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Interaction of the collective and electronic motion of atomic ions in magnetic fields
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In the presence of a homogeneous magnetic field, the center of mass and electronic motion of an atom
cannot be separated. For an atomic ion, the residual coupling is a Stark term with an oscillating electric
field that is determined by the collective motion of the system. We investigate the effects and phenomena
that occur due to this coupling in the classical dynamics of the highly excited ion. In particular, a per-
manent exchange of energy between the center of mass and the internal degrees of freedom is shown to
take place. This leads, in the regular regime, in spite of an initially vanishing center-of-mass velocity, to
the self stabilization of the ion on a circular orbit. For small center-of-mass velocities and energies close
to the ionization threshold, the motion of the atom is governed by its intermittent behavior. The most
interesting dynamics occurs for rapidly moving ions for which the energy transfer from the center of
mass to the internal degrees of freedom becomes strong enough to allow the atom to ionize. The statis-
tics of this dynamical self ionizatio-n process is studied for different center-of-mass velocities as well as
internal energies.

PACS number(s): 32.60.+ i, 05.45.+b, 32.80.Dz

I. INTRQDUCTION

During the past two decades there was an enormous
increase of interest in the behavior and properties of
rnatter in strong magnetic fields. The attraction of this
field of research certainly also has its origin in the great
variety of the observed phenomena. The quantum Hall
effect for a two-dimensional extended electron system and
the interplay of regularity and chaos for highly excited
Rydberg atoms in strong magnetic fields are two exem-
plary situations from different areas of physics in which
the external field plays an outstanding role. In order to
observe the above-addressed phenomena it is necessary to
achieve magnetic interaction energies that are cornpara-
ble to or even larger than the relevant Coulomb energies.
For an isolated atom at laboratory field strengths this
means that we have to consider highly excited states for
which the magnetic interaction no longer provides a
small perturbation with respect to the electronic struc-
ture of the considered system. The paradigm of such an
atomic system is the hydrogen atom in a strong magnetic
field, whose properties have been investigated in great de-
tail up to and even beyond the field-free ionization
threshold (see Ref. [I] and references therein).

In field-free space isolated (Coulomb-)interacting parti-
cle systems are invariant with respect to translations in
space, i.e., the total canonical momentum is a conserved
quantity. In the presence of an external homogeneous
magnetic field the space translation symmetry is lost.
However, there exists a generalization, the phase-space
translation group [2], which provides a symmetry associ-
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ated with the collective motion of the system. The corre-
sponding conserved quantity is the so-called pseu-
domomentum [2,3], which is the generalization of the to-
tal canonical momentum to the case of the presence of an
external magnetic field. The two qualitatively different
situations of a neutral and a charged system now have to
be distinguished carefully.

For a neutral system the components of the pseu-
dornomentum commute and can be used for a complete
pseudoseparaton of the center of mass (c.m. ) motion,
which eliminates the c.m. coordinates from the Hamil-
tonian [2—4]. However, this does not mean that the c.m.
and the internal motion decouple and indeed the c.m. ve-
locity is, apart from the constant pseudomornentum,
completely determined by the components of the internal
coordinates perpendicular to the magnetic field. This
coupling of the collective and the internal motion has, for
highly excited atoms, drastic consequences for the dy-
namics of both types of motion. Effects due to the in-
herent two-body character of a neutral two-particle sys-
tem have been investigated very recently for the hydro-
gen atom [5—7]. In particular, for the case of a vanishing
pseudomomentum it has been observed that the transi-
tion from regularity to chaos in the classical internal
motion is accompanied by a transition from bounded
quasiperiodic oscillations to an unbounded diffusional
motion in the c.m. [5]. For a nonvanishing pseu-
domomentum (or, equivalently, a perpendicular static
electric field) and energies close to the ionization thresh-
old the classical dynamics of both the internal as well as
the c.m. motion is characterized by its intermittent
behavior [6]. For large enough values of the pseu-
dornomentum, an outer potential well is formed, support-
ing strongly delocalized bound states, which have been
studied in detail [7—9].

The subject of investigation of the present paper is the
classical interaction of the collective, i.e., c.m. , and the
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internal motion for atomic ions, in particular of the He+
ion, in a magnetic field. For the case of a charged-
particle system in a magnetic field, the coupling of the
c.m. and the internal degrees of freedom is even more in-
tricate than for the case of a neutral system. One there-
fore expects a rich classical dynamics to be uncovered if
one varies the parameters (field strength, energy, etc. ) of
the underlying system. These questions have brie6y been
addressed in a very recent paper [10] and some of the
most appealing effects have been reported on. In the
present paper we provide an elaborate investigation and
discussion of the whole variety of phenomena appearing
in the classical dynamics of the above system.

The paper is organized as follows. In Sec. II we intro-
duce the Hamiltonian, its constants of motion, and the
coupled equations of motion for the c.m. as well as elec-
tronic degrees of freedom. In Sec. III we present and dis-
cuss the results of our investigation of the c.m. and the
electronic motion of the ion. Two major effects can be
observed: first, the self-stabilization of the ion on a Lan-
dau. orbit under regular conditions and for vanishing ini-
tial c.m. velocity and, second, the self-ionization process
for fast ions by energy transfer from the c.m. to the inter-
nal degrees of freedom. Regular, chaotic, and intermit-
tent dynamics are observed and lead to a variety of
different possibilities of the behavior of the c.m. and the
electronic degrees of freedom. Finally, we discuss in the
Appendix our method for the numerical integration of
the classical equations of motion of the He+ ion in a
strong magnetic field.

II. THE HAMILTONIAN
AND THE EQUATIONS OF MOTION

where r; and p; are the Cartesian coordinates and rno-
rnenta in the laboratory coordinate system. A and B are
the vector potential and magnetic field, respectively. In
contrast to the case of a neutral system, the two com-
ponents of the pseudomornentum are, for a charged sys-
tern, not independent, i.e., they have a nonvanishing com-
mutator that is proportional to the net charge Q of the
system [2—4]

[K,Kp]= iQe p
B— (2)

where e &z is the Levi-Civita tensor. For an ion therefore
it is impossible to eliminate the c.m. coordinates com-
pletely from the Harniltonian by introducing the pseu-
domomentum as a canonical conjugated momentum.
This is a major difference from the case of a neutral sys-

The general problem we are concerned with is a
charged two-body system interacting via the Coulomb
potential in the presence of an external, strong, homo-
geneous magnetic field. As already mentioned in the In-
troduction, the pseudomomenturn K is a conserved quan-
tity for this system and represents a generalization of the
c.m. momentum in field-free space to the situation in the
presence of a magnetic field [11]

2
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q; A;+q;BXr;),
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where m, Mo, and M are the electron, the nuclear, and
the total mass, respectively. a=(MO+Zm )/M and V is
the Coulomb potential. The magnetic-field vector B is, in
the following, assumed to point along the z axis. (R, P)
and (r, p) are the canonical pairs of variables for the c.m.
and the relative motion, respectively. The Hamiltonian
& involves five degrees of freedom since the center-of-
mass motion parallel to the magnetic field is a free
translational motion, i.e., separated completely. Accord-
ing to Eq. (2), the parallel and the perpendicular com-
ponents of the pseudomornentum commute and it is
therefore in principle possible to eliminate also one of the
two perpendicular components of the c.m. coordinate
vector. However, this would not yield any further
simplification of the Newtonian equations of motion,
which will be solved below and for which we will explicit-
ly use the conservation of the pseudomomentum [see Eqs.
(6) and (A7)].

The Hamiltonian & consists of three parts that corre-
spond to different types of motion or interaction. The
part && in Eq. (3a), which involves solely the c.m. degrees
of freedom, describes the cyclotron motion of a free pseu-
doparticle with mass M and charge Q in a homogeneous
magnetic field. Within the Hamiltonian &, the ion is
therefore treated as an entity with the net charge and the
total mass of the ion. This can be looked at as a zeroth-
order approximation to the real c.rn. motion. We will
see in Sec. III that this zeroth-order picture is, in general,
not sufficient to describe the c.m. motion of the ion. In
fact, the behavior of the c.rn. can deviate strongly from
the motion given by the Hamiltonian &, and exhibits a
variety of different phenomena depending on the parame-
ter values (energy, field strength, c.m. velocity). The ori-
gin of this rich dynamics lies in particular in the Hamil-
tonian &z in Eq. (3b), which describes the coupling of the
c.rn. and the electronic degrees of freedom. The Hamil-

tern for which such an elimination is possible [2—4].
Nevertheless, the transformations introduced for a neu-
tral system to perform the so-called pseudoseparation of
the c.rn. motion can, in a modified version, be also ap-
plied to the case of a charged-particle system [3,4, 12].
The resulting transformed Hamiltonian takes on a partic-
ularly appealing form and reads, for the He+ ion, as
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tonian &2 represents a motional Stark term with a rapid-
ly oscillating electric field, which is determined by the dy-
namics of the system. Because of this "dynamical" elec-
tric field the collective and the internal motion will, in
general, mix up heavily. Finally, &3 in Eq. (3c) contains
only the electronic degrees of freedom and describes, to
zeroth order, the relative motion of the electron with
respect to the nucleus.

An alternative way of writing the Hamiltonian & is
2

2

+ p — -(Mo —Zm )BXr + V,
2p 2M'

where p=mMo/M is the reduced mass. This reformula-
tion of the Hamiltonian as a sum of two quadratic terms
plus the Coulomb potential gives us some additional in-
sight into the problem. The two Hamiltonian equations
of motion

~ 1R= P ——BXR—eaBXr
M 2

i= —p — (Mo —Zm )BXr1 8

p 2M' (4b)

belonging to & immediately allow us to identify the erst
quadratic term in Eq. (4) as the kinetic energy
E, =(M/2)R of the c.m. , whereas the second quadra-
tic term represents the kinetic energy of the electronic
relative motion (p/2)i . The kinetic energy of the c.m.
therefore depends on the electronic degrees of freedom.

For our understanding and interpretation of the dy-
namics of the ion later on it is also instructive to examine
the Newtonian equations of motion. They take on the
forms

MR+ QB XR+eaB X i=0,

p'r'+ (Mo —Zm )BXi+eaBXR+ =0 .2 2
~ BV

M Br
(5b)

This equation shows that a permanent Aow of energy
from the c.m. to the electronic degrees of freedom and
vice versa has to be expected. In Sec. III Eq. (7) will be

Again the mutual dependence of the c.rn. and the elec-
tronic degrees of freedom becomes obvious. Equation
(5a) can be integrated once and yields an integration con-
stant that is the pseudornomentum in terms of the c.m.
velocity and the c.m. and the electronic coordinates

K=MR+QBXR+eaBXr .

Next let us establish the equations of motion for the c.m.
energy E, and for the internal energy, which is defined
as E;„,=(p/2)i + V. Multiplying Eq. (5a) with the c.m.
velocity we obtain the following expression for the time
derivative of the c.m. and the internal energy

d—E, = — E;„,=ea( BX)Ri.

most helpful for our understanding of the mechanism of
the energy transfer between the collective and the elec-
tronic motion.

III. RESULTS AND DISCUSSION

In this section we elaborate and discuss the results of
our comprehensive study of the classical dynamics of the
He+ ion. We thereby have to solve the corresponding
Newtonian equations of motion (5a) and (5b) that contain
five coupled degrees of freedom. This is a nontrivial task
since the long integration times necessary to observe the
diferent time scales occurring in the dynamics of the ion
(see below) require not only a fast integration algorithm
but also a very high accuracy and therefore large step
size. To achieve these goals we have to smoothen and
regularize the Newtonian equations of motion (5a) and
(5b) and in particular we have to get rid of the singularity
due to the Coulomb potential term. Both our transfor-
mations of the equations of motion as well as the numeri-
cal integration algorithm will be discussed in the Appen-
dix. It is important to note that without these techniques
the present investigation would not have been possible.

A. The self-stabilization efFect in the regular regime

Let us begin our investigation of the classical dynamics
of the He+ ion with the regime for which the complete
phase space is regular. The internal energy E;„, and the
field strength are chosen such that the Coulomb potential
dominates over the magnetic interaction terms. In addi-
tion, we first of all focus on the case of vanishing initial
c.m. velocity, i.e., V, =~R =0. In the absence of a
magnetic field there is no coupling between the c.m. and
the electronic degrees of freedom and for the special case
V, =0 the c.m. of the ion simply is at rest. Figures
1(a)—1(g) show the behavior of a typical c.m. trajectory in
the presence of magnetic field for di6'erent time periods.
Since the Coulomb interaction dominates over the mag-
netic energies, the shortest time scale T„which is ap-
proximately 4X10 a.u. for the parameter values of Fig.
1, is given by one perturbed Kepler cycle in the internal
motion. Figure l(a) shows the five oscillations of the c.m.
motion in the (X, , Y', )-coordinate plane perpendicu-
lar to the magnetic field, which correspond to five Kepler
cycles in the internal motion. Figure 1(b) shows the time
dependence of the c.m. kinetic energy for the same time
period. First of all we observe that the initially vanishing
c.m. kinetic energy increases to some maximal value and
subsequently decreases and so on, i.e., it oscillates. The
origin of this oscillating Bow of energy between the c.m.
and the internal degrees of freedom is the coupling term
&z in Eqs. (3) and (3b). The rate of energy exchange be-
tween the internal and the c.rn. degrees of freedom is
governed by formula (7). This equation tells us that ex-
trema in the c.m. and internal energies do occur for
configurations for which the projections of the c.rn. and
the electronic velocity vectors onto the plane perpendicu-
lar to the magnetic field are parallel, i.e., Ri~~ri. A strong
exchange of energy has to be expected for the opposite
case for which the projections of the iwo velocity vectors



52 INTERACTION OF THE COLLECTIVE AND ELECTRONIC. . . 133

0.000

-0.002- O

-0.1-
K

V

O

E
O

0

-0.004-
I

-0.006
I

-0.003
-0 ' 2 -0.2

I

-0. 1 0.0

-2-

150-

X (o. u. ) X (0.0. ) X (o.U. )

O

8-

(b)

10

TIME (o.u. )

20 x103 0

30-
O

g 20-

10
E

100 200

TIME (o.0. )

x10-&

300 x103 0

TIME (o.0. )

30

o 20
C

' 'D

I ~ I

1 2 3 x10s

50-

0-

-100 -50 0

X (o.u. )

FIG. 1. (a), (c), (e), and (g) show the c.m. motion in the coordinate plane perpendicular to the magnetic field for the same trajectory
with increasing propagation times 2X10, 3X10', 3X10, and 5X10 a.u. , respectively. (b), (d), and (f) show correspondingly the
time dependence of the c.m. energy for the same trajectory. The initial c.m. velocity is equal to zero. The parameter values are

E;„,= —10 a.u. and B=10 a.u. All values are given in atomic units.

are perpendicular to each other, i.e., R~lr~.
Next we consider Figs. 1(c) and 1(d), which illustrate

the same c.m. trajectory as in Figs. 1(a) and 1(b), respec-
tively, but for a time period that is about 15 times longer.
We immediately realize that the amplitudes of the indivi-
dual oscillations of the c.m. energy are periodically
modulated on a characteristic time scale Tz =30T&. The
corresponding motion of the c.rn. in the plane perpendic-
ular to the magnetic field shows an additional oscillatory
behavior of period T2. This second time scale Tz arises
due to the fact that the magnetic field causes, via the elec-
tronic Zeernan term —(e/2)[(Mo —Zm )/
mMMo]B(rXp) [see %3 in Eq. (3c)], a rotation of the
Kepler ellipses of the internal motion. T2 is therefore ap-
proximately the time period of a complete rotation of
these ellipses.

If we consider the motion of the c.m. and the time
dependence of its energy on an even larger time scale T3,
which is about ten times T2, we arrive at the behavior il-
lustrated in Figs. 1(e) and 1(f), respectively. Figure 1(e)
shows, for the c.m. motion in the (X, , Y, )-

coordinate plane, a straight uniform motion on the time
scale T3, which possesses periodic modulations of small
amplitudes on the two shorter time scales T2 and T, .
[The individual oscillations on the time scale T, accord-
ing to Fig. 1(a) are not visible in Fig. 1(e).] Figure 1(f)
shows us the corresponding time dependence not directly
of the c.m. kinetic energy but of the maxima of the c.m.
energy. We observe on top of the oscillations of the max-
ima another periodic modulation of the amplitudes of the
"maxima oscillations" on the time scale T3. The time
period T3 is associated with a period of changes of the or-

bital parameters of the ellipses in the internal motion,
which arises due to the diamagnetic electronic term in
the Hamiltonian &3 [13] [see Eqs. (3) and (3c)]. The oc-
currence of all the time scales T&, T2, T3 and, as we shall
see below, also T4 in the c.m. motion is, of course, due to
the action of the coupling Hamiltonian &2.

Finally, we have illustrated in Fig. 1(g) the c.m. motion
for a time period T4 =5 X 10 a.u. , which is two orders of
magnitude larger than the time scale T3. The locally
straight uniform motion shown in Fig. 1(e) closes to a cir-
cular orbit on a coordinate range of a few hundred atom-
ic units. The oscillatory motions of the c.m. belonging to
the shorter-time scales T„T2, and T3 take place on a
coordinate range of typically a few 10, 10 ', and 10
a.u. , respectively, and are therefore not observable in Fig.
1(g). The circular orbit of Fig. 1(g) corresponds to the
long-time behavior of the c.m. and might bring us to the
idea that the c.m. motion on the long-time scale could be
that of a free pseudoparticle with charge Q and mass M
in a homogeneous magnetic field. However, we have
chosen as an initial condition a vanishing c.m. velocity
and therefore it is by no means evident what the radius
and the angular frequency of the long-time circular
motion should be. The observed effect of the self
stabilization of the ion with vanishing initial c.m. velocity
on a circular (cyclotron) orbit has its origin in the subtle
interaction of the c.m. and electronic degrees of freedom.
In order to understand this effect in a more quantitative
way and to derive explicit expressions for the radius and
the angular frequency of the circular c.m. motion on a
long-time period, we must have a closer look at the
Newtonian equations of motion (Sa) and (5b) and the ex-
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pression for the pseudomomentum K in Eq. (6).
For a free particle with charge Q in a homogeneous

magnetic field the expression —(1/QB )(8X K) gives us
the position vector of the midpoint of the cyclotron orbit
[2—4]. Considering the ion as a pseudoparticle we can
therefore reformulate Eq. (6) as a differential equation for
the radius vector

R, =R+
2 (8 X K)1

and, using the fact that the pseudomomentum is a con-
served quantity, we arrive at

ing to the mean azimuthal velocity since the squared
average of R differs from the average of the square R
(see below). Starting with the definition

(13)

for some typical integration time T4» T)T, and using
the expression for the pseudomomentum in Eq. (6) as well
as Eq. (8) and the fact that the time average of the scalar
product (rR, ) is negligible, we arrive at the following ex-
pression for the mean energy of the c.m. :

MR, +QBXR, +eaBXr=0 .

As a next step we project onto the azimuthal c.m. veloci-
ty component V, in order to obtain the angular frequen-
cy, i.e., we multiply Eq. (9) by the unit vector perpendicu-
lar to the radius vector R„ i.e., by (R, XB)/BR, . With
a little algebra this yields

E —
( Q2+ 2 +e 2~2+2)

@2
c.m. C

where

(14)

V, = [QR, +ea(rR, )] .B
C

(10)

Now, since we are interested in the averaged behavior on
the time scale T4, we calculate the mean of Eq. (10) by in-
tegrating over a typical time period T4))T) T3. Since
we refer to the pseudoparticle picture R, is approximate-
ly constant and in particular the time average of the
second term in Eq. (10) is negligible. (Remember that r is
oscillating with period Ti ((T.) We therefore obtain the
mean azimuthal velocity V, and consequently the angular
frequency 0, to

QBR, Qg
V,—,Q, —

The radius R, of the circular c.rn. motion can be ex-
pressed in terms of the initial conditions of the con-
sidered trajectory. To achieve this we insert in Eq. (8) the
expression for the pseudomomentum in Eq. (6) at t =0.
The resulting equation for the radius R, takes on the
form

M eBXR—n —r~
Qg 2

(t =0)
(12)

For our special case of vanishing initial c.m. velocity
R(0)=0 this means that the radius of the efFectively cir-
cular orbit of the c.m. on the long-time scale is complete-
ly determined by the component perpendicular to the
magnetic field of the initial distance of the electron from
the nucleus, i.e., R, = —a(e/Q) ~ri(0) ~. This is an amaz-
ing result, which again is a consequence of the action of
the coupling terms between the c.m. and the internal
electronic motion. In particular, we can obtain any ra-
dius R, belonging to the allowed range of values of ri(0)
by choosing the appropriate initial values for the elec-
tronic coordinate r~.

Addition valuable information concerning the long-
time circular motion of the c.m. of the ion is the mean
value of the c.m. energy E, . The latter quantity has to
be carefully distinguished from the kinetic energy belong-

is the mean of the square of the perpendicular component
of the electronic coordinate vector. The first term in Eq.
(14) is the mean energy of the c.m. due to its azimuthal
motion (M/2) V, , whereas the second term is due to the
radial kinetic energy that belongs to the motion on the
time scales T„T2, and T3. Comparing the above analyt-
ical results for the angular frequency, the radius, and the
mean energy with the corresponding numerical values
yields excellent agreement. In addition, it is possible to
derive an expression for the mean c.m. velocity, which,
however, is more complicated and also less instructive
than the above presented quantities. To conclude our
discussion of the case ~R(0)~ =0 let us mention that the
occurrence of the above-discussed four, by different or-
ders of magnitude, time scales in the motion of the ion is
characteristic for parameter values (energies, field
strength) that correspond to the deep regular regime.
With, for example, increasing internal energy the time
scales I T; I can become comparable and the above-
discussed separation into individual oscillations and
modulations is then no longer possible.

Let us now briefly consider the case of finite, but not
too large, c.m. velocity. With increasing initial c.m. ve-
locity the first term on the right-hand side of Eq. (12) be-
comes more and more important and finally dominates
over the second term, which depends only on the elec-
tronic coordinates. In this case the mean c.m. energy is
also dominated by the first term in Eq. (14). The ampli-
tude of the oscillations of the c.m. energy divided by the
corresponding mean value becomes smaller with increas-
ing initial c.m. velocity and correspondingly the ampli-
tude of the oscillations of the c.rn. motion in coordinate
space belonging to the time scales T„T2, and T3 divided
by the mean traveled distance of the c.m. also becomes
smaller. From erst glance it might then seem that the ion
could be approximately treated as a free pseudoparticle
without any coupling of the c.m. to the electronic degrees
of freedom. However, as we shall see in Sec. III D, also
in this case the coupling of the c.m. and the electronic de-
grees of freedom has drastic consequences for the dynam-
ical behavior of the ion.
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B. The chaotic regime

In the present subsection we consider the case of
chaotic dynamics for the internal as well as the c.m.
motion. The parameter values, i.e., the magnetic field
strength, the initial internal energy, and the internal an-
gular momentum, are chosen such that the Coulomb in-
teraction and the magnetic energies are of comparable or-
der of magnitude. These parameter values would yield a
completely chaotic phase space for the case of the He+
ion with the assumption of an infinite nuclear mass. Fur-
thermore, we restrict our discussion to the case of vanish-
ing initial c.m. velocity. The effects and the dynamics
for finite c.m. velocity will be discussed in detail in Secs.
III C and III D.

In Figs. 2(a) and 2(b) we show, for a typical trajectory,
the motion of the c.m. in the plane perpendicular to the
magnetic field for two different time periods. For the
shorter time period T=10 a.u. of Fig. 2(a), the c.m.
motion looks like a randomlike unbounded motion,
which exhibits none of the regular structure or different
time scales of motion discussed in Sec. III A. The ques-
tion therefore arises to what extent the long-time circular
motion of the c.m. , observed in the regular regime, sur-
vives in the chaotic regime. To give an answer to this
question we illustrate in Fig. 2(b) the behavior of the c.m.

I:a3

—15—

I I I I I I

0 1 2

X, (o. u. )

.-100-
I I I I ~ I

-200 —150 —100 -50

X (a. u. )

FIG. 2. c.m. motion in the coordinate plane perpendicular to
the magnetic field for a chaotic trajectory: (a) for the time inter-
val 10 a.u. and (b) for the time interval 1.6X 10 a.u. The initial
c.m. velocity is equal to zero. The parameter values are
E;„,= —3.4X10 a.u. and B=10 a.u. All values are given
in atomic units.

for a time period T=1.6X10 a.u. Also on the long-time
scale we observe severe deviations of the c.m. motion
from the circular motion observed in the regular regime:
the circular shape is strongly disturbed even within one
cycle and the c.m. leaves the suspected circular orbit
completely within a few cycles. The radius we would
have expected according to Eq. (12) if the initial condi-
tions would have been regular is R, = 100 a.u.

In the following two subsections we will investigate the
dynamical effects of the interaction of the c.m. and the
electronic degrees of freedom with increasing c.m. veloci-
ty ending up with the case of a rapidly moving He+ ion
in a magnetic fie1d.

C. Intermittency:
A characteristic near-threshold phenomenon

In the present subsection we study the dynamics of the
c.m. as well as electronic motion of the ion for total ener-
gies that are slightly greater than zero. The internal en-
ergies are chosen such that the corresponding He+ ion
with the assumption of an infinite nuclear mass shows a
completely chaotic phase space. For a strong laboratory
field strength of 8=10 a.u. , i.e., 23.5 T, this means
that the internal energies are in the range—3.4X 10 ~ E;„,&0 a.u. , whereas the total energies are
of the order of magnitude 10 ~ E & 0 a.u. , which corre-
sponds to c.m. velocities less than 5X10 a.u. , i.e,
1.1X10 ms

As a characteristic phenomenon in the above range of
energies and/or field strengths we observe the intermit-
tent behavior of the c.m. as well as electronic motion.
Figures 3(a)—3(e) illustrate the behavior of the di6'erent
c.ln. and electronic quantities for a typical intermittent
trajectory. Let us begin our discussion with the time
dependence of the c.m. energy, which is shown in Fig.
3(a). After an initial phase of irregular oscillations there
occurs a sudden drop at approximately T=2.5 X 10 a.u.
and the c.m. energy decreases to about half of its initial
value. After oscillating back at approximately
T =5X10 a.u. another phase of irregular oscillations
follows and so on. The bursts of large energy loss in the
c.m. occur at irregular intervals and are, according to
Fig. 3(b), accompanied by a sudden increase of the inter-
nal energy. This is of course a consequence of the conser-
vation of the total energy. For our chosen example the
internal energy remains also during the bursts of strong
energy Aow below the escape, i.e, zero energy threshold.
The dynamical behavior of the c.m. and the internal ener-
gies, shown in Figs. 3(a) and 3(b), respectively, is
governed by the equations of motion (7) and the variety
of their solutions rejects the different possibilities in the
behavior of the c.m. and electronic velocities.

What happens to the electronic and the c.m. motion
during these alternating phases of irregu1ar energy oscil-
lations and bursts of energy transfer'? Figure 3(c) shows
the internal electronic motion in the coordinate plane
perpendicular to the magnetic field. There exist two al-
ternating phases of motion. During one phase the elec-
tron and the nucleus are close together and interact
strongly, i.e., the Coulomb and the magnetic energies are
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of comparable order of magnitude. These periods of
motion correspond to the black bubble in Fig. 3(c).
Within the concept of the determination of local
Ljapunov exponents [14,15] this means that we obtain a
nonvanishing local Ljapunov exponent and therefore we
will refer to this phase as a chaotic one. It corresponds to
the periods of irregular oscillations in the c.m. as well as
the internal energies, shown in Figs. 3(a) and 3(b), respec-
tively. The second phase of the electronic motion plotted
in Fig. 3(c) is a large-amplitude (note the large coordinate
range) quasiregular motion of circular shape that has a
vanishing local Ljapunov exponent. During this period
of motion the magnetic forces dominate over the
Coulomb interaction, which provides only a small pertur-
bation. The quasiregular phases of motion correspond to
the situation of strongly increased internal and therefore
lowered c.m. energies, which occur, in Fig. 3(a), for ex-
ample, in the time interval 2.5X10'& T &5X10 a.u.

In Fig. 3(d) the z component of the internal coordinate
is illustrated as a function of time. The chaotic phase of
motion corresponds to the irregular oscillations of small
amplitude, whereas the quasiregular phase consists of
large-amplitude oscillations in the z coordinate. The cir-
cularlike motion in the plane perpendicular to the mag-
netic field [see Fig. 3(c)] is therefore accompanied by huge
oscillations in the direction parallel to the field. An
analysis of the motion illustrated in Fig. 3(b) by consider-
ing its power spectrum clearly shows a 1/f" scaling

behavior over many decades, which is due to the chaotic
part of the motion, and on top of it at small values of the
frequency a broad peak, which arises due to the quasireg-
ular phase of large amplitude oscillations. The striking
feature of the trajectories is therefore their intermittent
behavior that consists of alternating phases of chaotic
and quasiregular motion. The latter phase is initiated by
a rapid energy transfer process from the c.m. to the inter-
nal motion. We emphasize that intermittency is, for the
parameter values considered in the present subsection, a
generic phenomenon in phase space.

Let us now consider how the intermittent behavior
shows up in the c.m. motion of the atom. To this pur-
pose we have illustrated in Fig. 3(e) the c.m. motion in
the coordinate plane perpendicular to the magnetic field.
We observe an approximately circular motion with a ra-
dius of about 3 X 10 a.u. , which contains circles of small-
er radius. The small circles correspond to the quasi-
periodic phases of motion during which the system is
very weakly bound and the c.rn. motion is approximately
given by the motion of the bare helium nucleus with
charge —2e in a magnetic field. The large circle corre-
sponds to the chaotic phase of motion during which the
system is strongly bound. However, the chaoticity is
"too weak" in order to be "observed" on the time scale of
Fig. 3(e). The radius of the large circle is therefore ap-
proximately given by Eq. (12), which is based on the pic-
ture of the motion of a pseudoparticle with charge Q and
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mass M in a magnetic field and has been discussed in de-
tail in Sec. III A. The intermittent behavior in the elec-
tronic motion therefore reAects itself in the c.m. motion
by alternating phases of almost circular motions with
different radii. Finally, we mention that intermittency
has also been observed and investigated for the highly ex-
cited hydrogen atom with a large pseudomomentum. Al-
though the manifestation of intermittency is for the
present case of an ion quite different from that of the neu-
tral hydrogen atom, the mechanisms are very similar.
Concerning the details of this mechanism we therefore
refer the reader to the literature [6].

D. The self-ionization process for fast atomic ions

In the context of the discussion of the intermittent dy-
namics of the ion we observed in the preceding subsection
that, after a period of oscillations in the c.m. energy,
there occurs a strong Aow of energy from the c.m. to the
electronic degrees of freedom [cf. Fig. 3(a)]. This sudden
decrease in the c.m. energy introduces the quasiregular
phase of a weakly bound electronic motion. The natural
question now arises whether the energy transfer can be-
come large enough in order to ionize the atom. To inves-
tigate this we consider in the present subsection fast He+
ions, i.e., we study the classical dynamics of the ion for
large initial c.m. velocities.

Let us first consider parameter values, i.e., initial inter-
nal energies and field strengths, for which the corre-
sponding phase space of the He+ ion with the assumption
of an infinite nuclear mass is completely regular. The ini-
tial internal energies correspond to an electronically
highly excited ion. Since the free motion of a charged
particle in a homogeneous magnetic field is confined to a

certain coordinate range, ionization, i.e., infinite separa-
tion of an electron from the remaining charged core of an
atom, is, in the presence of a magnetic field, only possible
in the direction parallel to the magnetic field. In Figs.
4(a) and 4(b) we illustrate the time dependence of the
component of the electronic coordinate parallel to the
magnetic field as well as the time dependence of the c.m.
energy, respectively, for a typical trajectory. The initial
c.m. energy is jI2.2677 a.u. , which is many orders of mag-
nitude larger than the i~ternal energy but still well within
the regime for which a nonrelativistic approach is valid.
After a transient time T=7X 1,0 a.u. of many bound
regular oscillations in the internal motion, a strong Qow
of energy from the c.m. to the internal motion takes
place. The internal energy is hereby increased above the
threshold for ionization E;„,=0 and the ion immediately
ionizes, i.e., the electron escapes in the direction parallel
to the magnetic field. The transferred energy, which is,
in our case of Figs. 4(a) and 4(b), approximately 6X lo
a.u. , corresponds to only a small fraction of the total ini-
tial c.m. energy. Again it is worth noting that the ob-
served ionization process via energy transfer from the
c.m. to the electronic motion is only possible due to the
presence of the coupling term &2 in the Hamiltonian (3).

Next let us consider the ionization process for initial
internal energies and field strengths that yield a complete-
ly chaotic phase space for the corresponding He+ ion
with the assumption of an infinite nuclear mass. Figures
4(c) and 4(d) again show the electronic coordinate com-
ponent parallel to the field and the c.m. energy, respec-
tively, as a function of time for a typical trajectory.
Starting with an initial c.m. energy E„. =0.015 808 a.u. ,
we observe, after a very short propagation time, an in-
stantaneous loss of c.m. energy, which increases the
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internal energy above threshold. However, this time ion-
ization does not occur immediately after the energy
transfer has taken place. Instead we observe many fur-
ther major steps of changes in the c.m. energy during
which the internal energy is always above the escape
threshold. To each such step there belongs a large ampli-
tude oscillation in the electronic motion of the kind dis-
cussed in Sec. III C. Finally, after a propagation time of
approximately 5.5 X 1Q a.u. , ionization takes place. The
ionization time therefore depends not only on the initial
internal energy, the c.m. energy, and the field strength,
but also on the intrinsic dynamics, which is, of course,
covered by completely specifying the initial conditions of
the individual trajectory. In the following we will investi-
gate the statistics of the ionization process as a function
of the c.m. and the internal energies.

In order to obtain a statistical measure for the ioniza-
tion process, we have calculated, for an ensemble of tra-
jectories, the fraction of ionized orbits as a function of
time. The initial internal energy was chosen to corre-
spond to a completely chaotic phase space of the He+ ion
if the nuclear mass were infinite. The initial conditions
for the internal motion have been selected randomly on
the energy shell. In Fig. 5 we have illustrated the frac-
ltion of ionized orbits as a function of time up to T=1Q
a.u. for a series of diFerent c.m. energies and for a fixed
laboratory Geld strength of B =1Q a.u. For an initial
c.m. energy of E, , =Q.Q53 a.u. , which corresponds to
an initial c.m. velocity of V, =8.4X1Q ms ', about
70% of the trajectories are ionized within a time of
T=10 a.u. (2.4X10 s), which is the tenth part of the
integration time. In contrast to this we have, for
E, „, =0.01 a.u. , only about 30% of ionized orbits within
the total integration time of T=10' a.u. (2.4X10 s).
The ionization process therefore depends very sensitively
on the initial c.m. kinetic energy of the ion.

For initial internal energies and field strengths that be-
long to the regular regime, much higher initial c.m. ve-
j.ocities are necessary to order to obtain a substantial ion-

1.Q

6 B 1P x1Q~

TINE (n. u. )

PIG. 5. Ionized fraction for an ensemble of 250 trajectories
as a function of time. Prom top to bottom the c.m. energies be-
longing to the ionization curves are F., =5.3 X 10
2.3X10, 1.7X10, 1.25X10 '-, and 10 a.u. , respectively.
The initial internal energy is always E;„„=—3.4X10 a.u.
The held strength is 8 =10 " a.u. All values are given in atom-
ic units.

ization rate. For example, for an initial c.m. kinetic ener-

gy E, =1 a.u. (V, =3.6X10 ms ') and an initial
internal energy E;,= —Q. QQ3 a.u. , about 13% of the tra-
jectories are ionized within T=1Q a.u. , whereas for the
same internal energy and E, =4 a.u. ( V,
=7.25X10 ms '), about 80% of the orbits are ionized
within the same time interval. The c.m. kinetic energy
necessary to observe ionization increases rapidly with de-
creasing internal energy and also with decreasing
strength of the external magnetic Geld.

IV. SUMMARY AND CQNCLUSIQNS

In the presence of an external homogeneous magnetic
field the c.m. and relative motion of an interacting parti-
cle system, such as a molecule or an atom, cannot be
separated. The residual coupling of the collective and the
internal motion is qualitatively diFerent for neutral and
charged systems. In the present paper we have investi-
gated the efFects and phenomena arising due to this cou-
pling in the classical dynamics of a charged two-body sys-
tem. and in particular of the He+ ion. We thereby dis-
tinguished between the regular, the chaotic, and the in-
termittent regimes which are characterized by certain
ranges of the parameter values (field strength, energy,
etc.).

For regular phase space and vanishing initial c.m. ve-
locity we observed four diferent (by orders of magnitude)
time scales in the c.m. motion. On the largest time scale
the e6'ect of a self stabiliza-tion of the c m of the .ion. on an
approximately circular orbit is observed. The origin of
this eFect and of the diFerent dynamical time scales is the
coupling Hamiltonian of the c.m. and the electronic de-
grees of freedom, which causes an oscillating Aow of en-
ergy between the collective and the internal motion. By
using a pseudoparticle picture and averaging over the fast
electronic degrees of freedom we were able to derive ex-
plicit expressions for the radius, the angular frequency,
and the mean kinetic energy for the long-time circular
c.m. motion. In the case of chaotic dynamics and vanish-
ing initial c.m. velocity, the c.m. motion looks, on a
short-time scale, very much like a random unbounded
motion. On the long-time scale we obtained severe devia-
tions of the collective Inotion from the circular motion
observed in the regular regime: the circular shape was
strongly disturbed even with one cycle and the c.m. left
the circular orbit completely within a few cycles.

The classical dynamics becomes even more interesting
if we increase the initial c.m. velocity. For total energies
slightly above threshold and initial internal energies (field
strengths, etc. ) that correspond to a completely chaotic
phase space we observe as a characteristic phenomenon
the intermittent dynamics of the c.m. as well as the inter-
nal motion. Due to a sudden strong energy transfer from
the c.m. to the electronic degrees of freedom and vice
versa, alternating phases of quasiregular and chaotic
motion are induced in the c.m. as well as the electronic
motion.

The most prominent effect occurs if the c.m. energy is
much larger than the absolute value of the internal ener-
gy of the ion. After a transient time of bound oscillations
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in the internal motion (energy) a strong Aow of energy
from the c.m. to the internal motion takes place. The
internal energy is hereby increased above the threshold
for ionization and the ion eventually ionizes, i.e., the elec-
tron escapes in the direction parallel to the magnetic
field. This self ioni-zation eQect has been studied in some
detail by considering the fraction of ionized orbits as a
function of time for an ensemble of trajectories. The ion-
ization process depends very sensitively on the initial c.m.
kinetic energy and the initial internal energy.

All the considered values for the initial internal energy
correspond to highly excited Rydberg states of the He+
ion in a strong laboratory magnetic field. For sufBciently
high excited electronic states the perturbation due to the
coupling Hamiltonian of the c.rn. and electronic degrees
of freedom becomes larger than the spacing of adjacent
levels due to the electronic Haxniltonian. As a conse-
quence, strong mixing of the electronic and the c.m. wave
functions occurs. In Ref. t12] estimations were given for
the regime where this strong mixing occurs. In particu-
lar, this quantum regime of mixing includes the above-
discussed classical regime for which we observe the pro-
cess of self-ionization of the ion. In addition, since we are
dealing with highly excited states for which the action is
much larger than the elexnentary quantum of action, it
seems probable that the self-ionization mechanism of the
ion survives quantization. In the latter case this should
have implications on difFerent areas of physics such as
plasma or astrophysics for which the stability of highly
excited ions in strong xnagnetic fields in particular at
finite temperatures is a relevant question.

The self-ionization efFect should also be observable in
laboratory experiments on fast moving ions in magnetic
fields. In order to observe the C6'ccts of the coupling be-
tween the c.m. and the electronic motion, the following
experiment is suggested. A fast beam of atomic ions has
to be injected in a homogeneous magnetic field and subse-
quently the ions are excited by photons whose appropri-
ately chosen frequency is below the threshold energy for
ionization. Nevertheless, ionization, i.e., electron emis-
sion in the direction parallel to the magnetic field, should
be observable by transfer of energy fram the c.m. to the
electronic motion. The typical electromagnetic decay
time of the Rydberg states of the ion i.s of the saxne order
of magnitude as our typical ionization times and they are
therefore competing processes. By varying the field
strength and/or c.m. velocity it is achievable that one or
the other process dominates.
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APPENDIX

In the following we briefly discuss our transformations
of the Newtonian equations of motion (5a), (5b), and (6).
The main problem we are concerned with is to regularize
the singularity that occurs due to the Coularnb potential
in the equation of motion (5b). From celestial mechanics

it is well known that the general twa-body pxoblem can
be regularized and smoothened via the Kustaanhcixna-
Stiefel transformation t16]. We will take advantage of
this well established. transformation for our nonseparable
charged two-body system in a magnetic field.

In a first step we introduce a fictitious tj.me parameter
s, which replaces the physical time t and is defined by

ds 1

dt r
(A 1)

where r is the absolute value of the relative vector r of the
two particles. After rewriting Eqs. (5a), (5b), and (6) as a
system of differential equations w&th respect ta the ficti-
tious time we extend the relative vector r to a faux-
dimensional coordinate vector x by adding a vanishirlg
fourth component. Subsequently we transform to a faur-
dimensional paraxneter space via the relation

where X(u) is the Kustaanheimo-Stiefel matrix, a four-
dimensional generalization of the Levi-Civita matrj. x

0] Q2 Q3 04

04 0)
X(u)=

Q3 04

Q4 Q3 f42

h'= —BX(QBXR+eaBXr —K)r',
M

where p=(MO —Zm )/M and the prime denotes the
der1vative with respect to the paraxneter s. r and I in
Eqs. (A3) and (A4) have to be substituted by the corre-
sponding components of Eq. (A2) and the components of
the identity

x' =ZE(u )u',

respectively. x' is the four-dimensiarlal analog af r' with
a vanishing fourth component. A is the internal energy
and reads in parameter space as

h =-(uu) '[2p(u'u') —Ze ] .

In addition, we have the equation of motion that arises
from Eq. (6)

R'= — (QB X R+ eaB X r —K),(uu)
M

where again r has ta be replaced by the carresparlding
components of Eq. (A2). Our working equations
(A3) —(A5) together with (A7) aie smooth and free of any

and u =(u „u2,u3, u4) is the vector in parameter space.
Us1Ilg thc cquat1OIls of ITlatian for thc 1rlicr'llal cnc1 gy
with respect to the fictitious time s an.6 in particular thc
translation of Eq. (6) to the fictitious time we arrive, after
some algebra and repeated application af the transforma-
tion law (A2), at the final equations of motion

u" —— hu+ X (u)BX(Pr'+aR')=-0,1 e

2p 2p
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singularities. The physical time can be obtained by
simultaneous integration of Eq. (A I).

As a numerical integration algorithm for the above
equations of motion we used a Bulirsch-Stoer integrator,
which proved to be very fast for the smoothened equa-

tions of motion. In addition, due to the large step size of
the integrator, it was possible to obtain an extremely high
accuracy. For example, in the deep regular regime we
obtained, after the integration of 10 Kepler cycles, still
the impressive overall accuracy of 10
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