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We present results of calculations for e+ Ha" scattering in the energy regime below the first
excited state for resonance symmetries ¥ and II. We employ three distinct and independent methods:
close-coupling linear algebraic, effective optical potential linear algebraic, and R matrix. We report
extended calculations on the 'II, resonance, important to dissociative recombination. We show
binding of the ', state resonance between 2.6 and 2.7 bohrs. Our '3, state results agree very well
with previous calculations and reside a factor of 2 below a recent experiment.
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I. INTRODUCTION

In an earlier paper [1], we investigated the II reso-
nances for electron scattering from the hydrogen molec-
ular ion Hp* below the first excited state (o,). We dis-
covered interesting behavior of the lifetimes of the com-
posite autoionizing states as a function of internuclear
separation R. This behavior demonstrated the profound
effects of channel coupling and interference of different
resonant series. In addition, we compared three sophisti-
cated computational methods in order to ascertain their
efficacy, accuracy, and suitability for this case of strong
channel coupling. The comparison demonstrated that all
three techniques gave resonance parameters in very close
agreement over a wide range of scattering conditions. We
now extend these procedures to the ¥ resonances by per-
forming cross comparisons among the methods and by
investigating the behavior of the resonance parameters
as a function of R and various approximations. These
parameters have important applications in a variety of
processes [2,3] including dissociative recombination, dis-
sociative photoionization, and associative ionization as
well as to basic electron-molecule collisions [4-10]. In-
deed, a recent experiment [11] predicts a ¥, resonant
width far larger than obtained in previous theoretical
treatments. In addition, such resonant states play im-
portant roles in the emerging areas of optimal coher-
ent control [12] and molecules in intense electromagnetic
fields [13]. Since a detailed history, complete with ex-
tensive citations, together with a thorough description of
the methods appears in a prior paper [1], we shall con-
centrate principally on the ¥ states and, as a matter of
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completeness, present some additional IT results. We be-
gin with a short sketch of the basic formalism and of the
computational procedures (Sec. II) and then discuss the
results for the various resonant states (Sec. III).

II. FORMALISM

We employ three distinct techniques to explore elec-
tron collisions with H,*™: the R matrix (RM), the
close-coupling linear algebraic (CCLA), and the effec-
tive optical-potential linear algebraic (EOLA) methods.
These methods have been successfully applied to a wide
variety of molecular systems and processes [6,14]. We
have demonstrated [1] for the II resonances that they
give remarkably accurate and consistent results for such
sensitive parameters as the widths. In this section, we
give only a schematic presentation of the techniques
since extensive expositions appear elsewhere [1,4,6,10,14].
Atomic units apply throughout the paper unless other-
wise noted.

The time-independent Schrodinger equation that de-
scribes the interaction of a continuum electron with the
single-electron target molecule in the adiabatic-nuclei ap-
proximation has the form

H’I/J(I,Z) = E¢'(1,2), (1)

H:H0+Te+‘/ee+‘/en’ (2)

where V.. is the interaction between the two electrons,
Ver the interaction of an electron with the nuclear charge,
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and T, the kinetic energy of the colliding electron. The
term H represents the Hamiltonian for the Ho* molecule
with eigensolutions of the form

Hoﬁon(l) = EnQOn(l)' (3)

At the equilibrium separation of 2.0 bohrs, the bound
states have the following order: 1oy, 1oy, 171';&, 204, 204,
17r3:, ..., while at larger R values, some of the higher o
states may intrude. We expand the total system wave
function as

$(1,2) = 3 Alpn(DFa@)] + Y xa(1,2)da  (4)

such that
(‘pnIFn’) = Oa (5)

where A represents an operator that forces the bound
(¢n) and the continuum (F,) solutions to be properly
antisymmetric. The orthogonality constraint is imposed
for all n’ in the RM and EOLA methods and for all n’ # n
in the CCLA method. The essential difference between
the two orthogonality constraints is the presence of ad-
ditional one-electron terms in the CCLA approach. The
first term (P space) represents the summation over a se-
lected set of target states, usually those containing the
desired scattering information, while the second term (Q
space) appears for completeness. The L? expressions X,
termed correlation functions, must be introduced to re-
lax the strong orthogonality constraint of Eq. (5). In ad-
dition, they are also capable of introducing correlation-
polarization effects missing from P space. In all three
approaches, we follow the general RM strategy and di-
vide coordinate space into two regions. In the inner zone
(r < a), we include the direct, the exchange, and the
correlation effects through a solution of Eq. (1), subject
to RM boundary conditions at » = a. To incorporate
these boundary conditions directly into the Hamiltonian,
we introduce a Bloch operator [15] £ defined by

£= Sl = o) |5 = 5

]<¢j|, (6)

where |¢;) is a channel function and b is the value of
the logarithmic derivative on the boundary (r = a). The
resulting Schrodinger equation

(H+ £ - EYY(1,2) = LyY(1,2) (7)

then becomes Hermitian within the finite configuration
space. In the outer zone (r > a), we neglect the nonlocal
effects, which are generally short ranged, and extend the
solution into the asymptotic regime by means of standard
propagation techniques. Matching to known asymptotic
forms determines the scattering parameters such as T
matrices, cross sections, and eigenphase sums.

The two linear algebraic methods differ only in their
partitioning of PQ space. We invoke the usual Feshbach
decomposition [16] in terms of the projection operators

P and @ such that

Y =Py+Qy (8)
to derive the following set of coupled equations:

(Hpp + Lpp — E)Py + HpgQy = Lpp P, (9)
(Hqoq — E)Q¢ + HopPy = 0. (10)

Since @ space contains exclusively short-range terms that
vanish at the boundary, the Bloch operator Lgg may be
dropped. Formally eliminating Qv gives

(Hpp + Lpp + Vopt )Py = Lppp, (11)

where
Vopt = Hpq(Hoq — E) 'Hgp (12)

represents the generalized multichannel optical potential.
In addition, we employ the integral equations form of the
Schrodinger equation

Py =gppLppPy (13)
with the Green’s function defined formally by
(Hpp + Lpp + Vopt)gpp = P. (14)

In the close-coupling version (CCLA), all states (open
and closed) necessary to converge the scattering quanti-
ties reside in the first term in Eq. (4). The correlation
functions then consist of those products of target states
necessary to relax the strong orthogonality constraint.
The optical potential, which is employed in the EOLA
method, is calculated using the techniques of quantum
chemistry. This enables us to calculate the needed Hgq
bound-bound matrix elements analytically and to con-
struct the optical potential by solving the (often) large
set of algebraic equations implied by Eq. (12) via itera-
tive techniques. If dictated by the physical problem un-
der consideration, we are able to include correlation and
polarization effects requiring many thousands of config-
urations. The optical potential may then be represented
as a separable expansion in the short-range correlation
functions of Eq. (4). The resultant P-space equations
are only marginally more complex than those of stan-
dard close-coupling theory [10].

We reduce the three-dimensional, P-space, close-
coupling equations to simpler form by invoking a single-
center expansion of the bound and continuum orbitals
about the molecular midpoint in terms of spherical har-
monics Y, as

‘Pn(r) = Z(ﬁnlm(r)yvlm(f)’ (15)

Fn(r) = Z .fnlm(T))Ihn(i;)’ (16)
1

where n, [, and m designate a particular electronic state,
a channel angular momentum, and the orbital symme-
try, respectively. The symmetry of the diatomic im-
plies that the m quantum numbers remain uncoupled
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and label the states as o(m = 0), n#(m = 1), and
§(m = 2). The bound-state functions ¢, (r) come from a
multicenter electronic-structure calculation for Hy* using
the Gaussian-type orbital (GTO) basis of Ref. [1]. The
bound-state energies from this 94-function basis show
four-significant-figure agreement with the analytical val-
ues of Bates, Ledsham, and Stewart [17]. A detailed com-
parison of the two approaches appears in Table II of Ref.
[1]. Multiplying each side of Eq. (15) by a spherical har-
monic and integrating over an angle produces the radial
single-center expansion coefficients ¢,;,, for each target
electronic state. Substituting Eq. (4) into Eq. (13), us-
ing the expansions in Egs. (15) and (16), and integrating
over all target and angular-continuum coordinates con-
vert Eq. (13) into a radial set of coupled integral equa-
tions of the general form

falr) = GL(r)oas = 3 / GO, (r|r') Vs (') fo (),
B

(17)

where « represents the channel label (n,l,m), Gl the
regular Coulomb wave function, and G the channel
Coulomb radial Green’s function satisfying

1 d? lo(la +1
<_§W - (T—2+) +1/r+ ki) GL, (r|r'") = 8(r — '),

(18)

where the channel energy k2 = 2(E — ¢,) with E, the
total energy, and €., a bound-state energy of Hp*. Al-
though we have employed a local potential in Eq. (17)
for illustrative and pedagogical purposes, the formalism
remains equally valid for nonlocal contributions [10] such
as exchange and correlation. The regular Gj(r) and ir-
regular G?(r) Coulomb functions satisfy the above equa-
tion (18) with the right-hand side set to zero. The sums
range over an infinite number of channels; however, to
obtain a tractable set of equations, we invoke the ap-
proximation close-coupling (CC), truncating the number
channels at a finite value. The total number of channels
comnsists of the product of the number of electronic states
n, and the number of partial waves n; included within
each state [n. = n,n;]. Both quantities must be sys-
tematically increased until collisional properties such as
the eigenphase sum become converged to within a given
tolerance. Since we employ a sufficiently large fixed n;
for all calculations, the symbol n,CCLA uniquely des-
ignates the CC expansion. We then convert this set of
coupled integral equations to matrix form by introducing
a discrete radial mesh of n, Gauss-Legendre quadrature
points and weights [(r;,w;) | ¢ = 1,n,]. The distribution
of the points typically has concentrations in the vicinity
of the nucleus R, = R/2. We divide the overall inner
radial region [0,a] into N subzones and distribute within
each a portion of the points. We designate a mesh as

[n1,n2,...,nN/To,T1, .., FN—1,0a], (19)

with the ¢th zone having n; points and extending in the

radial coordinate from 7;_; to #;. We have found that
a standard mesh of 60 points and five zones of the form
(10,20,10,15,5/0.0,R,, — 0.5, R,,+0.5,5.0,10.0,a) generally
produces highly accurate results. Applying this quadra-
ture to the functions and integrals in Eq. (17) yields the
matrix equation

(1 - G°U)f = G, (20)

where the matrices have the form

(G%lpg = Go(rilrs), (21)
[Ulpg = Vap(rj)wiw;, (22)
[flp = fa(ri), (23)
[G']p = Ga(ri), (24)

with the term 1 representing the unit matrix. The label
p(q) designates the composite of a channel and a radial
point [p = («,?)] and the matrix has order n. x n,. The
V matrix consists of n, X np blocks, labeled by the chan-
nel indices (@,8); the matrix G° is block diagonal with
each block a submatrix of order n, points characterized
by a channel a. The set of linear algebraic equations de-
fined by Eq. (20), whose solution gives the channel wave
function, is solved by an iterative-variational prescription
[18] involving only matrix-vector multiples. In fact, it is
possible to reduce the computational and storage costs
even further by recognizing the quasiseparable nature of
the Green’s function for a radial potential. This enables
us to express the results of the matrix-vector multiples
without actually constructing the matrix and to cut the
computational cost by one power in the number of grid
points. The local coupled differential equations in the
external region (r > a) are solved by a Light-Walker
[19] RM propagation scheme. We extract the resonance
widths and positions from a Breit-Wigner fit [20] of the
total eigenphase sum as a function of incident electron
energy. On the other hand, in the EOLA, we treat only
the open channels in P space and place both orthogonal-
ity relaxing and explicit correlation-polarization terms in
Q@ space. The optical-potential construction arises from
a two-electron quantum chemistry program as described
in earlier publications [10], while the P-space part is han-
dled by the same techniques as described above for the
CC linear algebraic method. A detailed description of
the GTO bases and of the convergence studies resides in
Ref. [1].

The above multichannel integral equations approach
for scattering also applies for finding the bound states
of the two-electron Hy molecule. To proceed, we require
that the entire two-electron wave function be closed in all
expansion channels. A closed channel (k2 < 0) asymp-
totically exhibits an exponentially decaying solution

fa(r) ~ exp(—’{ar% (25)

where Ko = |ko| in all channels. Therefore, by closing



the channels, we convert to an eigenvalue problem [21]
whose solution exists only at a discrete set of allowed
values of E. These values represent the bound energies
of the composite system. Sams and Kouri [22] showed
that at these discrete energies F;, the determinant of the
matrix M defined by

M(E) =1+ G?Vf, (26)

vanishes [det M(E;)=0]. Therefore, by iteratively search-
ing for the values of the energy that satisfy this condition,
bound-state eigenvalues result.

In the RM approach, we formally solve Eq. (1) by the
prescription

W, UJT
R(E) =3 (27)
k

which defines the inverse of the logarithmic derivative
matrix of the solution vector on the boundary (r = a).
The reduced width amplitudes wy represent projections
of the RM eigenvectors with eigenvalues 5 onto the chan-
nel states ¢. The target and correlation functions are ex-
panded in Slater-type orbitals (STO’s) centered on the
atoms while the continuum functions are represented by
a composite of nuclear-centered STO’s and numerical or-
bitals about the center of gravity of the molecule. These
numerical functions, which are constrained to be orthogo-
nal to the bound-state orbitals, solve a model Schrédinger
equation typically based on the spherically symmetric
part of the static potential. Diagonalization of the opera-
tor H+L in the inner region yields the reduced width am-
plitudes and therefore the R matrix from Eq. (15). The
local coupled equations in the external region are solved
by an RM propagator [23] and an accelerated Gailitis
asymptotic expansion [24]. With this brief description of
the techniques in hand, we embark upon a presentation
of the results of the various calculations.

Our main focus centers on autoionizing states of the
composite Hy system. These resonance states always
consist of at least two electronic channels: (i) an up-
per closed channel that temporarily forms a doubly ex-
cited state of the compound system and (ii) a lower open
channel, coupled to the upper state, that allows the elec-
tron to escape. The actual situation in electron scatter-
ing from H,* presents a more complicated picture with
strong coupling among both electronic states and partial
waves. To gain some insight into the general problem, we
consider a simple Huck model involving only two chan-
nels of the form [25]

fo — Uoi(r) f1(r) =0, (28)

d2
m - Uoo(’l‘) + kg

2
[% - U11(7') + k%:l f1 — Ulo('l‘)fo(’l‘) = O, (29)
where U;;(r) = 2V;;(r), k2 = 2E,k? = k3 — AE, E is the
total energy, and AF is the excitation energy. All the
potentials represent square wells or barriers of width r,,
and constant strength U;;. We emphasize that these au-
toionizing resonances arise from the coupling of at least
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two electronic channels. Therefore, simple one-channel
resonance or virtual state formulas will generally be in-
adequate, especially in cases of strong coupling. However,
as shown by Feshbach [16], the Breit-Wigner form of the
eigenphase sum does apply in characterizing the resonant
behavior. With the basic formalism established, we now
present the results of our calculations.

III. RESULTS AND DISCUSSION

We divide this section into three major parts. In Sec.
IIT A, we present results for the Huck two-channel prob-
lem in order to illustrate basic autioionizing resonance
behavior. Sections III B and IIT C treat electron scat-
tering from H, T, demarcated by the total symmetry of
the two-electron wave function. We first concentrate on
the ¥ symmetries by presenting highly converged reso-
nance parameters and then give some additional results
for IT symmetries that extend the findings of our previous
study [1]. We focus on the width I" and the position E,
of the autoionizing state with respect to the ground state
of HyT as a function of internuclear distance R.

Before launching into the details of these calculations,
we briefly describe the general nature of the scattering
process. Our interest centers on the autoionizing reso-
nances of the composite H, system that arise according
to the process

e + H2+ = H; = e + H2+. (30)

We concentrate our attention on the energy regime below
the first excited-state threshold. To.illustrate this mech-
anism, we use a two-state model in the '3, total scat-
tering symmetry. The lowest two target states of Hp™
consist of 1oy and 1o, and the composite two-electron
channels have the form 1lo4koy and lo,k'oy, in order to
preserve the correct total symmetry. The symbols k2 and
k'? represent the channel energies. For our choice, the
lower channel is open (k2 > 0) while the upper channel
is closed (k'? < 0). The upper channel supports a doubly
excited state of Hy of form (1o2). Were the coupling to
the open channel zero, this excited state would be purely
bound. However, the coupling to the lower open chan-
nel provides a mechanism for the electron to escape, thus
giving rise to the resonance. In the vicinity of this dou-
bly excited state, the cross section exhibits a pronounced
enhancement corresponding to the temporary trapping
of the continuum electron. The degree of this trapping
determines the lifetime (1) of the autoionizing state and,
in turn, the observed width (I' ~ 1/7) of the resonant
feature in the cross section or eigenphase sum. This res-
onant effect arises at a given internuclear separation R
for the target Ho™ system. By varying R, we change
the position of the doubly excited state and therefore
the position of the resonance. At some point, this posi-
tion moves below the lower channel threshold (k% < 0)
and the H, compound state becomes truly bound. We
shall present examples of the above-described behavior
for electron scattering from the hydrogen molecular ion
and, as an illustration, in the simple Huck model.
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A. Huck model

We have tested the LA programs for the Huck prob-
lem against several older calculations [25], reproducing
the cross sections and resonance parameters to a high de-
gree of accuracy. These comparisons considered both all-
open and open-closed channel configurations. Choosing a
mesh of 200 Gauss-Legendre points in the region (0,7,),
we obtain cross sections to within better than four signif-
icant figures of those of the exactly soluble Huck model
and resonance widths and positions to better than 1%
agreement with Fels and Hazi [25].

For a representative case, we select r,= 1 bohrs,
AE=2.25 Ry, Uyp=0, Up;=0.40, and U;; as a poten-
tial well (<0). The choice closely resembles an example
given by Mott and Massey [26] for a moderate coupling
strength. In our case, we also select U;; deep enough
to bind at least one state at —Fj; relative to the upper
channel threshold. We then investigate the region below
the excitation threshold (k% < 0). If the energy —Ej of
the bound state in the upper channel potential lies in the
range 0 < k2 < AE, a distinct resonance signature occurs
for scattering energies near k2 ~ AE—|Ey|. In the case of
no coupling (Up;=0), no resonance results as the bound
state has no mechanism to reach the continuum. As the
coupling increases, the position of the resonance shifts
and the width broadens. We observe another behavior
more akin to the phenomena presented later in this paper
by varying the depth of U;; in order to model the effects
of changing the internuclear distance in Hy'. As the
bound state deepens, the resonance energy approaches
the lower threshold. When |Ey| exceeds AE, all channels
become closed, the resonance disappears, and a bound
state of the composite two-channel system results. For
no coupling, this “crossing” occurs at a depth of 6.98 Ry.
However, even a moderate amount of coupling changes
the picture. Actually closing both states and performing
a search based on Eq. (26), we find the system bound for
|U11| > 6.72 Ry. For less negative values of the poten-
tial, we recover the resonance structure in the eigenphase
sum. We approach this crossing from above by noting the
trend in the resonance position as |Uq;| increases. For a
value of —6.52, we find the resonance at 0.147 Ry with
a width of 0.118 Ry. The uncoupled case yields a bound
state in this well of —1.922 Ry, which corresponds to a
scattering energy of 0.329 Ry. Thus even moderate cou-
pling has a profound effect on the resonance parameters.
The behavior of the resonance position as a function of
the potential strength is given in Fig. 1. We observe that
a simple extrapolation of this position yields a crossing
point of about —6.70 Ry within better than 1% of the
bound-state results. For the higher strengths, the width
becomes much larger than the position. For example, at
Ui = —6.66, the position is at 0.035 Ry and the width
is 0.068 Ry. However, the Breit-Wigner (BW) form still
provides a valid fit. This arises for two reasons. First, as
we noted above, no formal obstacle impedes the applica-
tion of the BW form in this regime as no explicit assump-
tion pertains as to the relative strength of position and
width [16,26]. Second, no numerical obstacle prevents
the exercise of this fit as the best root-mean-square error
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FIG. 1. Position of the autoionizing resonance E. as a func-
tion of potential strength Ui, for the two-channel Huck prob-
lem.

occurs for a cluster of points in close proximity to the
resonance position. Having established this trend for a
simple model, we now investigate the more complicated
electron-molecule scattering problem.

B. 3 symmetries

We begin our investigation of the ¥ resonances with
the most extensively studied, the 13,. The lowest such
resonance corresponds to trapping temporarily the elec-
tron in the 102 doubly excited state of Hy. However,
before delving into the world of autoionizing states, we
explore the bound-state regime in order to gain some
insight into the accuracy of the various methods. In
the LA approaches, we determine the ground-state en-
ergy of Hy by closing all channels and determining the
root from the prescription described in Eq. (26). In
the CCLA case, the calculation represents a hybrid be-
tween restricted and unrestricted techniques [27] since
we fix one pair of orbitals (¢,) as a state of Hy™ and
allow the other (F,) to freely vary. Since @ space con-
tains all single and double excitations within the or-
bital basis, the EOLA approach more closely resembles
a standard configuration-interaction calculation. In both
cases, an iterative process must be invoked to determine
the bound state by varying the energy until reaching a
zero of the determinant. The Kolos-Wolniewicz calcu-
lations [28] still represent the standard for H;. For the
bound '¥, state at the equilibrium separation for Hy* (2
bohrs), they report an energy of —1.638 132 hartree. For
a four-state (1loy, 10, 1mY) CCLA, we obtain —1.63095
hartree, while for seven states (4CC,20,, 2(7“,171';) we
have —1.63222 hartree. We employ a mesh given by
(10,20,10,15,5/0.0,0.5,1.5,5.0,10.0,15.0) and three partial
waves in each channel (n.=3). On the other hand, a
400-configuration EOLA calculation yields —1.636 321
hartree. Therefore, the CCLA can produce high-quality
bound-state energies, although the convergence with
states proceeds slowly. However, we generally found that



TABLE 1. Comparison of widths and positions for the 'Z,
resonance at R=2 bohrs for the following methods: RM, R
matrix [5]; EOLA and CCLA as defined in the text; PO1, pro-
Jjection operator [8]; PO2, projection operator [9]; KV, Kohn
variational [7]. 7TCCLA stands for a seven-state (10,110,117,
204,204,304) close-coupling calculation with n;=3 and n,=60
on a standard mesh.

Method E, (eV) I' (eV)
7CCLA 5.65 1.33
EOLA 5.38 1.39
RM 5.56 1.38
PO1 5.53 1.36
PO2 5.57 1.32
KV 5.47 1.61

the resonance parameters converged more rapidly than
the bound-state energies.

Returning to the autoionizing states, we compare in
Table I the positions and widths of the lowest ¥, res-
onance below the first excitation threshold (1o,) for a
variety of methods at R=2 bohrs. These include the pro-
jection operator techniques of Hazi, Derkits, and Bars-
ley [9] and Hara and Sato [8] as well as Kohn varia-
tional procedures [7]. For the RM calculations in this
section, we use the results of Shimamura, Noble, and
Burke [5] and, in addition, report LA calculations in both
approaches. Very good agreement exists among all the
methods. We also utilize the results at an internuclear

TABLE II. Comparison of Hz resonance widths and posi-
tions as a function of R for various methods for the lowest
!5}, resonance below the 1o, threshold. The nomenclature is
as follows: effective optical-potential linear algebraic, EOLA;
n-state close-coupling linear algebraic, nCCLA; and R ma-
trix, RM [5].

R (bohrs) Method E (eV) T (eV)
1.4 EOLA 12.57 0.730
7CCLA 12.75 0.734
RM 12.80 0.750
2.0 EOLA 5.38 1.39
7CCLA 5.65 1.33
RM 5.56 1.39
2.4 EOLA 1.81 1.67
7CCLA 2.13 2.01
RM 1.99 1.77
2.5 EOLA 1.05 1.72
7CCLA 1.27 2.14
RM 1.23 1.84
2.6 EOLA 0.04 1.75
7CCLA 0.39 2.14
RM 0.52 1.90

2.7
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3.0 I 1 1 | | 1 1 1 |

2.5

8sumlrad)

T T T T T T T T T
0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
E(Ry)

FIG. 2. Eigenphase sum dsum in radians as a function of
scattering energy E (Ry) and R (bohrs) for ', symmetry in
7CCLA. The nomenclature for R values is as follows: 2.50,
solid line; 2.60, dashed line; 2.65, long-dash—short-dashed line;
2.70, dotted line; 2.80, circled line.

separation of 2 bohrs as a typical example of the con-
vergence in electronic target states. The two-state close-
coupling (2CC) calculation consists of the 1o, and the
1o, states; the four-state (4CC) of the 2CC + 17X; the
six-state (6CC) of the 4CC + 20, and 20,; the seven-
state (7CC) of the 6CC + 301; and finally, the nine-
state (9CC) of the 7TCC + 1m; with the target states
monotonically decreasing in bound energy. The position
(width) in eV for n, = 2, 4, 6, 7, and 9 has values of

6.034 (1.326), 5.895 (1.482), 5.725 (1.454), 5.670 (1.340),

TABLE III. Same as Table II except for the second lowest
!5, resonance.

R (bohrs) Method E (eV) T (eV)
1.4 EOLA 16.45 0.098
7CCLA 16.49 0.105
RM 16.48 0.097
2.0 EOLA 9.926 0.153
7CCLA 9.963 0.154
RM 9.946 0.135
2.4 EOLA 6.874 0.180
7CCLA 6.923 0.168
RM 6.906 0.150
2.5 EOLA 6.242 0.181
7CCLA 6.297 0.173
RM 6.278 0.153
2.8 EOLA 4.610 0.170
7CCLA 4.679 0.188
RM 4.656 0.164
3.0 EOLA 3.718 0.216
7CCLA 3.786 0.199
RM 3.763 0.169
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FIG. 3. Width I' as a function of R for the two lowest
resonances in 'Y, symmetry: solid line, lowest; dashed line,
second lowest.

and 5.620 (1.320), respectively. The next two highest
sets of target states (2r and 30,,) lie over 0.7 and 2.34
eV, respectively, above the 17, state and play little role
in the determination of the low-lying resonance param-
eters. Fixing the number of states (n,=7) and varying
n; from 2 to 3 yields positions (widths) of 5.68 (1.32)
eV and 5.65 (1.33) eV, respectively. This convergence
trend holds for the other total symmetries and internu-
clear distances. To ascertain better the validity of our
three ab initio methods (RM, EOLA, and CCLA), we
extend the study over a wide range of internuclear dis-
tances as shown in Table II. For the CCLA method we
used seven states (4CC,204,20,,30,) with three partial
waves per state (n;=3) and 60 mesh points in the inner
zones (a = 15 bohrs) on a standard mesh [see Eq. (19)].
We have varied both the partial wave expansion n; and
the mesh and found convergence at the 5% level for n; >
3 and n, > 50. In general, all three methods agree very
well considering the sensitivity of resonance parameters
to various collisional variables.

The agreement becomes poorer at larger R. However,

ErleV)

T T
14 18 18 2 22 24 26 28 3
R(bohr)

FIG. 4. Same as Fig. 2 except for position.

TABLE IV. Same as Table II except for the lowest *3,, res-
onance below 1o, threshold. 4CCLA represents a four-state
(10g,104,17E) close-coupling calculation. For 6CCLA, the
204, and 20, states are added to the 4CCLA. Both CCLA
calculations are with n;=3 and n,=60 on the standard mesh.

R (bohrs) Method E (eV) T (eV)
1.20 6CCLA 17.09 0.346
4CCLA 12.25 0.550
1.60 6CCLA 12.19 0.530
4CCLA 8.51 0.678
2.00 6CCLA 8.47 0.644
8CCLA 8.46 0.645
4CCLA 5.80 0.800
2.40 6CCLA 5.75 0.796
2.60 . 6CCLA 4.69 0.871
2.80 6CCLA 3.80 0.967
3.00 7CCLA 3.04 1.07

at around an R of 2.7 bohrs, the potential-energy curve,
marked by the resonance position, crosses the bound-
state curve for Hz. To the right of this stabilization point
(R¢), the system becomes bound [9,29]. As noted, the ac-
tual position of R, is difficult to ascertain. This stems not
so much from the accuracy of the scattering programs,
but from the difficulty of defining resonance parameters
when the width becomes much larger than the position.
In order to investigate the stabilization point in more de-
tail, we present in Fig. 2 the eigenphase sum [dsym(F)]
as a function of scattering energy E and the internuclear
distance R. For an R value of 2.5 bohrs, the distinct BW
resonance shape appears with an inflection point near
the resonance position E,.. In fact, a valuable means of
identifying resonances exploits this inflection signature
by searching for a change of sign in the second derivative
of dsum as a function of energy [20]. As R increases, this

T(eV)

0.4+ -

0.3 T T T T T T T T
1.2 14 1.6 1.8 2 2.2 2.4 2.6 2.8 3

R(bohr)

FIG. 5. Width as a function of R for the lowest '3, reso-
nance.
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FIG. 6. Width T as a function of R for the 'II, symmetry.

feature disappears (~ 2.7 bohrs) yielding a simple mono-
tonically rising phase with energy. This behavior can be
quantified by fitting to the BW form and extrapolating
the resonance position to a zero value, much as was done
in the Huck case. A simple extrapolation of the resonance
energy yields R.=2.65 bohrs, in excellent agreement with
the RM results [5]. We also note that 84y, tends to a
finite value at £=0, an indication of very strong inter-
channel coupling. We have not performed bound-state
calculations for R > 2.7 bohrs since accurate results of
comparable quality already exist [29]. Finally, in Table
III, we present a similar study of the next highest ly-
ing '3, resonance. Again, we note very good agreement
among the methods. The results for both resonances are
summarized in Figs. 3 and 4.

We now turn our attention to the !X, resonances. In
Table IV, we display the widths and positions as a func-
tion of R for the lowest '3, resonance below the first ex-
citation threshold. We have extended this case to larger
R values due to its importance for other processes [2]. We
also show the convergence properties for different num-
bers of target states with the basic description the same
as for the '$,. We employ a standard mesh [a=15 bohrs]
with n,=60 and n;=3 and again note the general trend
of the position decreasing and the width growing as R
increases. This state has been examined experimentally
[11]. However, the data suggested a much larger width,
especially beyond R=2 bohrs, than previously predicted
by theoretical calculations. Owur results support these
earlier calculations in obtaining widths well over a factor
of 2 lower than the experiment and in excellent agreement
with the theoretical findings. As shown in Fig. 5, we do
not observe the leveling of the width of Tennyson [30] be-
yond about 2.6 bohrs. However, we do certainly observe
a change in slope in this region, albeit with the width
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TABLE V. Widths and positions as a function of R of the
lowest resonance of the II, symmetry for e~ + Ha™ collisions
below the 1o, threshold at the 8CCLA level (n. =3, n,=60).
Eight target states are included: lag,lau,lwf,2ag,20u,17rg:.

R (bohrs) E (Ry) I’ (meV)
2.00 0.6128 3.939(-2)
2.40 0.4056 4.836(-2)
2.60 0.3220 5.543(-2)
2.80 0.2538 6.921(-2)
3.00 0.1927 8.533(-2)
3.25 0.1218 1.035(-1)

not rising quite so rapidly. This region has difficulties as
reported earlier in that the definition of a resonance be-
comes somewhat ambiguous once the width exceeds the
position. The principal contribution omitted from the
current formalism is the coupling due to nuclear motion.
Further tests will have to be run to determine the effects
of this omission.

C. II symmetry

Since the 'II; symmetry plays an important role in
dissociative recombination [3], we have extended our pre-
vious calculations to larger internuclear separations. We
first note two typographical errors in our earlier paper
[1]: (i) the position at 1.4 bohrs as given in Table VIII
of [1] should read 1.0767 Ry and (ii) the units of energy
in Fig. 6 should be hartrees. In Table V, we present
the widths I' and positions E, as a function of R from
2.0 to 3.25 bohrs. All calculations were performed in
the CCLA method for eight target states (log,loy,lns,
20‘9,20‘1_,,111'3:) with three partial waves to each channel
(n;=3) and 60 mesh points in the LA zone (r < 15 bohrs)
on a standard mesh. Convergence studies demonstrate
that the resonance parameters should be accurate to bet-
ter than 10%. As indicated in Fig. 6, the width slowly
rises as R increases while the position declines. While
covering a greater region of importance to dissociative re-
combination, these results do not appear to substantially
change calculations [3] based on extrapolations from pre-
vious findings.
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