interference eKects and
therefore it should not be surprising that such a term is
present. The form of Eq. (53) agrees with Eq. (5.12) of
Ref. [6] when high-order effects from radiative decay are
neglected in their formula; but the form of Eq. (53) does
not agree with the form of Eq. (5a) of Ref. [15] because
they are describing a difFerent physical situation. Equa-
tion (53) can be derived with the formalism of Ref. [3]
by using two final radiative states. One state is weakly
radiatively coupled to the resonance and has an interfer-
ence type dipole matrix element and the second state is
strongly coupled to the resonance but not coupled to the
continuum.

A simple formula obtains when there is no direct exci-
tation to the continuum D~ ——0. For this case

which is a good approximation when the width of the
convolution function W is much larger than I"A+ I'R and
much smaller than the energy variation in T@.

B. Connection to projection-operator methods

The radiation damping potential of Eq. (9) may also
be derived using the projection operator technique intro-
duced by Feshbach [11].The electron continuum projec-
tion operator is given by P, the resonance state projec-
tion operator is given by Q, and following Gau and Hahn
[4] the photon continuum projection operator is given by
B. In keeping with a nonperturbative close-coupling the-
ory that includes a structured continuum, we subsume
Q space into P space. The coupled time-independent
Schrodinger equation is given by

D I ~/2~
l(@EIIDII&g&l =

(E E ), (q q ),/4
(54)

and

PH~Pgp + PDRgg ——E@p (58)

which is a Lorentzian of width I'A + I"R as expected.
Often the experimental resolution is insuKcient to resolve
this line and the important parameter is this function
convolved with the experimental resolution, giving

dER' E —E' + D

W(E„—E')D, I'~/(I ~ + I'~). (55)

RH~RQ~ + RDPQp = E@R, (59)

[PHg P + PDR(E —RH~ R) RDP —E]@p = 0,
(60)

where @ = v/rp + @~, H~ is the Hamiltonian for the
isolated atom, and D is the electron-photon interaction.
Substituting Eq. (59) into Eq. (58) one obtains

The radiation damping has reduced the height of the ex-
perimentally observed peak by the factor I'~/(I'~ + I'~),
which is the branching ratio for autoionization.

We can also utilize Eq. (22) to obtain the total prob-
ability for photorecombination

R(E') = 4~&{&~l&~l&p)

+ T+ + T+)
IRI A

=(E E.) +(r.+r„) /. +"+

which reduces in the pole approximation to

(PH~P —i7rPDRIQ„) {Q„IRDP—E)gp = 0, (61)

for a single bound state I@„). The generalization of the
second term in Eq. (61) to include multiple bound states
can be identified with the radiation damping potential of
Eq. (9).

where T@ = 47ri(f@IV~I f@) is the radiative recombina-
tion probability in the absence of the resonance and T~
contains cross terms between the resonance and the con-
tinuum photorecombination amplitudes and it contains
efFects of the resonance on the continuum. For most
systems where the treatment of this section is applica-
ble, the contributions from T~ have relatively small in-
tegrated contributions to the photorecombination proba-
bility. In general, TE, does not make a large contribution
due to the large number of final states that contribute
to the photorecombination probability, which electively
averages over the q and removes the simple interference
profile. Finally, for most applications, the experimental
scattering energy has an energy distribution W(E), so it
is necessary to obtain a convolved probability

(R) (E') = dER(E) W(E —E')

C. Connection to time-dependent methods

The radiation damping theory of Weisskopf and
Wigner [16] for transitions between bound states was ex-
tended by Davies and Seaton [3] to cover transitions &om
the continuum. In keeping with a nonperturbative close-
coupling theory, Davies and Seaton also assumed a struc-
tured continuum. The resulting time-dependent matrix
equations for the probability amplitudes were solved by
application of Laplace transforms. The connection be-
tween the complex potential method for radiation damp-
ing and the time-dependent approach is found in the
original work of Feshbach [ll]. The formal solution of
Eq. (61) is given by

= v)+ + A(E —PH P) PDRI1/J„),

where

W(E„—E') + T~,I'A + I'R (57) (PH~P —E)$0+ = 0 (63)
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and

A = iver—(Q„~RDP(Q~) . (64)

Substituting Eq. (62) into Eq. (64), the resulting linear
equation for A can be solved to yield

In this section, we will focus on the case where the outer
electron experiences a long-range potential of Z/—r.

The basic idea in MQDT is that the wave function
when an electron leaves the core region can be repre-
sented as a superposition of regular and irregular func-
tions

where

A = k—r(l + Z) '(Q„~RDP~@p ), (65)
I&i) = ).IC' ) (A' ~.' - g' K") (74)

Z = iver(@„~RDP(E —PHgP) PDR~@„) . (66) or incoming and. outgoing functions

The multichannel generalization of Eq. (66) can be iden-
tified with the Z matrix introduced by Davies and Seaton
W.

From the asymptotic behavior of Eq. (62), the transi-
tion matrix is given by

I&, ) = 5 .1@~')2,' ~~'~ —f,+'(8'). i]/i~2

l~, ) =P I+, )(X, ~„-~;.8, ,)'/~~ (76)

T = Tp + A(@p ~PDR~@„), (67)

(68)

where

2
sin(kr + h) .

The resulting scattering matrix is given by

So ——e"' . (70)

Using the relationship

where To is the transition matrix describing the asymp-
totic behavior of @p+. For the simple case of elastic scat-
tering of spinless systems

The important conceptual difference between Eqs. (74)—
(76) and Eqs. (10) and (11) is that the summation over
channels in Eqs. (10) and (ll) is only over open chan-
nels and S is the physical S matrix while the summation
in Eqs. (74)—(76) is over both open and closed channels.
The wave functions in Eqs. (74)—(76) are not physical be-
cause the radial functions in the closed channels diverge
as r —+ oo. Because we have not applied the correct
boundary condition at r ~ oo, the unphysical K and
8 matrices in Eqs. (74)—(76) do not have a strong en-
ergy dependence near thresholds. The physical K and
S matrices can be obtained by superposing the unphys-
ical wave functions to eliminate the divergence in the
closed channels. This superposition can be formally ac-
complished analytically (because the asymptotic forms of
the Coulomb functions are known) to obtain

S = 1 —2miT (71) K = K —K,(K„+tanP, ) K, (77)

S = Sp(1 —2~ 'R(1+ Z) 'R ), (72)

and substituting Eq. (67) for T yields the scattering ma-
trix including radiation damping

S = 8 —8,(8„~exp 2iP, ) '8,
= (1+ iK..)/(1 —iK..), (78)

where

'8 = (vP@iPDRig„) . (73)

The multichannel genralizations of Eqs. (72) and (73)
may be identi6ed with the '8 and S matrices of Davies
and Seaton.

where P, = 7r(v, E,) with v—, the effective quantum num-

ber v, = Z/+2(E, —E) and the unphysical K matrix
has been partitioned into blocks according to whether
the channel is open or closed

~f
K~~ K~,

b~

(K, K„) '

D. MQDT formulation of photorecombination

The scattering formulation of radiation damping has
many interesting features. In this section, we explore
some of the properties and discuss some of the features of
this treatment when it is used in conjunction with MQDT
[9]. The final result obtained by applying MQDT is iden-
tical to that obtained when solving for the wave function
using other methods. However, additional insight may
be obtained by dissecting the dynamics with this tool.

a similar partition holds for the 8 matrix. When there
is radiation damping present the K matrix. is complex
symmetric.

For most dynamical situations, the radiation damping
gives a perturbative change to the unphysical K matrix.
This is because all channels are treated. as if they were
open and the only type of damping present has the same
form as radiative recombination. "Radiative recombina-
tion" in closed channels becomes dielectronic recombina-
tion when the unphysical wave functions are superposed
to obtain the physical functions. One exception is the
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I", = f; cos vrp, ; —g; sin7rp, ;,
G; = f, sinn p, + g, cos vr p;,

(8o)

(81)

where the p,. have been chosen so the real diagonal ele-
ments of the K matrix have been set to zero; the asymp-
totic form of the wave function is

(82)

type-I transitions where the core electrons emit the pho-
ton; a method for including this type of transition is de-
scribed in Sec. VI B. The other exception is when the un-
physical K matrix itself has a pole; this efFect is accounted
for nonperturbatively using the B-matrix method as de-
scribed in Sec. VIA.

We would like to examine in detail the formulas that
apply when there are two coupled channels with one
channel being closed. To make the derivation simpler,
we utilize shifted Coulomb functions

1 —IS»l' = I'~1'~/[(E —E.)'+ I ~/4] (87)

which will give horrible results when I'~ & I'~.
In Sec. VI C, we describe a method for perturbatively

including the radiation damping potential. We empha-
size here that for the case in Sec. VIC, the damping
is given as a perturbation on the unphysical K matrix
and wave function, not as a perturbation on the physi-
cal wave function. By including the perturbation in the
unphysical K matrix and wave functions, the dominant
nonperturbative efFects on the physical parameters are
accounted for.

on the unphysical K matrix (and 8 matrix) and wave
function, the damping has a nonperturbative efFect on
the physical S matrix and wave function. Note that if we
used the radiation damping potential as a perturbation
on the physical wave function and S matrix we would
obtain

with Re(K~&. ) = 0. We will take channel 1 as open and 2

as closed. Jn order to simplify the treatment still further
we ignore the radiation damping from the open channel
Im(Kii) =Im(Ki2) = 0. The physical K matrix is

Kii ———Ki2/[tan(p2 + m p2) + ir22],

where +22 ——Im(K22). We wish to examine the phys-
ical S matrix near the resonance p2 + 7rp2 ——n7r If.
we expand tan(P2 + 7rp2) into terms linear in the en-

ergy difFerence from the resonance [i.e. , tan(p2 + ~p2)
(E —E )dP2/dE = (E —E,)~v /Z2] we obtain the fol-
lowing expression for the physical 8 matrix:

7f V
Sii - (E —E„) + iK2g

7l P
(E —E,) + i+22 + iK, 2 . (84)

The photoemission probability is given by

1 —
l
Sii l' = 4(r22Z'/~vs) (Ki22Z'/~v')/[(E —E,)'

+(v22Z /harv + Ki2Z /harv ) ] . (85)

Now we note that using Fermi's golden rule v22Z2/mvs is
the radiative half-width of the state n and K2i2Z /harv is
the autoionization half-width of the state n; this identi6-
cation is obtained by converting the energy normalization
of channel 2 to normalization per unit volume. (Note that
the radiative width is proportional to ~22 while the au-
toionization width is proportional to K12. This indicates
that the imaginary part of the K matrix can be much
smaller than the real part of the K matrix and still have
a dominant effect when the channels are closed. ) This
identification gives

1 —lS»I' = I'~l'~/[(E —E-)'+ (I'~+ I'~)'/4] (86)

which should be compared to the first term of Eq. (56).
We use this derivation to emphasize that although the ra-
diation damping potential only has a perturbative efFect

VI. NUMEB. ICAI DESCB.IPTION
OF RADIATION DAMPINC

In this section, we focus on the types of analytic and
computational methods that are needed for practical im-
plementation of radiation damping in atomic scattering
problems. These methods have already proven accurate
for recombination in Li-like Ar, He-like 0, and H-like Fe

We explore the implications for the calculation of
the scattering wave function when radiation damping is
present. By exploring the general aspects of specific situ-
ations, we can identify useful approximations that should
hold for all practical applications. A specific purpose of
this section is to identify approximations that include the
nonperturbative efFects due to radiation damping.

In radiation damping, type-I transitions are identified
with the radiative decay of core states (i.e. , the inverse
of isolated core excitations). An example of this de-
cay is 18&8 ~ 2pnE' ~ 18n'E' + ~ in electron scat-
tering from hydrogenlike ions. Type-II transitions in-
volve the radiative decay of the "outer electron. " An
example of this in electron scattering IIIom Li-like ions
is 1s 2s&8 ~ 1s 2pnE' —+ 18 2pn"8" + ~, where the
n"E"electron is bound with respect to the 1s 2s thresh-
old. . For the purpose of B-matrix calculations we dis-
tinguish type-II transitions into two subgroups: type IIS
and type IIL. In the type-IIS transitions, the final state
is small and fits inside the B-matrix volume (e.g. , n" = 2
and maybe n" = 3 in the I,i-like example above). In the
type-IIL transitions, the 6nal state is large and does not
6t inside the B-matrix volume.

A. B.adiatian daxnping in the H-xnatrix; xnethad

Multielectron atomic wave functions can be obtained
only by approximate or numerical methods. The B-
matrix method has proven to be a very useful tool for
obtaining electronic scattering functions. In this section,
we derive formulas for the variational estimate [17—19]
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of the R matrix when the Hamiltonian is not Hermitian.
The Wigner-Eisenbud B matrix [20,21] can be obtained
from the variational R matrix by restricting all of the
basis functions to have zero derivative on the R-matrix
boundary. More importantly, we rewrite the expression
for the R matrix in a form that can be efBciently solved
on a computer.

There are special solutions of the Schrodinger equation
at energy E that have a constant logarithmic derivative
over a closed surface [17]. These special solutions, which
we will write as g@p, are de fined by (E —H)v)@~ ——0 and
(Bg@p/On+ bp@@p)l,„,i~„= 0, where Bg@p/On is the
normal derivative at the surface. To find a variational
estimate for bp, we need a trial wave function @&&
g~p + h~p, where h@p is a small function compared to
@@@.Using the properties of g@p it is possible to show
that

bp dS Ep Ep: 2 dU ~p E H ~p

dsg@pB@@p/Bn+ O(gp) (88)

where jdV means integration over the volume con-
tained inside the surface and J dS means integration
over the surface. To show this relationship, substitute
v)&&

——@~@+ b@p into Eq. (88) and discard all terms
that contain b&p. An important point to note is that

(@&&)*does not appear in the variational expression and

that H~ is not used in any step of the derivation. This
means that Eq. (88) is a variational estimate of bp(E)
even when H is not Herinitian. Equation (88) is the
usual starting point for the variational estimates of the
R matrix, but now the Hamiltonian is not restricted to
be Hermitian. The usual method for using Eq. (88) is to
expand the trial function in a basis set with linear coef-
ficients g&&

——P y C p(E). The variational B-matrix
equations do not restrict the logarithmic derivative of the
y basis functions at the surface; however, in the Wigner-
Eisenbud treatment, the y must have zero derivative at
the boundary. The value of the basis functions at the
surface is given by y~l, „,r«, ——g. l@~)y~ . The y~. are
important parameters in the R-matrix equations, as will
be seen below.

Taking the derivative of Eq. (88) with respect to the
C p results in a generalized eigenvalue matrix equation
for the C p and the eigenvalues bp (E). The bp(E) are the
eigenvalues of the inverse of the B matrix. The g~p (and
the generalized eigenvalue equations) are somewhat dif-
ficult to work with compared to other solutions. Except
for normalization, the R matrix completely describes the
behavior of the wave function since it is the inverse of the
logarithmic derivative matrix. We will utilize solutions
of the Schrodinger equation that have the form [18,19]

(89)

The @~& can be constructed from the basis functions y,
y C ~(E). The variational estimate of the R

matrix ls

&~' (E) = —
2 Qy~-»- [(E —H) ']-,

a,a'
(90)

where the H matrix is complex symmetric and given by

H = (y lHly ) + — dSy By /Bn .
2,

The coefficients of the expansion of the trial function QI;.
are important for calculation of photoionization and par-
tial photorecombination cross sections and are given by

C-~(E) = —-)»- [(E —») 'l--. (92)

To this point, all of the equations in this section are the
same as those used in standard atomic calculations. How-
ever, the Hamiltonian is complex symmetric and there-
fore not Hermitian. The resulting R matrix is also coln-
plex symmetric. The only new term in H arises from the
radiation damping potential so we will focus on this term.
It is only necessary to find the matrix elements of the ra-
diation damping potential (y lVRly ) in order to include
this potential in the R-matrix equations. The radiation
damping potential is a spherically symmetric operator so
it only connects functions with the same J and MJ. In
IS coupling, this potential. conserves I, MI„S, and M~
as well. In order to derive the factors in the Inatrix ele-
ments of the radiation damping potential we expand the
symbol denoting the basis function y„= ~aLSMI, Mq)
and the photon decay state lg ) = lnL S Ml'Mg)
With these symbols, the matrix elements of the radia-
tion damping potential are

(y-I V~ly- )

x ) ( l)q(aLSML, M—glPqlnL" 8"ML MP)
q, M,",M,".

~ (nL"S"M,"M,"lP,lo'LSM, M, ).

2i
(y-IV~ly- ) = —

3,,(2L

x Q(E —E„)bye-(aLSllV'llnL" S")

x(a' Lsvll' nllL" s), I'9

where we have used sum rules for 3-j symbols and t, bc
definition of the momentum operator for the last step.
The matrix elements for jj-coupled calculations can be

The Pq do not operate on the spins, therefore the spin
part of the matrix element reduces to bM,.M bye . This
matrix element can be expressed as reduced matrix. el-
ements and simple factors by using the Wigner-Kckart
theorem
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obtained &om a similar derivation.
The matrix elements of the radiation damping poten-

tial cause problems in the usual formulation of the B-
matrix equations. The number of basis functions in an
R-matrix equation can be very large and thus the ma-
trix inversion in Eq. (90) can be computationally very
slow. The usual method for avoiding this bottleneck is to
diagonalize the H matrix. When the radiation damping
potential is not present, the H matrix does not depend
on energy and is real symmetric; therefore, the eigenval-
ues and eigenvectors of H greatly simplify Eq. (90). This
is accompj. ished as

1(
R,, (E) = —— ) y, yg /(E —E ) ~

)
y.-y'- (~ ')- (~ll&lln)

aa'nn'

x (~'Ilail ln'&Il:(E —E-)(E —E- )] (101)

If there were no radiation damping present, the elements

for IS coupling (change I ~ J for jj coupling). Note
that the only inversion in Eq. (99) that is nontrivial is

, which only has dimension equal to the number of
decay states (usually ( 5). The R matrix is equal to

).Haa'Ua'n = Ua~En (95)
d,'. = --):y'-(~ll&lln)/(E —E-) (102)

and the new basis functions are

y = y U (96)

would be the reduced dipole matrix elements connecting
the state l@„& to the state lg@~& defined by Eq. (89) and
the B matrix with no radiation damping is given by

The R matrix is R...(E) = ——) y, y, /(E —E ). (103)
1

»~'(E) = —
2 ) y.-y~'-I(E' —E-) (97)

and the coefficients of the y needed to construct the @@~
function are given by

1C, = y, /(E———E).
2

(98)

= A. ' —A 'A(B '+ WA 'I) iWA i. (99)

Using the definitions for A, B, X, and R' gives an im-
portant new matrix

—= (B + WA A)„„
3cs(2L+ 1)
2i(E —E„)
+ ) .(~ll&lln&(~ll&lln'&/(E —E-) (100)

The radiation damping potential is complex symmetric
and energy dependent, which does not allow such a sim-
ple expression for the R matrix. However, it is impor-
tant to note that the radiation damping potential is of
very low rank compared to the rank of H. When the
methods of Secs. VIB and VIC are utilized the rank
of the radiation potential is usually between 0 and 5
(rank 0 means all of the radiation damping potential can
be completely incorporated into the close-coupling equa-
tions using the methods af Secs. VIB and VI C). The
low rank of V~ can be used to find an expression for the
R matrix. that is computationally efticient. For this pur-
pose, we assume that the atomic part of the Hamiltonian
has been diagonalized as if no radiation damping were
present. The matrix E—H has the form A+X BTV, where
A = (E —E )b, I „= (nllVlln), W„
B „=8„„2i(E—E )/3c (2L + 1) in IS coupling, and
B„„=8„„2i(E—E )/3c (2J+ 1) in jj coupling. Ma-
trices of the form A+ XBR can be inverted as

The R matrix with radiation damping can be given very
simply in terms of the p matrix and these parameters
when no radiation damping is present

R,, (E) = R...(E)+2) d, „do,„,(p ')„„ (104)

This is the main result of this section, which shows
that the R-matrix method can be quickly and eKciently
adapted to include radiation damping. For photoioniza-
tion calculations the R, and d. are already calculated
in standard R-matrix programs; the only term of Eq.
(104) that needs to be added to the standard code is the
calculation of the complex matrix p . In general this
is a very small matrix that does not add much time to
the regular close-coupling calculations. The coeKcients
of the basis functions are

x (n I I
V

I

In' ) (E E ) (105)

We have demonstrated in this section how the
R-matrix method can be adapted to include radia-
tion damping in the close-coupling equations. The
modifications to the usual programs are not exten-
sive. However, there are two classes of radiative
decay that would be impossible to include using
this method. The first type is the decay of high
Rydberg states by photon emission from the core (called
type-I transitions, e.g. , 2pnE ~ 18n'E + Aced, which oc-
curs in scattering from hydrogenlike ions). The second
type comes &om high Rydberg states decaying to
bound Rydberg states, which we call type-IIL (e.g. ,
18 2@111 —+ 18 2p7E + he@, which occurs in scattering
fram Li-like Ar). The reason these types of decays can-
not be included in an R-matrix treatment is because the
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potential needs to be contained inside the B-matrix vol-
ume; these Rydberg states would necessitate an exces-
sively large volume, which defeats the purpose of the B-
matrix method.

B. Radiative decay of core states

(E —H, —E, )F~, (r)

= -3,;).1(c. I&, l~.)l'(E. -E.)
A

x(E —H, —E,)F~, /(E, —E,). (1o8)

The type-I transitions are the most important source
of radiative decay in the near neutral atoms and near the
Rydberg series limit. This type of decay is characterized
by the decay of the core state, which leaves the outer elec-
tron's orbital almost unchanged. The prototype example
of this type of decay is 18el ~ 2pnE' ~ lsn'E' + ~ in
scattering of electrons &om hydrogenlike ions. This type
of interaction was treated by Bell and Seaton [22]; our
results reduce to theirs for long-range Coulomb interac-
tions.

We wish to derive the equation governing the electronic
wave function in the outer region of a multichannel scat-
tering problem. To keep the derivation simple, we ex-
plicitly derive the results for when the channels are not
coupled; the change to the close-coupling equations are
identical when there is coupling between the channels.
We do not assume any form for the potential outside of
the core region so this method is applicable to scattering
&om ions with [23] and without electric fields.

We will let the decay state In) be represented by
In) = I4,)F„,(r) (the decay states also include contin-
uum states that have total energy less than E) and the
scattering function by I@@)= I@, )F@,, (r). If we project
Eq. (8) with (4

I

we obtain the difFerential equation

(E —H —E, )F@, (r)

= —
3,, ).I(@"l&i I@.) I'(E —E-)F-(r) (F-IF~")

The term in square brackets is i/—2 times the radiative
decay rate from core state IC, ) to state IC',). We obtain
the following expression for the other terms on the right-
hand side of Eq. (108):

(E —H, —E,)F~, /(E, —E,)

v. —v. 5=
I
1+o(r., /~)+ I

F~. = F~., (1o9)E.—E. )

I' I

(E —H, —E, )F@, = —i 'F@, ,
2

(11o)

where I' is the total photodecay rate of the core state
I4, ). The close-coupling equation governing type-I tran-
sitions (i.e. , photodecay af a core state) is obtained by
replacing the core energy

E, —+ E —iI', /2.

This is an extremely accurate approximation since the
difFerence in core energies is much larger than the change
in potential and the radiative decay rate is much smaller
than the frequency of the emitted photon. The derivation
of the asymptotic differential equations when the chan-
nels are coupled involves the same approximations as Eq.
(109); the only change is that the difference in potentials
on the right-hand side of this equation becomes a diKer-
ence in multichannel potentials times multichannel wave
functions. When we include all possible decay paths for
the core, the equation governing type-I transitions is

= —
3,.) .I(@"l&ilc'. ) I'(E —H. —«)

fL)g

xF„,(r)(F„,IF~, ), (1o6)

where E is the energy of the core state and H
(4, IHI4, ). We note that an approximate expression can
be obtained for the right-hand side of Eq. (106) by using
closure

) F„.(r)(F„,IF~, ) = F~, (r). (1o7)

This approximate expression is actually extremely good
because the sum over n also includes an integration over
continuum states to energy E —E„where the overlap
in Eq. (107) is extremely small. The approximation in
Eq. (107) is much smaller than most other numerical ap-
proximations in atomic calculations and can therefore be
considered an equivalence. Substituting this expression
into Eq. (106) gives

This substitution holds for coupled channels and is in-
dependent of the type of long-range field acting on the
electron. This is the main result of this section.

We would like to point out a.complication that arises in
applying this equation when calculating photoionization
or photorecombination cross sections. In deriving this
substitution we used closure, summing over bound states
and integrating over continuum states. When E & E„
most of the overlap comes from bound states and when
E ) E ~ most of the overlap comes from continuum
states. This introduces complications in calculating pho-
toionization and photorecombination cross sections since
there are some cases when a photon is emitted but the
electron can still escape the ion or the atom. The simplest
way to account for this efFect is to make the substitution
E, + E„—il, /2 when E & E, and not make the
substitution when E ) E . This introduces errors when
IE —E,

I
& I, . When E & E, , the approximation gives

a photoionization (recombination) crass section that is
too small (large) and when E ) E, this approxima-
tion gives a photoionization (recombination) cross sec-
tion that is too large (small). When the calculated cross
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p. (E) = Z7r//2(E. —E) +i Z7r/[2(E. , —E)]'~'
2

= 7rv+i 7rv /Z .
2

(112)

When this form of P, is substituted into Eq. (78) we
find the physical S matrix to be

section is convolved with a weight function, the errors
from this approximation go to zero very rapidly as the
width of the convolution function exceeds I', .

In the MQDT formulation discussed in Sec. VD, re-
placing E, with E,~

—iI', /2 when E ( E,~ changes the
asymptotic boundary conditions in the closed channels.
This change entails replacing P, I (E) = Z7r//2(E' —E)
with P, I (E) = Za//2(E, ~

—iI' i/2 —E); the branch of
the square root needs to be chosed such that Re(p, ~) ) 0.
When the energy is several widths below threshold

ment for the unphysical K matrix or for the asymptotic
wave function. We can obtain accurate results with either
method because these types of transitions only become
important when the ionic charge becomes large and thus
the K matrix is small. As discussed in Sec. V D, treat-
ing the radiation damping potential as a perturbation
on the K matrix of the unphysical wave function gives
much more accurate results than treating the radiation
damping potential as a perturbation on the physical wave
function.

One way to obtain the K matrix including type-IIL
transitions is to use a Born-type perturbation theory

(114)

where the K, is the K matrix excluding type-IIL transi-
tions, the potential U is the radiation damping potential
for type-IIL transitions, and the Ig ) have the form

S =8 —8 [8„—G(v)e * "] '8, ,

where G(v, I) = exp(vrl', v, , /Z ). This is the formula
obtained by Bell and Seaton [22].

There are two possible methods for numerically im-
plementing this type of radiation damping. The first
method calculates the damping through the use of un-
physical scattering functions Eqs. (74)—(76) without in-
cluding any effect from the type-I radiation damping.
When the closed channels are eliminated, use P, (E)
Z7r//2(E, —iI', /2 —E with the branch Re(P ) ) 0 in
the MQDT equations. This treatment is very similar in
spirit to the usual use of MQDT in physics of complicated
atoms (for example, see Ref. [17]). In the usual calcula-
tions the unphysical scattering parameters are obtained
by matching the R-matrix solutions to the outer func-
tions using the theoretical thresholds; however, in the
MQDT part of the calculation the experimental thresh-
olds are used. The second method includes the final de-
cay state in the R-matrix part of the calculation and
matches to outer solutions of the close-coupling equa-
tions with the complex core energies. (For high n it is a
good approximation to neglect the type-I radiative decay
in the R-matrix region and match to outer solutions of
the close-coupling equations with the complex core ener-
gies. ) If it is computationally feasible, the first method
should be preferred.

C. Decay of R.ydberg state to B.ydberg state

The dominant mode of radiative decay depends on the
charge on the ion and the principal quantum number of
the Rydberg state. For near neutral atoms and. near the
series limit, type-I transitions dominate the decay. As
the charge on the ion increases, type-II transitions be-
come more important and can be more important than
the type-I transitions. Type-II transitions to small final
states (type IIS) can be included in B-matrix calculations
described in Sec. VIA. Type-II transitions to large final
states (type IIL) cannot be included in B-matrix calcu-
lations but can be included using a perturbative treat-

where the sum extends over both closed and open chan-
nels. The Ig ) diverge in the closed channels; however,
the integrals in Eq. (114) are well defined because the
potential V converges exponentially to zero with distance
faster than the Ig ) diverge.

We do not evaluate Eq. (114) exactly because of the
complications of evaluating that sort of multichannel ma-
trix element. For most applications, the I@ ) and the Ig )
states in the potential V are multichannel wave functions.
However, the channel couplings are usually very small
and the change in quantum defect as the total JLSII of
the wave function changes is also very small for highly
charged ions. We can obtain a good approximation to
the correction of the K matrix by using a configuration
average type approach

where 8 (E ) is the orbital angular momentum of the
outer electron in channel j (for state n), z„= —Z2/2(n-
p) where p is the quantum def'ect, f~ is the energy nor-
malized continuum function, and E is the volume nor-
malized radial function of the outer electron. This ex-
pression is for LS coupling; in jj coupling, E would need
to be replaced by the total angular momentum of the
outer electron. Both Ii and f~ are calculated as distorted
waves in a static Hartree potential. Essentially identi-
cal results are obtained when I" and f~ are Coulomb
waves for all space and p = O. This approximation has
been tested [8] in scattering from Ari5+ by increasing
the size of the R-matrix volume and including more de-
cay states in the R-matrix calculation and including less
states through the approximation of Eq. (114). For this
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ion, we obtained errors at the percent level when using
Eqs. (114) and (116) for states n & 3 and including the
28, 2s2p, and 2p decay states in the B-matrix calcula-
tion.

VII. I3ISCUSSION

The majority of this paper addresses the ramifications
and positive aspects of describing radiation damping us-
ing an optical potential and the B-matrix method to
describe radiation damping. In order to give a realis-
tic assessment of the impact this method may have we
would like to address some of the "liabilities" of using
this method.

The power of using this method is that existing B-
matrix programs can be modified in a relatively straight-
forward manner to incorporate radiation damping. These
codes have been successful in describing very complicated
atomic scattering processes. A possible drawback of the
method is that it may be necessary to include a large
number of decay states in the B-matrix equations. As
the number of decay states increases the matrix inver-
sion in Eq. (104) becomes increasingly time consuming.
This may make the practical solution of the B-matrix
equations too slow in some cases. Although this is a pos-
sibility, it does not seem likely that the number of decay
channels will be large due to the approximate methods
discussed in Secs. VIB and VI C.

Another difEculty of the method is an inherent problem
in all B-matrix methods. The only large-scale practical
method for obtaining convolved. cross sections is to cal-
culate the infinite resolution cross section on an energy
mesh fine enough to trace out all of the relevant reso-
nances. In practice, this may mean an extremely fine
mesh and a huge number of mesh points. (This problem
is not as acute for electron scattering cross sections as it
is for photoionization and photorecombination cross sec-
tions. ) This is not a problem in perturbative calculations

since the energies, widths, and branching ratios for each
resonance are calculated directly, which means convolved
cross sections can be simply obtained by analytically in-
tegrating Lorentzians with the weight functions. We note
that in certain circumstances, especially electron scatter-
ing and photoionization cross sections, this liability can
be a strength since the B-matrix method easily allows
all of the resonances and continua to interact with each
other. Also, any interference phenomena are automati-
cally included in the calculation.

In this paper we have described a method for including
radiation damping in atomic scattering calculations. The
successful application of this method has resulted from
a combination of numerical, analytical, and perturbative
techniques applied to the solutions of atomic Hamiltoni-
ans with the nonlocal radiation damping potential. In
this paper we have not presented any applications of this
method to any specific problems. However, the method
has successfully described photorecombination cross sec-
tions in Ar + and model calculations on photoionization
of Fe + [8]. We will report further applications of this
method for electron impact excitation cross sections in
later papers.

We have formulated the problem and the solution of
radiation damping in a way that could be easily incorpo-
rated within standard atomic scattering programs with-
out much effort. This should allow the routine inclusion
of radiation damping effects into atomic scattering cal-
culations.
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