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Calculation of electron-helium scattering
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We present the convergent close-coupling theory for the calculation of electron-helium scattering.
We demonstrate its applicability at a range of projectile energies of 1.5 to 500 eV to scattering from
the ground state to n ( 3 states. Generally good agreement with experiment is obtained with the
available difFerential, integrated, ionization, and total cross sections, as well as with the electron-
impact coherence parameters up to and including the 3 D-state excitation. This agreement is shown
to be overall the best of the currently used electron-helium scattering theories. On occasion, some
significant discrepancies with experiment are observed, particularly for the triplet-state excitations.

PACS number(s): 34.80.Bm, 34.80.Dp

I. INTRODUCTION

The convergent close-coupling (CCC) method for
electron-hydrogen scattering was introduced by Bray and
Stelbovics [1]. It was developed in response to the long-
standing discrepancies between the measured and calcu-
lated angular correlation parameters for this most fun-
damental electron-atom scattering problem. The CCC
method was unable to resolve the discrepancy with ex-
periment. However, as it solves the full nonrelativistic
three-body problem to a demonstrated precision (con-
vergence), there is no more that we can do to improve
the theory for this scattering problem, and we take the
view that in this case theory is likely to be more accurate
than experiment. It is ironic that the success of the CCC
method was not demonstrated on the problem which pro-
vided considerable motivation for its development, but in
many other diverse applications.

The CCC method relies on the close-coupling (CC)
formalism for solving the coupled equations without ap-
proximation. Convergence is tested by including an ever
increasing set of target states in the CC formalism. The
target states are obtained by diagonalizing the target
Hamiltonian in an orthogonal Laguerre basis. The usage
of such bases ensures that completeness is approached as
the basis size is increased. The square integrability of the
basis ensures that both the negative and. positive energy
states are square integrable, with the former converging
pointwise to the true eigenstates with increasing basis
size, while the latter provide a discretization of the tar-
get continuum. The treatment of both the discrete and
continuum parts of the target space via the CC formalism
allows the validity of the CCC method to be independent
of the projectile energy or the transition of interest.

As we are only interested in developing general scatter-
ing theories we value very highly any test that may inval-
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idate the CCC method. In our view the most fundamen-
tal test is provided by the application to the Temkin-Poet
model [2,3], which simplifies the electron-hydrogen scat-
tering problem by treating only states with zero orbital
angular momentum, and has been solved to a high accu-
racy in a broad energy range. Application of the CCC
method to this problem [4] demonstrated that, as the La-
guerre basis size was increased, the results converged to
the correct values at all energies. Pseudoresonances, typ-
ically associated. with square-integrable representations
of the continuum, diminish and disappear with increas-
ing basis size. For a detailed example of this efFect near
a fixed pseudothreshold, see Ref. [5]. We consider this
model problem to be very important and have provided
an extensive set of tabulated results for this case [6].

Another important test of the method is provided by
the calculation of total ionization cross sections and spin
asymmetries for electron impact of atomic hydrogen [7].
This demonstrated that electron flux was distributed cor-
rectly between the independent singlet and triplet ioniza-
tion channels, thus validating the treatment of exchange
and the use of discretization of the continuum. In fact
we may readily use the CCC Inethod to calculate reliably
(e, 2e) differential cross sections [8].

The CCC method has been generalized to include hy-
drogenic atoms and ions as targets [9]. These are those
targets for which the frozen-core Hartree-Fock approxi-
mation yields relatively accurate target states. Perhaps
the most conclusive demonstration of the reliability of the
CCC method, prior to the current work, was the ability
to obtain quantitative agreement with almost all of the
available spin-resolved measurements in electron-sodium
scattering [9]. It was demonstrated that correct results
for the simple, though spin-resolved, 38-3S and 3S-3P
transitions were, on occasion, only possible if the target
continuum was treated very accurately. In our view the
remarkable success of the CCC method for the sodium
target is due primarily to the correct description of the
electron-hydrogen scattering system. A summary of ap-
plications of the CCC method to electron scattering on
hydrogenic targets may be found in Ref. [10].
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We now turn our attention to the electron-helium scat-
tering problem. Over recent years it has become appar-
ent that the status of theory for this problem is consid-
erably worse than that in the case of hydrogenic targets.
What seems to us as the most fundamental cross section,
namely, the elastic, is unable to be described by most
theories. This is because a large proportion of the tar-
get polarizability is due to the target continuum. As far
as we are aware, of the currently used. theories only the
coupled-channels optical (CCO) theory [11,12] includes
an approximate treatment of the continuum. This is suf-
hcient to get very good elastic cross sections, but a nurn-
ber of approximations in the CCO theory make it less
reliable for the triplet transitions. An early application
of the B-matrix theory [13] included a single pseudostate
which was suKcient to give good elastic cross sections.

By treating many discrete target eigenstates (up to
29) via the B-matrix method Fon et al. , [14,15] hope to
get good results for the inelastic transitions at energies
not far above the ionization threshold. These calcula-
tions do not attempt to treat the target continuum, and
so do not obtain correct elastic cross sections. Never-
theless, such calculations have dominated applications to
electron-helium scattering since the late 1970s.

There are also perturbative methods available.
These include the d.istorted-wave Born approximations
(DWBA) of Bartschat and Madison [16] and first-order
many-body theory (FOMBT) of Cartwright and Csanak
[17]. These usually give a good description of n P excita-
tion, but are less reliable for some of the other transitions,
and are primarily high energy approximations.

Our aim is to provide a single electron-atom and -ion
scattering theory that will yield reliable results for all
transitions of interest including elastic, excitation, ioniza-
tion, and total cross sections for energies below 1 keV. At
higher energies the Born approximation provides a more
computationally eKcient way of generating electron scat-
tering information. Having achieved this for hydrogenic
targets we now demonstrate this for the helium target.

This work is structured in the following way. In Sec.
II we give the formalism for generating the helium tar-
get states to be used in the close-coupling formalism. In
Sec. III we present the CCC theory for the calculation
of electron-helium scattering. This is followed by an ex-
tensive results Sec. IV. In subsection IV A differential
cross sections for excitation of the ground state to n & 3
states are given at an energy range of 1.5 to 500 eV.
In the following subsection IVB we give the integrated,
ionization, and total cross sections. In subsection IV C
the electron-impact coherence parameters (EICP's), as
defined by Andersen, Gallagher, and Hertel [18], are pre-
sented for the n ' P and 3 ' D states whenever there are
available measurements. In Sec. V we draw conclusions
arising &om this work and indicate future directions for
our research.

II. GALGULATIQN OF HELIUM TAB.CET
STATES

The nonrelativistic helium target Hamiltonian HT can
be written as

HT ——Hl+ H2+ V(2,

where

(2)

for i = 1, 2, is the one-electron Hamiltonian of the He+
ion (Z = 2), and

&» = 1/I» —»I

1
V -(x) = -„&~.~. (r)&i -.(&)X(~). (4)

Here x is used to denote both the spatial and spin coor-
dinates. The radial part of the single-particle functions
we take to be the Laguerre basis

( ~, (k —1)~

(2I + 1 + I-.)

x (A(r)'+' exp( —Air/2)1 „'+, (A(r),

where the I&+i (Arr) are the associated I,aguerre poly-
nomials, and k ranges &om 1 to the basis size N~.

For brevity of notation we denote helium states by
4 (xi, x2), where n = 1, . . . , %, with corresponding or-
bital angular momentum / = l, spin s = s„, and parity
7r = 7r, and which may be written as

@„(x„x,) = 5 C~pl~@ (x, )pp(x, ):ir„l„ms„v). (6)

Here the configuration interaction (CI) coefficients C p
satisfy the symmetry property

~(~) ( 1) E +&P —
&

—8 ~(~)

to ensure antisymmetry of the two-electron target states.
The two-electron functions in (6) are

~(p (xi)(pp(x2): irlmsv)

where 7r = (—1)'-+'&,

ll~~p: ~m) = ). &(.(,(' '&i.- (~i)&i,~, (&2), (9)

and the two-electron spin function is de6.ned by

is the electron-electron potential. Atomic units are as-
sumed throughout.

We use the I-S coupling scheme, and so the helium
wave functions C ' are characterized by the orbital an-
gular momentum /, spin s, and parity 7r. For each combi-
nation of ls7r we diagonalize the target Hamiltonian (1)
in an antisymmetrized two-electron basis. One-electron
orbitals p (x), which are used to build the two-electron
basis, are a product of a radial function, a spherical har-
monic, and a spin function (a = +1/2)
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X(sv) = ) C, ', ' y(a. i)y(o2).

The target states C' (xi, x2) satisfy

(C„)H~)C„)=.„S„„,
where e„ is the energy associated with 4„(xi,x2). Some
of the 4' (xi, x2) will be true discrete eigenstates, oth-
ers will be a discrete representation of the target contin-
uum. As the basis sizes N~ are increased the lowest in
energy states converge to the true eigenstates, whereas
the positive energy states provide an increasingly dense
discretization of the continuum.

Whereas the above formalism is general and includes
two-electron excitation, in practice we have found that
it is suKcient to make the &ozen-core approximation, in
which all configurations have one of the electrons occupy-
ing the lowest orbital. In order to get a good description
of both the ground and excited states we take Ap ——4
for k = 1 in (5). This choice generates the He+ is or-
bital, which allows us to take into account short-range
correlations in the ground state, as well as being able to
obtain an accurate representation of a number of excited
discrete eigenstates. To obtain an approximately equal
number of negative and positive ' S excited states we
take Ap = 1.25 for k ) 1. Choosing such Ap leads to
a nonorthogonal basis. This results in the minor com-
plication of having to solve the generalized eigenvalue
problem. For all other ' L states, we take the same A~

for all k. For P states we take A~ 1, for D and F states
we take A2 A3 0.7. The resulting frozen-core model
(FCM) energies for n & 4 states are given in Table I.
These are compared with experiment and. the energy lev-
els used in the 19-state R-matrix calculations [19]. Even

State
1 S
2 S
2 S
2 P
2 P
3 S
3 S
3 P
3 D
3'D
3 P
4 S
4'S
4 P
4 D
4'D
4 I'
4'E
4 P

FCM
23.736
4.740
3.901
3.573
3.332
1.864
1.648
1.567
1.512
1.512
1.490
0.989
0.901
0.874
0.851
0.850
0.850
0.850
0.841

R19
23.315
4.740
3.900
3.573
3.328
1.858
1.645
1.567
1.512
1.512
1.488
0.974
0.871
0.870
0.851
0.850
0.850
0.850
0.841

Experiment
24.58
4.767
3.971
3.622
3.368
1.868
1.666
1.580
1.513
1.513
1.500
0.993
0.914
0.879
0.851
0.851
0.850
0.850
0.845

TABLE I. One-electron ionization energies (eV) of the
n & 4 helium states calculated in the frozen-core model
(FCM), and the configuration interaction model (R19) as used
in the 19-state R-matrix calculation [19]. The experimental
values are due to Moore [34].

though the latter used a complex configuration interac-
tion expansion we find our energy levels to be generally a
little better for all excited states and significantly better
for the ground state. Our results for the energies and
oscillator strengths are consistent with the early work
of Cohen and Kelly [20] and Cameron, McEachran, and
Cohen [21].

III. CALCULATION OF ELECTRON-HELIUM
SCATTERING

A. The coupled equations for the T matrix

The total energy E, Hamiltonian H, and wave function
~4) with outgoing spherical wave boundary conditions
are related by

0 = (E + —H)
~
e) = (E + —Hz —Hp —Vp] —Vp2)

~
e),

(12)

where the 0 index is used to denote the projectile space,
with the 1 and 2 indices being used for target space.
To solve this equation, we write ~4') as an explicitly an-
tisymmetrized wave function utilizing the multichannel
expansion

(xoi xi i x2) (1 Ppl P02)Q (xoi xi 1 x2)
N

= (1 —Poi —Po2) ) .C'n(xi, x2)f„(xo),

(14)

where Pp is the space (coordinate and spin) exchange
operator. In the CCC method we rely on the complete-
ness of the Laguerre basis so that;

lim i' (xp, xi i x2) = 4(xp, xi, x2).
Nmoo

(i5)

A discussion regarding the nonuniqueness of the expan-
sion (14) will be given in a separate subsection.

Substitution of (13) into (12) results in

(E(+) —Z, —U, —H )y (x„*„x.)
= V@ (xp, xi, x2), (16)

where

V = Vp —Uo + Vpi + Vp2 + (E —H) (Ppi + Po2) (17)

A helpful feature of the CCC formalism is that the
derivation of the coupled equations and the method of
solution are essentially independent of the choice of the
target, and are similar to those given for hydrogenic tar-
gets [9]. We will not concentrate our attention on these
issues here, but give a general outline. However, the cal-
culation of the V-matrix elements for the helium target
is very much more complicated than that for hydrogenic
targets [10], and will be given in some detail.
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and the limit of large N is implicit. This rearrangement
is such that the asymptotic (large rp) Hamiltonian is
Kp + Up + HT and this will be used to generate the
Green's function and boundary conditions for the total
wave function

(k,'-&c, lT"le,kI+&) = (s' e, lvly )

where the distorted waves (discrete or continuous) lkl+l)
satisfy

lim 4(xp, xr, x2) = y(o) exp(ik; . rp)4;(xr, x2), (18)
rp ~oo

(sq —Kp —Up)lkl+i) = 0. (2o)

where A:, is the incident projectile momentum and 4; is
the initial target state. In the CCC method we usually
solve the coupled equations using a distorted-wave for-
malism [9]. This allows the use of arbitrary short-ranged
potentials Vp, which are used purely as numerical tech-
niques for reducing the required computational resources
in solving the coupled equations.

We define the T matrix to be

The on-shell momenta Er, = k /2 are obtained f'rom

E —e„—k„/2 = 0, (21)

and exist only for open channels n such that E = e, +
k2/2 & e„.

The coupled I ippmann-Schwinger equations for the
distorted-wave T matrix are [9]

~ k' 'C Ve kl-l kl-lC„T" C,k,"'
(k,' 'e, lT" lc,kI") = (k,' 'e, lvlc, k,"') )

n=l
(22)

To obtain the physical T matrix only the elastic term (f = i) requires modification due to the addition of the
one-electron T matrix for the Up potential [9].

Using antisymmetry of the target states we may write the V-matrix elements of (17) as

(ky '@~IVIO-k'+') = (ky '@ylVp —Up+ 2V»lc'-k'+') + 2(ky 'C'xl(E —II~ —IIp —Vor —V»)p»IC'-k'+'). (»)
The first term is the direct matrix element and the second term is the exchange matrix element.

We solve the coupled Lippmann-Schwinger equations for the T matrix by expanding (22) in partial waves J of the
total orbital angular momentum, total spin S, and parity II. The reduced V (or T) matrix elements are defined by

(L'k'l l(xp), n'7r'l's'(xr, x2) ll Vrr& ll Ik + (xp), n7rls(xr, x2))

M, m, cr, v
M', m', o'r, v'

gMmMJ gM'm MJ go'vMg go v Ms dI dI yss I / y I

x(k'l i '(x )4„,' ' (xr, x2) l
V

l
4„' '"(xr, x2)kl+lo. (* )). (24)

Here we use the coupled angular momentum form for the three-particle wave function

l
Ikl~i(xp), nels(x„x, ):JSII)

= (2/~)' (krp) 'i e+' 'uL, (krp) ) CLr~™C,s 'YI M(~o)y(rr)4„' (xr, x2), (25)
c7)v

M, rn

where ul, (krp) is the radial part [9] of the projectile wave function in partial wave J.
If the initial target state has s = 0 then the total spin takes only the value S = 1/2, otherwise S = 3/2 is also

possible. For irntial l = 0 states only the "natural" parity II = vr( —1) = vr'( —1) = (—l)~ is used, otherwise the
"unnatural" parity II = (—1) + also arises.

Dropping the explicit space notation, the partial-wave Lippmann-Schwinger equation corresponding to (22) for the
reduced T-matrix elements is

= (LJ k~ l, f7r y l y s y l l Vrrs l l
L;k, l, i 7r; l, s, )

(Lyk&, f7rylysyllv»llLkl &, nvrls)(Lk& &, nvrlsllT» llL;k,.+,i7r;l;s;)+
E~+~ —~I, —~„n=l L

(26)
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The method of solution of this equation is identical to
the case of hydrogenic targets [9].

Io" = ).Iv-)(~. l. (30)

B. Numerical stability and uniqueness of the T
matrix

The nonuniqueness problem is solved by enforcing the
condition that

The above derivation leads to formally correct coupled
equations, but when solved numerically the required so-
lutions may be unstable. This is due to the fact that the
expansion (14) is too general, and does not define the
scattering amplitudes f uniquely. For example, if we

suppose that some functions g„are such that

Po ) C' (xi x2)IO f (xo)

).—c-(»»)Io f-(»), z = 1, 2, (31)

0 = (1 —Poi —P02) ) 4„(xi,x2)g„(xo),
n=1

then it is clear that

(27) which ensures that gf = 0 for any nonzero e in (28). In
other words, we specify that @ is totally antisymmetric
like 4, but only in the space spanned by the CI func-
tions (see Ref. [10] for more detail). This condition is
implemented numerically by considering the matrix ele-
ment of the energy term in (19)

(xo, x„x2) = (1 —Poi —Po2)

x ) 4„(xi,x2) [f„(xp) + eg„(xo)],

(28)

for any constant 0. This nonuniqueness of expansion
manifests itself as numerical instability in the half-on-
shell Tf, (k, k,.) matrix. On the energy shell (k = kf)
Stelbovics [22] showed that the result should be unique
due to the fact that the nonunique part of the T matrix
is formally zero on the energy shell. However, compu-
tationally, on occasion we find that off-'shell instability
affects the on-shell results. This becomes evident when a
small variation in the momentum quadrature grids leads
to a large variation in the on-shell T-matrix elements [5].

This problem has been addressed for atomic hydrogen
[1,22], and similarly for hydrogenic targets [9,10]. We
first note that in order to satisfy (27) the functions g„
must be spanned by the same single-particle functions
that are used in the CI expansion of the target states
4 . Therefore, we only need to address the problem of
nonuniqueness in the expansion

E(k, e, lPoily") = (1 —e+ e)E(k,' 'e, lP»I,"l@")

= (1 —e)E(kg~ l@flPoal@ )

eE(IC~ 4—'y lIO lQ ), (32)

which electively imposes condition (31) for any nonzero
constant e. Whereas (32) introduces explicit e and N
dependence to the V-matrix elements the resultant T
matrix remains unique on and off the energy shell. For
some numerical examples, see Ref. [5]. More often than
not even 0 = 0 gives the same on-shell T-matrix elements,
but this is less reliable than for non-zero 0. Typically we
take 0 = 0.5.

The symmetry condition (31) has the implicit assump-
tion that such an expansion is possible. In the case where
both electrons in 4' are treated equivalently this is the
case. However, in the frozen-core approximation consid-
erable care must be taken to impose antisymmetry in
only the two-electron space of the projectile and a target
electron whenever both electrons may be spanned by the
same single-particle functions.

N

Io @ (xo, xi, x2) = ) 4„(xi,x2)IO f„ (xo),
n=1

(29) C. Calculation of the reduced V-matrix elements

where the projection operator Io is made from the CI
single-particle functions

We now use the CI representation of the helium tar-
get wave functions to express reduced V-matrix elements
using the unsymmetrized functions (8), and write

(L k (xo) n 7r I s (xi, x2) l l Vns l l
Lk(xo) n7I ls(xi xz))

). + "p &~s &L'k'(x&) v' (x&)v'o(x2): ~'l's'llViisllLk(xo) v'~(xi)v'&(x2): ~~s)- (33)
cx,P,p, b
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Standard. formulas of the tensor operator algebra [23]
can be applied to calculate the matrix elements. From
the structure of (26) it can be seen that the complex
phases of (25) may be trivially factored out. For brevity
of presentation we drop them from the following rela-
tions, and indicate when they should be restored. where

= Vo —Uo+ 2VO

- (—1)'—= 47r ) —vg(rp, rg)Y„* (r, ) Y),„(r2),
A,.""

Direct matr ix clem, ents
vg(rp, rg) = —bo 8(rp —rg)

l

—+ Up(rp) + 2
ro

We use the multipole expansion of the potential in the
direct matrix element, and write Then the direct matrix element is given by

(L'k'(&o)) &p~(&i) pp(T2): ~'~'s'll+ IILk(&o), p~(xz)y//(x2): 7rts)

II L' I'
)jI/L~ X (

1)&+~'~L+~+& +&/s+&Coop Cooo
8' V'p V'~ p / IAI' l~Al

x drqdrpul, (krp)ul. (k'rp)P (ry)P&(ry)vy(rp, ry), (36)

where we have used the shortened notation P
The overlap integral between the single-particle functions

(~/ l~~) = ~I,
' dr&/ (r)&~(r).

The range of allowed values of A is determined. by tri-
angle rules for angular momenta (l', A, l), (L', A, L), and
(l, A, l~).

2. Exchange matrix elements
Calculation of the exchange matrix elements involves

the application of the corresponding space exchange op-

I

erator and consequently recoupling of the angular rno-
menta to get the same coordinate ordering on the left
and right sides of the matrix element. After this the
calculation is a straightforward application of the tensor
operator algebra relations.

We separate the exchange matrix element calculation
into a number of steps. First we consider calculation
of the matrix elements for the electron-electron potential
Voq. To do this we apply the space exchange operator Poq
to the right-hand side of the three-electron wave function
and then recouple the angular momenta, resulting in

(L'k'(») ~-(»)~/ (»):~'l's'll&»P» ILk(*o) v~(»)v ~(»): ~ls)

( l ) ) ( 1)t +lP+l~+1+l'+ J+A+1+s+s' (2
. + 1)ll 8& LL~CL p~ C/

I lp j 12 12 8' lp & /' L' I' J

x dr, drpul, (kr, )ul. (k'rp) P (r, )P~ (rp)
P)

(38)

We now turn to the electron-electron potential V02. The space exchange operator Poq is applied to the right-hand
side, but the angular momenta are recoupled for the three-electron wave function on the left-hand side, to obtain

(L'k'(*o), g (~i)pp(~2): ~'~'s'llVo2&oillL"(~o), p, (*x)ys(~2): ~ls)

1)
L'+I'+l +l l/s~++1 +sf+(s/& /) j"

( lLk)ark'k
88

ooo ooo (I' 4 i)(1' /O 1)(1/2 1/2 o

x drpdr2 „,ul, (k'rp)P/3(r2)P~(rp)P/, (r2).
P)

(39)

The overlap integral between the projectile wave function and the one-electron orbital is
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&y iLk) = bi dr/ (r)uL, (kr). (40)

Calculation of the matrix elements of the target Hamiltonian (1) has to be done explicitly because the relation
HT4 = e 4 holds only for true eigenstates. We first consider the calculation of the matrix elements for the
two-electron potential V&2. Here it is convenient to recouple the angular momenta on the right-hand side, to obtain

(L'k'(xo), p~(x))y)s(x2): m. 'l's ~~V)2Po) ~~Lk(xo), p~(x))ps(x2): ~ls)

~/ I1)L'+)'+) +Is+i~41+8+8'ljl -
g)l g )L)k)) Q ~pop ~pop 4 4 / /2

] ~~2 ~+~ ~L, A~]
P)

(41)

The remaining operators of Hz are H& and H2. These may be combined with the Ho term to yield

(L'k (xo), p (x))gp(x2): 7r'l's'~~(E —Ho —H). —H2)Po). ~~Lk(xo), F~( x))p s( x2): 7rls&

1)r,+)+) +)~+).+,+, &&,
., L ls l' 1/2 1/2 s

7rk'k (
'

t~ J & 1/2

ILk& &O')s IV's& &L k
I p~&(E(1 0) sA. " ski

—
&v - ILk) &V al es& &L'k'I Vo —Up

I V ~&
—&L'k'l& &V ~ le s& &~- I

V~ —fI~ ILk&

—&L'k'l~~& &V -ILk& «)s IH2IV s&
—E~&L'k'IIo" l(Lk& «n I v s& &~-I v ~& (42)

(p ~Vi ~Ik) = Zk'g f dry (r)u~—()r)/r (43)

The matrix element of H2 contains K2 which is handled
using analytical properties of the I aguerre functions.

For the higher partial waves J the two-electron ex-
change matrix elements (39) and (41) and one-electron

where we have used (20) and (32). The overlap integral
between the projectile wave function, the one-electron
potential, and the one-electron orbital is, for example,

Hp + V()2 = Hz' (xp, x 2 ) —H2 (44)

for true eigenstates n'l'8' and nl8 we obtain

I

exchange matrix elements (42) disappear due to the over-
lap integrals between the one-electron orbitals and the
projectile wave functions.

If the calculated target wave functions are good ap-
proximations to the exact target eigenfunctions then the
relation HT4„= ~ C„can be used to simplify calcula-
tion of the exchange matrix elements. Using the relation

(L'k'(x()), n't's'(xg, x2) ii [HT (x„x2) + V()2 + Ho]Po) ii Lk(x()), nls(x„x2)&

= &L'k'(xo), n'l's'(x), x2) ~~ (e + e —Hg)Pp) ~~ Lk(xo) nls(x) x2)) (45)

which is much simpler to calculate.
In summary, the full reduced matrix element for a par-

ticular J, S, and II is the sum of (36), (38), (39), (41),
and (42), multiplied by the appropriate complex phase
factors in (25). Note that the above relations for the re-
duced matrix elements do not make the assumption of
the &ozen-core model.

IV. RESULTS

In this work it is our aim to demonstrate that the CCC
method is able to provide a relatively accurate descrip-

I

tion of electron-helium scattering, irrespective of projec-
tile energy or transition of interest. Thus far we have pre-
sented the CCC formalism for the electron-helium scat-
tering problem assuming nonrelativistic quantum me-
chanics, and that the center of mass is at the nucleus. As
is the case with the CCC method for the atomic hydrogen
target no further assumptions are introduced. However,
in the latter case we only need to establish convergence
in the one-electron target space, whereas in the former
the target space contains two-electron excitation. Us-
ing desk-top computational resources we have no way of
treating the full two-electron target space. Instead, we
introd. uce the approximation of treating the helium target
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by the frozen-core model (FCM), where we restrict one
of the electrons to be the 18 He+ orbital. The FCM ap-
proximation reduces convergence studies to treating only
one-electron excitation. Our tests of this approximation
for low energy elastic scattering, which requires very few
expansion states, showed negligible e8'ect.

To fulfill our aim we shall demonstrate good agreement
with experiment at a broad range of energies, and a large
number of transitions. This is a rather substantial task
which involves the testing of convergence at each projec-
tile energy. To simplify convergence studies, in the most
dificult intermediate energy region, w'e present at most
three calculations, denoted by CCC(75), CCC(69), and
CCC(63). The former has a maximum of 169 channels
and couples a total of 75 states consisting of 12 S, 11
each of S, P, and P, nine each of D and D, and six
each of E and E states. The 69-state calculation has a
maximum of 133 channels, and couples 13 S, 12 each of
S, P, and P, and ten each of D and D states. The

last couples 63 states consisting of 12 S, 11 each of S,
P, and P, and nine each of D and D, with a maxi-

mum of 121 coupled channels. Note that a state with or-
bital angular momentum I generates a maximum of l+ 1

channels. For this reason inclusion of higher target-state
l leads to a rapid growth in the size of the calculation.
Thus the CCC(75) calculation has the largest l „=3,
but the CCC(69) calculation has more states within each
l for 0 & l & l „=2. The difference between the two
calculations gives a good indication of the accuracy of
convergence within the frozen-core model. In the case
where the CCC(75) and the CCC(69) results are a little
different the CCC(63) may be used to suggest which of
the calculations is likely to be more accurate. The diKer-
ence between the CCC(75) and CCC(63) results is solely
due to the addition of 12 F states in the former. The dif-
ference between CCC(69) and CCC(63) results is solely
due to the increase, by one for each target symmetry, of
the I aguerre basis sizes. The two larger calculations are
close to the limit of our desk-top workstation computa-
tional resources.

In this work we have chosen to give a broad overview
of the CCC method for electron-helium scattering. For
this reason we shall not concentrate on presenting de-
tailed discussion of each figure. Instead, for the sake of
brevity, we shall make only brief comments and rely on
the interested reader to obtain the detailed information
&om the figures and tabular entries.
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Brunger et al.

A. DifFerential cross sections

We begin the presentation of difFerential cross sections
by starting with low energy elastic cross sections. These
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FIG. l. Elastic differential cross sections for e-He scatter-
ing at a range of projectile energies. The present calculations
are denoted by CCC, and are described in the text. The mea-
surements are due to Brunger et aL [12]. Quantitative results
may be obtained from the authors.

FIG. 2. Differential cross sections for e-He scattering at a
projectile energy of 30 eV. The present calculations are de-
noted by CCC(75) and CCC(69), and are described in the
text. The calculations denoted by RM(19) are due to Fon,
Berrington, and Kingston [39],and those denoted by FOMBT
are due to Cartwright et aL [40] and Trajmar et aL [25].
The measurements are due to Brunger et aL [41], Brunger
et al. [12) (elastic), Trajmar et al. [25], Cartwright et al. [40]
(n P, 3D), Register, Trajmar, and Srivastava [30] (elastic),
and Chutjian and Thomas [42].
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are particularly simple to obtain at the low energies as
very few states are required. The experimental and the-
oretical situation here is very well understood, and has
been for quite some time; see Ref. [12], for example. Thus
we present CCC results here purely for completeness.
They are given in Fig. 1, where convergence is readily
established by using as few as ten states at 1.5 eV and 41
states at 20 eV, and agreement with experiment is very
good. As the FCM approximation is most severe for the
1 S state, see Table I, good agreement with experiment
here is most encouraging.

One of the more extensively studied projectile energies
is that of 30 eV (we treat data at 29.6 eV as though they
were for 30 eV). Here there are measurements from var-
ious groups for excitation up to n & 3 levels. There are
also a number of other theories, none of which can claim
agreement with all of the available differential cross sec-
tions. Our CCC results together with some of the avail-
able measurements and theories are presented in Fig. 2.
The first point to note is the negligible difference between
the CCC(75) and CCC(69) calculations. Agreement with
experiment is very good, and is much superior to the
other theories presented. Given the demonstrated level
of convergence it is interesting to note the minor discrep-
ancy with the independent sets of measurements at the
forward angles of the n P channels. This could well be
due to a systematic numerical problem that affects both
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FIG. 3. Differential cross sections for e-He scattering at a
projectile energy of 40 eV. The present calculations are de-
noted by CCC(75) and CCC(69), and are described in the
text. The calculations denoted by CCO are due to McCarthy,
Ratnavelu, and Zhou [11] and those denoted by FOMBT are
due to Cartwright et al. [40] and Trajmar et al. [25]. The mea-
surements are due to Brunger et al. [12] (elastic), Brunger
et al. [41] (ratio measurements multiplied by our theoreti-
cal 2 P), Trajmar [43] (2 S, 2 S, 2 P), Register, Trajmar,
and Srivastava [30] (elastic), Truhlar et aL [44] (2 P), and
Chutjian and Thomas [42].
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FIG. 4. Differential cross sections for e-He scattering at
a projectile energy of 50 eV. The present calculations are
denoted by CCC(75) and CCC(69), and are described in
the text. The calculations denoted by FOMBT are due to
Cartwright et aL [40] and Trajmar et aL [25]. The mea-
surements are due to Brunger et al. [12], Register, Trajmar,
and Srivastava [30], Trajmar et al. [25], Cartwright et aL [40]
(n P, 3D), and Hall et aL [26].

calculations, or due to the frozen-core approximation, or
difBculties associated with measuring electrons scattered
to forward angles. Overall we are satisfied that the CCC
theory is adequate for describing the presented experi-
mental differential cross sections at 30 eV.

In Fig. 3 we look at similar differential cross sections
for the projectile energy of 40 eV. Conclusions are much
the same as for the 30 eV results. Discrepancy with ex-
periment at the forward angles for the triplet channels
is a little more evident, but once again overall agree-
ment of both the CCC(75) and CCC(69) theories with
experiment is satisfactory. This quality of agreement
with experiment is only possible if the helium target one-
electron continuum is treated. For quantitative difference
between CCC and CC calculations which do, and do not,
treat the continuum at this energy see Ref. [24].

The 50 eV results are presented in Fig. 4. Here agree-
ment with the experiment of Trajmar et al. [25] is at
first glance worse than at the two lower energies. How-
ever, we note that our theory is systematically lower than
their measurements, which are obtained as a ratio to the
2 P channel. Thus, if we were to use the theoretical
2 P differential cross section, instead of the experimen-
tal one, for generating the other differential cross sections
we would find considerably improved agreement with ex-
periment. Support for our results is also provided by the
much earlier measurements of Hall et al. [26]. It is worth-
while noting that, unlike for the 30 and 40 eV results,
agreement at the forward angles with the measurements
of triplet states is very good.
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In Fig. 5 we present difI'erential cross sections for 80 eV
incident projectile energy. Here there are no measure-
ments of the cross sections for excitation of the n = 3
states, but we present these results for completeness.
Agreement with experiment for the elastic and the n = 2
states is very good. Discrepancy with other theories is
still substantial, though the FOMBT has considerably
improved the description of the 2 S and 2 P states. Ex-
amining the difI'erence between the two CCC calculations
suggests that slightly larger calculations are necessary to
get better accuracy.

At 100 eV, presented in Fig. 6, we are once more able to
compare with measurements for all of the n & 3 states.
The diKculties at 50 eV are not apparent here, since
agreement with experiment is excellent for all presented
cross sections. This suggests that our 50 eV results are
equally reliable. Convergence in the CCC calculations is
very good at all but the very large angles. It is interesting
to note that for the triplet channels the CCC theory is
now above the measurements at the forward angles.

We next look at difI'erential cross sections for 200 eV
electron-impact excitation of helium. These are given in
Fig. 7. Once more convergence is very good, and both the
CCC(75) and CCC(69) results are in excellent agreement
with available experiment. We note one exception to this
at the very forward angles for the 2 S excitation, where

the CCC theory is considerably below the measurements
of Yoshinari et aL [27]. Anomalous forward angle mea-
surements have been found in the same group earlier by
Sakai et al. [28]. We are unable to confirm these results.
Agreement with the forward angle measurements by this
group of the 2 «P transition is excellent.

A similar result is also observed at 500 eV, shown in
Fig. 8. Here there are nearly three orders of magnitude
difI'erence between theory and the experiment of Yoshi-
nari et al. [27] near zero degrees. However, agreement
with the same group's Ineasurements for the 2 P excita-
tion remains excellent.

B. Integrated crass sections

Having presented difFerential cross sections we now dis-
cuss the corresponding integrated cross sections. In ad-
dition, we also give the total ionization 0, and total oq
cross sections. The latter is obtained either by the use
of the optical theorem or by summing the cross sections
for all open states included in the CC formalism. The
former is obtained by summing only those cross sections
which correspond to states with positive energies. These
cross sections together with their partial target-state l
contributions are given in Fig. 9, and are found to be in
very good agreement with experiment. The results from
the CCC(69) calculations are presented because for these
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FIG. 5. DifFerential cross sections for e-He scattering at a
projectile energy of 80 eV. The present calculations are de-
noted by CCC(75) and CCC(69), and are described in the
text. The calculations denoted by RM(5) are due to Fon,
Berrington, and Kingston [45] and Fon et al. [46]& and those
denoted by FOMBT are due to Cartwright et al. [40] and
Trajmar et al. [25]. The measurements are due to Register,
Trajmar, and Srivastava [30], Chutjian and Srivastava [47]
(2 P, 2 P), and Chutjian [48] (3 P) (renormalized using
the more accurate elastic differential cross section (DCS) of
Register, Trajmar, and Srivastava), Opal and Beaty [49], and
Yagishita, Takayanagi, and Suzuki [50].
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FIG. 6. DifFerential cross sections for e-He scattering at
a projectile energy of 100 eV. The present calculations are
denoted by CCC(75) and CCC(69), and are described in the
text. The calculations denoted by RM(5) are due to Fon,
Berrington, and Kingston [45) and Fon et al. [46], and those
denoted by FOMBT are due to Cartwright et aL [40] and
Trajmar et al. [25]. The measurements are due to Register,
Trajmar, and Srivastava [30), Cartwright et al. [40], Trajmar
et al. [25], and Yoshinari et al. [27].
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FIG. 7. Differential cross sections for e-He scattering at
a projectile energy of 200 eV. The present calculations are
denoted by CCC(75) and CCC(69), and are described in the
text. The calculations denoted by RM(5) are due to Fon,
Berrington, and Kingston [45] and Fon et al. [46], and those
denoted by FOMBT are due to Cartwright et al. [40], and
Trajmar et al. [25]. The measurements are due to Register,
Trajmar, and Srivastava [30], Opal and Beaty [49], Yagishita,
Takayanagi, and Suzuki [50], Y'oshinari et al. [27], Dillon and
Lassettre [51] (2 S, 2 P), and Dillon [52] (2 S).
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FIG. 9. Total ionization and total cross sections for elec-
tron-impact excitation of the ground state of helium. The
solid line is the summed contribution of the s, p, and d in-
dividual contributions. The measurements are due to Mon-
tague, Harrison, and Smith [35], Kauppila et aL [37], and
Nickel et al. [36].
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FIG. 8. Differential cross sections for e-He scattering at
a projectile energy of 500 eV. The present calculations are
denoted by CCC(75) and CCC(69), and are described in
the text. The calculations denoted by FOMBT are due to
Cartwright et al. [40] and Trajmar et al. [25]. The measure-
ments are due to Yoshinari et aL [27], Dillon and Lassettre
[51] (2 S, 2 P), and Dillon [52] (2 S).

transitions we believe them to be the most accurate (see
below) .

As the integrated cross sections are very important in
practical applications, we give a more detailed conver-
gence study here than for the differential cross sections.
It is important to note that we shall attempt to demon-
strate convergence within the &ozen-core model. We
have no formal way of estimating the magnitude of the
error of this approximation. Good agreement with angu-
lar dependent measurements suggests to us that generally
this error will not often exceed 10%. Apart from present-
ing the 75- and 69-state results, we also give the 63-state
results. These calculations and some corresponding mea-
surements are presented in Table II.

The rate of convergence varies with both transition
of interest and the projectile energy. The purpose of
presenting the 63-state results is to give an indication as
to which of the 75- or 69-state results is likely to be more
accurate in case they significantly dier. Suppose that for
a particular transition and energy the 63- and 75-state
results are similar, but the 69-state results are a little
diferent, e.g. , o, at 80 eV. This suggests that for this
case the E states give little contribution, and so it is the
69-state results that are likely to be the most accurate.
On the other hand, if the 69-state and the 63-state results
are similar, but the 75-state results are a little di8'erent,
e.g. , 3 D at all energies, then it is likely that the E
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states make a significant contribution and so the latter
should be more accurate. If both the 75- and 69-state
results are di8'erent Rom the 63-state results, then both
E states and higher basis sizes are necessary for greater
accuracy. In this case taking the average of the three
calculations may be appropriate. Variations between the
three calculations can be viewed as error estimates on
the frozen-core model results. It may be that in some
cases the difFerence between the true and the frozen-core
model results is greater than that between the three CCC
calculations.

Upon examination of Table II we see generally good
agreement with available measurements, though on oc-
casion there are significant discrepancies. Most encour-

aging is the excellent agreement at all energies with the
measurements of 0; and oq, where the error bars are very
small. The ability to obtain the total ionization cross
section validates the discretization of the continuum via
the I aguerre basis. The quality of agreement with ex-
periment here is of the same order as for the hydrogen
[7] and He+ [29] targets. Because of the unitarity of the
CC formalism, simply obtaining the correct o., at a par-
ticular energy gives us great confidence in the accuracy
of all other transitions at this same energy.

The elastic cross section measurements of Register,
Trajmar, and Srivastava [30] also claim small errors, but
appear to be systematically a little lower than the CCC
results for the higher energies. However, for energies

) for electro
denoted by

ue, Harrison
, 14% error),
ctions, n 8

TABLE II. Integrated cross sections (cm
The ionization and total cross sections are
experimental estimates are due to Montag,
error), Kauppila et oL [37] (total at 500 eV
et al. [38] (compilation of excitation cross se
below, uncertain above 100 eV).
State Calculation or experiment1'S CCC(75)

CCC(69)
CCC(6s)

expt.
2's ccc(v5)

CCC(69)
CCC {63)

expt.
2 S CCC(75)

CCC(69)
ccc(63)

expt.
2 P ccc(v5)

CCC(69)
CCC {63)

expt.
2 P ccc(v5)

CCC {69)
CCC(63)

expt.
3 S CCC(75)

ccc(69)
CCC(63)

expt.
3 S ccc(v5)

CCC(69)
CCC(63)

expt.
3 P CCC(75)

CCC(69)
CCC(63)

expt.
~3D CCC(75)

CCC(6o)
CCC(63)

expt.
3 D CCC(75)

CCC(69)
CCC(6s)

expt.
CCC(75)
CCC(69)
CCC(6s)

expt.
CCC(v5)
CCC(69}
CCC(6s)

expt.
CTg ccc(75)

CCC(6s)
ccc(6s)

expt.

200
2.76[-17]
2.73[-17]
2.v'6[-1 v]
2.4v[-1 v']

2.S2 f-20]
2.vo [-20]
2.ss[-20]
2.40[-20]
7.98[-19]
7.94[-191
v.os[-io]
8.38[-19]
2.62[-20]
2.60[-20]
2.62 f-20]
s.6a[-20]
9.05 [-18]
9.10[-18]
o.io[-is]
8.32 [-18)
6.04 [-21]
5.94[-21]
6.04 [-21]
7.18[-21]
i.69[-is]
1.69[-19]
1.6s[-io]
1.46[-1O]
s.2s[-21]
s.is f-21]
S.24[-21]
1.02 [-20
S.26[-22]
s.io[-22]
3.18[-22]
1.60[-21]
v.55[-20]
V.62[-20]
v.5s[-20]
7.06[-20]
2.23[-18]
2.24[-18]
2.24[-18]
2.08[-18]
3 27[-17]
3.29[-1v]
S.25[-17]
s.42[-1v]
v.5v[-1v]
v.5s[-iv]
v.55[-1v]
v.s4[-1v]

80
7.59[-17]
v.oo[-iv]
v.60[-iv]
v. i2[-iv]
2.56[-19]
2.45[-1O]
2.46 [-19]
2.60[-19]
1.37[-18]
i.27[-is]
i.as [-is]
1.50[-1S]
s.2o [-io]
3.70 [-19]
3.53[-19]
4.91f-19]
1.06 [-17]
1.10[-17]
1.09[-17]
1.01[-17]
5.V5[-20]
5.52 [-20]
5.49 [-20]
V.so[-20]
2.89[-19]
2.5s[-19]
2.vs[-19]
2.62 [-19]
1.00 [-19
1.12[-19]
1.06[-1O]
1.42[-19]
v.vs[-21]
9.O5 [-21]
s.vo[-21]
1.53 [-20]
l.73[-19]
1.97[-19]
i.96[-io]
1.S6[-19]
2.46[-1S]
2.55 [-18]
2.54[-1S]
2.42[-iS]
3.59[-17]
3.32[-17]
3.57[-17]
s.as[-iv]
1.31[-16]
i.as [-16]
1.Si [-16]
1.27[-16]

100
6.22[-17]
6.19[ 17
6.is[-1v]
5.61[-1V']

1.53[-19]
1.50[-19]
1.52[-1O]
1.40[-19]
1.16[-18]
1.11[-18]
1.14f-18]
1.30[-is]
2.14[-19]
i.s2[- io]
2.20[-19]
2.so[-io]
1.10[-17]
1.11[-17]
1.12[-iv]
1.01[-17]
a.s4[ 20]
3.28 [-20]
s.s2[-20]
4.20 [-20]
2.sv[-io]
2.30[-19]
2.35f-19]
2.as[-19]
6.59[-20]
5.57[-20]
6.7s [-20]
S.15[-20]
4.is[-21]
4.18[-21]
4.45 [-21]
i.aa[-20]
1.45 [-19)
1.56 [-19]
1.56 [-19]
1.44 [-19]
2.62[-iS]
2.64[-1S]
2.66[-18]
2.44[-iS]
s.63[-1v]
s.6V[-17]
3.59[-17]
S.62[-17]
i.is[-i6]
1.18f-16]
1.17[-16]
1.12[-16]

40
1.69[-16]
1.V4[-16]
1.6S[-16]
1.58 [-16]
1.14[-18]
1.13[-is]
1.16[-iS]
i.18[-18]
i.sv[-is]
i.s6[-is]
i.so[-is]
2.11[-1S]
1.71[-18]
1.63[-is]
i.v2[-is]
1.90[-18]
6.5o[-is]
6.58[-18]
6.66[-1S]
6.43 [-18]
3.15[-19]
3.os [-io]
3.11[-19]
4.91[-19]
3.64[-].9]
3.78[-19]
a.v6[-19]
a.95[-io]
4.61[-19]
4.26[-19]
4.5v [-io]
5.30[-19]
6.07[-20]
8.02 [-20]
7.44 [-20]
9.82 [-20]
2.28 [-19]
2.82[-19]
2.85[-19]
2.59[-19]
1.40 [-18]
1.36[-is]
1.37[-18]
1.38[-18]
1.62[-17]
i.v2[-i v]
1.62 [-17]
1.68 [-17]
2.0S[-16]
2.08 [-16]
2.02 [-16]
2.00[-16]

500
9.88[-18]
9.83[-18]
s.s6[-is]

50
1.34[-16]
1.S5 [-16]
i.S4[-16]
l.26 [-16]
v'. s2[-19]
v.sa[-io]
v.as[-io]
v.40[-io]
1.6v[-is]
1.6v [-is]
1.66 [-18]
i.o4[-is]
i.ov[-is]
1.11[-18]
1.10[-18]
1.40[-1S]
8.18[-18]
s.36[-is]
8.33[-18]
8.21 [-18]
1.83[-19]
1.94 [-19]
1.89[-19]
2.61[-19]
3.30 [-191
3.36[-19]
3.34 [-19]
3.38[-19]
3.10[-io]
3.18[-19]
3.10[-io]
3.83[-19]
s.5v[-20]
4.as [-20]
4.51[-20]
5.10[-20]
2.18[-19]
2.64[-19]
2.63[-io]
2.61[-19]
i.88 [-18]
1.90[-lS]
1.89[-18]
1.84 E-18]
2.39[-17]
2.32 [-1v]
2.3v[-iv]
2.37[-17]
1.76[-16]
1.V6[-16]
1.76 f-16]
l.72 [-16]

30
2.25[-16]
2.16f-16]
2.25[-16]
2.11[-16]
i.oi [-is]
i.o6[-ls]
1.93[-18]
1.90[-is]
2.19[-1S]
2.06[-1S]
2.20[-1S]
2.40[-18]
2.19[-18]
2.19[-1S]
2.19[-18]
2.60[-18]
3.86 [-18]
s.vs [-is]
3.81[-18]
a.v5[-is]
5.so[-io]
5.71[-19]
5.3s [-19]
6.58 [-19]
4.sv'[-19]
4.s v [-19]
4.35[-19]
a.oi [-19]
5.0v[-19}
5.41[-1O]
5.01[-1O]
v.as [-io]
1.08[-19]
1.24[-19]
1.25[-io]
1.70[-19]
2.06 [-19]
2.26 [-19]
2.as[-19]
2.28[-19]
v.26 f-io]
v.s4[-19]
7.22 [-19]
v.as [-20]
6.48 [-18]
7.18[-18]
6.44 [-18]
6.70[-18]
2.47 [-16]
2.39[-16]
2.4V[-16]
2.ao[-i6]

2.62[-2i]
2.58[-21]
2.62[-21]
2.4O[-2i]
s.so[-19]
s.ss[-19]
s.sv [-io]
4.24[-19]
1.45 [-21]
1.44 [-21]
1.44[-21]
1.90[-21]
5.50[-iS]
5.55[-1S]
5.52 [-18]
5.67[-18]
5.5S[-22]
5.50[-22]
5.58[-22]
v.4o[-22]
s.vi [-20]
8.69[-20]
8.68 [-20]
S.45[-20]
4.50[-22]
4.49[-22]
4.49[-22]
5.29[-22]
1.30[-23}
1.29[-23]
1.30[-23]
4.55[-22]
2.67[-20]
2.69[-20]
2.69[-20]
2.42[-20]
1.3v [-is]
i.38[-18]
i.sv[- is]
1.29[-18]
i.o6[-17]
2.00[-iv]
i.o5[-1v]
2.18[-17]
a.s6[- i v]
3.88[-17]
3.85 [-17]
3.82 [-17]

3 P

ns scattering on the ground state of helium at a range of energies (eV).
0, and o.~, respectively. Square brackets denote powers of ten. The

, and Smith [35] (ionization, 4.5% error), Nickel et ol. [36] (total, 1%
Register, Trajmar, and Srivastava [30] (elastic, 5% error), and de Heer

, n P: 10% error; 3 D 20% error; triplet states: 30% error 100 eV and
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ranging between 1.5 and 50 eV the CCC results are in
excellent agreement with the measurements of Brunger
et al. [12] (see the di6'erential cross sectioii figures), and
so we suggest that the presented CCC results are within
10%%up of the true elastic integrated cross sections at all
energies.

We have not presented the cross sections for states
with n & 4 because of the insufBciently large bases used.
Access to more substantial computational facilities than
those available to us would be necessary for obtaining
accurate cross sections for such excitations.

C. Electron-impact coherence parameters

0.9

O. e

0.3
M
M

0.0

1 ~ 5

1.2
0.9
o.e

C3 0.3
0 ~ 0

P,

CCC (75)
CCC (69)
RM (19)
FONBT

Mc Adams e t a1 .
Steph and Golden
van den Heuvell et a1.

A considerably stronger test of the calculated scat-
tering amplitudes is provided by comparison with mea-
surements of the electron-impact coherence parameters
(EICP's). These describe the charge cloud after exci-
tation. For a comprehensive review of this subject see
Ref. [18]. For excitation of nP states the EICP's L~,
p, and Pg, together with the differential cross section,
are sufBcient to test the magnitudes and phases of the
scattering amplitudes. Many measurements of P-state
EICP's have been performed for electron-impact excita-
tion of helium at a broad range of energies, allowing for
the most complete test of our theory to date. In practice
the EICP's are not directly measured, but rather are de-
rived &om angular correlation or polarization correlation
measurements. The various relations between scattering
amplitudes and experimentally measured quantities may
be found in Ref. [18].

In the case of excitation of nD states the scattering am-
plitudes have six independent real numbers to be tested
at each scattering angle. An additional EICP ppp may
be experimentally obtained. Though the four measured
EICP's are all that are available for testing theory, the
complexity of these transitions is sufEcient to provide a
stringent, if not complete, test of the scattering theory.
It is also customary to present the total polarization P
parameter, but this is not independent of the other four.

It may be helpful to emphasize that, since the CCC
theory is based on the close-coupling formalism, a sin-
gle calculation for a particular projectile energy results
simultaneously in scattering amplitudes for each of the
states included. This may be contrasted with distorted-
wave approximations, where a separate calculation is per-
formed for each transition of interest. Therefore it is
more convenient to look at the CCC results separately
for each projectile energy.

EICP'a at 80 e V for e He ezcita-tion

We start by presenting in Fig.' 10 the results for the
2 P EICP's at 30 eV. Comparison of the two CCC the-
ories shows excellent convergence and they are in good
agreement with experiment as is the 19-state R-matrix
calculation. The FOMBT is very diferent, indicating
that this energy is too low for a first-order Born-based ap-
proximation to be accurate. The fact that the R-matrix

—0.3
-O. e
-0.9
-1.2
-1.5

50 100 150 0 50

scattering angle (deg)
100 150

FIG. 10. The 2 P EICP's for 30 eV e-He scattering. The
present calculations are denoted by CCC(75) and CCC(69),
and are described in the text. The calculations denoted by
RM(19) are due to Fon, Berrington, and Kingston [39], and
those denoted by FOMBT are due to Cartwright et al. [40].
The measurements are due to McAdams et aL [53], Steph and
Golden [54], and van den Heuvell, van Eck, and Heideman
[55].

calculation gets such good agreement with experiment
suggests that for this transition the treatment of the tar-
get continuum is not very important.

The 3 P EICP's are presented in Fig. 11. Here we see
that, though the CCC(75) and CCC(69) are very similar,
the latter are in slightly better agreement with experi-
ment indicating that the eKect of a larger Laguerre basis
size within each symmetry is a little more important than
the inclusion of E states. The R-matrix calculation has
more diKculty in describing the experiment here than for
the 2 P transition.

In Fig. 12 we present EICP's for the exchange transi-
tion 3 P. Here the conclusions are much the same as for
the 3 P excitation. Convergence of the CCC calculations
and agreement with experiment is satisfactory, with the
R-matrix calculation being only marginally worse than
the CCC theory. The FOMBT is equally inappropriate
for exchange transitions at these relatively low energies.

Having completed our presentation of EICP's for P-
state excitation we turn to the EICP's for 3 D excita-
tion. In Fig. 13 we present not only the EICP's but also
the directly measured Stokes parameters from which the
EICP's are derived [18]. We do this simply to indicate
that sometimes the derived parameters may be very sen-
sitive and that discrepancy with theory in this case is
not cause for alarm. If we concentrate on the indepen-
dent measurements of Pi, P2, Pq, and P4 we see that
convergence in the CCC theory is quite good and agree-
ment with experiment is satisfactory, in contrast to the
DWBA calculations. Yet when we look at the p =ATAN2
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FIG. 11. The 3 P EICP's for 30 eV e-He scattering. The
present calculations are denoted by CCC(75) and CCC(69),
and are described in the text. The calculations denoted by
RM(19) are due to Fon, Berrington, and Kingston [39]. The
measurements are due to Neill and Crovre [56], and Neill,
Donnelly, and Crov%re [57].

FIG. 13. The 3 D EICP's for 30 eV e-He scattering. The
present calculations are denoted by CCC(75) and CCC(69),
and are described in the text. The calculations denoted by
DWBA-EP and DWBA-GP are due to Bartschat and Madi-
son [16]. The measurements are due to Donnelly, McLaughlin,
and Crowe [60].

0.9 CCC (75)
CCC (69)
RM (19)
F'OMBY

Q Donnelly eC al,

1.2

0.9

0.6

0.3C4

CCC (75)
CCC (69)
CCO

Eminyan eC al,
Steph and Golden

1.5
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—0.9
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FIG. 12. The 3 P EICP's for 30 eV e-He scattering. The
present calculations are denoted by CCC(75) and CCC(69),
and are described in the text. The calculations denoted by
RM(19) are due to Fon, Berrington, and Kingston [39], and
those denoted by FOMBT are due to Cartwright and Csanak
[58]. The measurements are due to Donnelly, Neill, and Crovtre

[59]

0 0

1 ~ 5

0 ~ 9
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0 ~ 0
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FIG. 14. The 2 P EICP's for 40 eV e-He scat tering. The
present calculations are denoted by CCC(75) and CCC(69),
and are described in the text. The calculations denoted by
CCO are due to McCarthy, Ratnavelu, and Zhou [11]. The
measurements are due to Eminyan et aL [61] and Steph and
Golden [54].
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(Pq, P2) /2 parameter (where ATAN2 is the FORTRAN func-
tion) agreement between theory and experiment looks
particularly poor. This sensitivity is due to the fact that
both Pq and P2 are near zero at the backward angles.

1.8 " CCC(151

2. EICP's at $0 eV for e-He excitation

0.6

0.3

CCC(75)
CCC(69)
DNBA-EP

DWBA-GP

Q Nikosza et al.
NcLaughlin et al.

0.0

cf)

1.2
M 0.9
C5

0.6
0.3 ~

0.0 ~

-0.3
cp -0.6

-1.5
1.2

P

0.9

0.6

0.3

At 40 eV there are only extensive measurements for
the 2 P, 3 D, and 3 D excitations. The former are
presented in Fig. 14 and are compared with the CCC
and CCO results. Once more convergence has been es-
tablished and agreement of all theories and experiment
is satisfactory.

In Fig. 15 we present the EICP's for the 3 D exci-
tation. Here we note that convergence is not quite to
the same accuracy as we have noted before, indicating
the difFiculty of the calculation. However, there is clear
qualitative agreement of both CCC calculations with ex-
periment, in marked contrast to the DWBA theory. As
both of the CCC calculations are at the limit of our desk-
top computational resources, we are unable to reine the

O. h

Cxg

0.5

P P

0.0
I

-0.C

1.2

150 0 50 100 150 0

scattering angle (deg)

FIG. 16. The 3 D EICP's for 40 eV e-He scattering. The
present calculations are denoted by CCC(75) and CCC(69),
and are described in the text. The calculations denoted by
DWBA-EP and DWBA-GP are due to Bartschat and Madi-
son [16]. The measurements are due to Crowe et al. [31],
Batelaan, van Eck, and Heideman [64], and Beyer, Silim, and
Kleinpoppen [65].

CCC results further. The integrated results given in Ta-
ble II suggest that the 75-state results are likely to be the
most accurate in this case. Given that we are looking at
a D-state excitation one would expect that inclusion of
F states in the CC formalism should have some eKect.

The 3 D excitation EICP's and the corresponding di-
rectly measured Stokes parameters are given in Fig. 16.
The relation between the Stokes parameters, their re-
duced counterparts, and the EICP's may be found in Ref.
[31]. Here it is helpful to present the Stokes parameters
because some experimental groups have measured only a
subset of these, which does not allow them to be related
to the EICP's. As for the 3 D EICP's convergence has
not been established to a high accuracy, indicating the
difficulty of this calculation. The CCC(75) calculation
is in better agreement with experiment, which suggests
that inclusion of F states for the description of the 3 D
excitation is also important.

0.0 8. EICP's at 50 eV for e-IIe excitation

100 150 0 50 100

scat tering angle (deg)

FIG. 15. The 3 D EICP's for 40 eV e-He scattering. The
present calculations are denoted by CCC(75) and CCC(69),
and are described in the text. The calculations denoted by
DWBA-EP and DWBA-GP are due to Bartschat and Madi-
son [16]. The measurements are due to McLaughlin, Donnelly,
and Crowe [62] and Mikosza et al. [63].

The EICP's for the 2 P excitation at 50 eV are pre-
sented in Fig. 17. Convergence in the CCC calculations
is quite good as is the agreement with experiment. The
DWBA gives a good reproduction of the experiment at
forward angles, but goes wrong at intermediate and back-
ward angles.

Similar conclusions are also appropriate for the 3 P
EICP's, presented in Fig. 18. It is interesting to note the
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excellent agreement for the p parameter, suggesting that
the experimental diBRculty evident at intermediate angles
for L~ and Pg did not acct the ratio of P2 to Pq.

EICP's at 80 eV for e He -excitation

1 ~ 2

0.9

0 ~ 6

0.3

P,

CCC (75)
CCC (69)
DWBA-EP

Eminyan et al.
Bei]ers et al.

In Fig. 19 we give the EICP's for the 2 P excitation
at 80 eV. From the P~ and p parameters it is evident
that the 75-state calculation is marginally superior to
the 69-state one. The CCC calculations are in very good
agreement with all of the measurements other than those
due to Steph and Golden [32]. Prior to application of
the CCC theory the previous B-matrix and DWBA the-
ories were unable to conclusively demonstrate which of
the measurements were likely to be more accurate.

The 3 P EICP's are given in Fig. 20. Once more it is
interesting to note how well the p parameter is described
by the CCC theory. Yet agreement with Pt = gP~~ + P22

is not as good at the intermediate angles. Given the
established convergence we suspect that this is primarily
due to experimental difBculties.

$. EICP's at XOO eV for e-He excitation

There are no large angle measurements of the 2 P
EICP's at 100 eV, presented in Fig. 21. This is because
the cross section gets to be very small at these angles (see
Fig. 6). For the CCC theory higher energies are particu-
larly easy to calculate, due to the the ease of the solution
of the integral equations (26). Prom the figure it is clear

p. p

0.9
0.6

CO
0.3

0.0
-0.3
-0.6

-0.9
-1.2
-1 ~ 5

50 100 150 0 50

scattering angle (deg)
100 150

FIG. 18. The 3 P EICP's for 50 eV e-He scattering. The
present calculations are denoted by CCC(75) and CCC(69),
and are described in the text. The calculations denoted by
DWBA-EP are due to Beijers et al. [66]. The measurements
are due to Eminyan et al. [67] and Beijers et aL [66].
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FIG. 17. The 2 P EICP's for 50 eV e-He scattering. The
present calculations are denoted by CCC(75) and CCC(69),
and are described in the text. The calculations denoted by
DWBA-EP are due to Beijers et al. [66]. The measurements
are due to Eminyan et al. [61), McAdams et al. [53], and
Beijers et al [66]. .

FIG. 19. The 2 P EICP's for 80 eV e-He scattering. The
present calculations are denoted by CCC(75) and CCC(69),
and are described in the text. The calculations denoted by
DWBA-EP are due to Beijers et aL [66] and those denoted by
RM(5) are due to Fon, Berrington, and Kingston [45]. The
measurements are due to Hollywood, Crowe, and Williams
[68], Beijers et aL [66], Slevin et al. [69], and Steph and Golden
[»].
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that convergence has been established, and the results
are in good agreement with experiment. The five-state
B-matrix calculation is unable to obtain the first deep
minimum of the Pg parameter, whereas the DWBA does.

The 3 P EICP's for 100 eV incident electrons are given
in Fig. 22. Once more convergence is readily established,
agreement with the available experiment being excellent.
Though agreement between the CCC and DWBA theo-
ries is very good at forward angles, the former systemat-
ically obtains a lower minimum for the Pg parameter.

8. 2 P EICP's at 200 and 500 eV for e He -excitation

The 200 and 500 eV 2 P EICP's are given in Figs.
23 and 24, respectively. The two CCC calculations are
barely distinguishable, and are in good agreement with
experiment, which is only available at forward angles.

50 100 150 0 50

scattering angle {deg)
100 150

V. CONCLUSIONS
FIG. 20. The 3 P EICP's for 80 eV e-He scattering. The

present calculations are denoted by CCC(75) and CCC(69),
and are described in the text. The calculations denoted
by DWBA-EP are due to Beijers et al. [66]. The measure-
ments are due to Eminyan et al. [67], Beijers et al. [66], and
McAdams and Williams [70).

We have demonstrated that the CCC method for the
calculation of electron-helium scattering is able to obtain
qualitative, and often quantitative, agreement with mea-
surements of differential, integrated, ionization, and total
cross sections, as well as various EICP's for n & 3 states,
for projectile energies ranging &om 1.5 to 500 eV. As such
it is the only scattering theory that is able to achieve this
to date. This gives us further confidence that the long-
standing discrepancy with the electron-hydrogen EICP's
at 54.4 eV [lj is primarily due to experiment. As we have

1.2

0.9

0.6

l-4
C3 0.3

0 ~ 0

1 ~ 5
I

0 ~ 9
0.6
0.3

CCC (75)
CCC (69)
RM(5)
DWBA-EP

Q Eminyan et al.
+ Steph and Golden

0.9

C4

0 ~ 3C3

0.0 .

1.5
I

0 ~ 9

CCC (75)
CCC (69)
DWBA-EP

Q Eminyan et al.

0.0
-0 ~ 3
-0.6
-0.9
-1.2
-1.5

50 100 150 0 50

scattering angle (deg)
100 150

0 ~ 6
C3 0.3

0.0
-0.3
-0.6
-0 ~ 9
-1.2
—1.5

FIG. 21. The 2 P EICP's for 100 eV e-He scattering. The
present calculations are denoted by CCC(75) and CCC(69),
and are described in the text. The calculations denoted by
DWBA-EP are due to Beijers et aL [66] and those denoted by
RM(5) are due to Fon, Berrington, and Kingston [45]. The
measurements are due to Eminyan et al [61) and Steph a.nd
Golden [32].

50 100 150 0 50
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FIG. 22. The 3 P EICP's for 100 eV e-He scattering. The
present calculations are denoted by CCC(75) and CCC(69),
and are described in the text. The calculations denoted by
DWBA-EP are due to Madison [7j]. The measurements are
due to Eminyan et al. [67].



DMITRY V. FURSA AND IGOR BRAY

1.2 P, 1 ~ 2

0.9

0 ~ 6

CCC (75)
CCC (69)
RM(5)
DWBA

Q Eminyan eC al.
+ Steph and Golden

0.9

0.6

C3 0.3

CCC (75)
CCC (69)

Q Steph and Golden

0.0
Q)

1.5-
1

O. 9 ~

QP

o.e
0.3
0.0

-0.3
-0.6
-0 ~ 9
—1 ~ 2

-1.5

50 100 150 0 50

scattering angle (deg)
100 150

0.0 "
(D

1 ~ 5
I

0.9
o

0.3

0.0
-0.3

-0.6
-O. 9
—1.2
-1.5

50 1OO 15O 0 50

scattering angle (deg)
100 150

FIG. 23. The 2 I EICP's for 200 eV e-He scattering. The
present calculations are denoted by CCC(75) and CCC(69),
and are described in the text. The calculations denoted by
DWBA-EP are due to Madison [71] and those denoted by
RM(5) are due to Fon, Berrington, and Kingston [45]. The
measurements are due to Eminyan et al. [61] and Steph and
Golden [32].

found earlier for the sodium target [9], once reasonable
accuracy in the target wave functions is obtained, it be-
comes more important to treat accurately the scattering
part of the calculation.

By using the &ozen-core approximation we have not
attempted to give the most accurate results possible, but
rather to give a general overview of the quality of our
scattering techniques. The CCC method has been im-
plemented to include full two-electron excitation, and so
we may readily improve the target-state energies by in-
troducing extra con6gurations. However, in this case we
generate a great many more states than what we can hope
to include in the close-coupling formalism using our desk-
top computational facilities. For this reason we have only
presented the results &om the frozen-core model. Should
it be demonstrated that practical applications require
greater than the given accuracy then we would require
more substantial computational resources. If we con-
centrate only on the elastic channel, then by dropping
E and maybe most D states, we can probably provide
more accurate elastic cross sections, still using our lo-
cal computational facilities. More accurate treatment of

FIG. 24. The 2 P EICP's for 500 eV e-He scattering. The
present calculations are denoted by CCC(75) and CCC(69),
and are described in the text. The measurements are due to
Steph and Golden [32].

the helium target would also be necessary for studies of
threshold and resonance behavior of cross sections. We
note, however, that I'on, Lim, and Sawey [33] have cal-
culated resonances using structure approximations which
are a little worse than the &ozen-core approximation.

The computational implementation of the electron-
helium scattering problem has been done on top of the
code developed for hydrogenic targets [9]. Thus the cur-
rent CCC computer code may now be readily extended
to treat heliumlike atoms and ions. We also expect to
apply the CCC method to the calculation of scattering
from the 2 ~' S helium states, as well as difFerential (e, 2e)
cross sections.

ACKNOWI EDG MENTS

We are indebted to David Cartwright, Don Madison,
and Ian McCarthy for providing extensive numerical data
in electronic form. We are also grateful to Fritz de Heer,
Hiro Tawara, and Makoto Hayashi for very helpful com-
munication. The support of the Australian Research
Council and The Flinders University of South Australia
is gratefully appreciated.

[1] I. Bray and A. T. Stelbovics, Phys. Rev. A 46, 6995
(1992).

[2] A. Temkin, Phys. Rev. 128, 130 (1962).
[3] R. Poet, J. Phys. B ll, 3081 (1978).
[4 I. Bray and A. T. Stelbovics, Phys. Rev. Lett. 89, 53

(1992).
[5] I. Bray and A. T. Stelbovics, Comput. Phys. Commun.

85, 1 (1995).
[6] I. Bray and A. T. Stelbovics, At. Data Nucl. Data Tables

58, 67 (1994).



52 CALCULATION OF ELECTRON-HELIUM SCATTERING 1297

[7] I. Bray and A. T. Stelbovics, Phys. Rev. Lett. 70, 746
(1993).

[8] I. Bray, D. A. Konovalov, I. E. McCarthy, and A. T.
Stelbovics, Phys. Rev. A 50, R2818 (1994).

[9] I. Bray, Phys. Rev. A 49, 1066 (1994).
[10] I. Bray and A. T. Stelbovics, Adv. At. Mol. Phys. 35,

209 (1995).
[11].I. E. McCarthy, K. Ratnavelu, and Y. Zhou, J. Phys. B

23, 1325 (1990).
[12] M. J. Brunger et ol. , J. Phys. B 25, 1823 (1992).
[13] W. C. Fon, K. A. Berrington, and A. Hibbert, J. Phys.

B 14, 307 (1981).
[14] W. C. Fon, K. P. Lim, K. Ratnavelu, and P. M. J. Sawey,

J. Phys. B 27, 1561 (1994).
[15] W. C. Fon, K. P. Lim, and K. A. Berrington, J. Phys. B

27, L591 (1994).
[16] K. Bartschat and D. H. Madison, J. Phys. B 21, 153

(1988).
[17] D. C. Cartwright and G. Csanak, J. Phys. B 20, L583

(1987).
[18] N. Andersen, J. W. Gallagher, and I. V. Hertel, Phys.

Rep. 165, 1 (1988).
[19] K. A. Berrington and A. E. Kingston, J. Phys. B 20,

6631 (1987).
[20] M. Cohen and P. S. Kelly, Can. J. Phys. 45, 2079 (1967).
[21] S. Cameron, R. P. McEachran, and M. Cohen, Can. J.

Phys. 48, 211 (1970).
[22] A. T. Stelbovics, Phys. Rev. A 41, 2536 (1990).
[23] D. A. Varshalovich, Quantum Theory of Angular Momen

turn, 1st ed. (World Scientiffc, Philadelphia, 1988).
[24] I. Bray, D. V. Fursa, and I. E. McCarthy, Phys. Rev. A

51, 500 (1995).
[25] S. Trajmar, D. F. Register, D. C. Cartwright, and G.

Csanak, J. Phys. B 25, 4889 (1992).
[26] R. I. Hall et al. , J. Phys. (Paris) 34, 827 (1973).
[27] Y. Yoshinari et al. , in XVII International Conference

on the Physics of Electronic and Atomic Collisons, Ab
stracts, edited by W. R. MacGillivray, I. E. McCarthy,
and M. C. Standage (Griffith University, Brisbane, 1991),
p. 139.

[28] Y. Sakai et al. , Phys. Rev. A 43, 1656 (1991).
[29] I. Bray, I. E. McCarthy, J. Wigley, and A. T. Stelbovics,

J. Phys. B 26, L831 (1993).
[30] D. F. Register, S. Trajmar, and S. K. Srivastava, Phys.

Rev. A 21, 1134 (1980).
[31] A. Crowe et al. , J. Phys. B 27, L795 (1994).
[32] N. C. Steph and D. E. Golden, Phys. Rev. A 21, 1848

(1980).
[33] W. C. Fon, K. L. Lim, and P. M. J. Sawey, J. Phys. B

26, 305 (1993).
[34] C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand.

(U.S.) Circ. No. 467 (U.S. GPO, Washington, DC, 1949),
Vol. 1.

[35] R. G. Montague, M. F. A. Harrison, and A. C. H. Smith,
J. Phys. B 17, 3295 (1984).

[36] J. C. Nickel, K. Imre, D. F. Register, and S. Trajmar, J.
Phys. B 18, 125 (1985).

[37] W. E. Kauppila et al. , Phys. Rev. A 24, 725 (1981).
[38] F. J. de Heer, R. Hoekstra, A. E. Kingston, and H. P.

Summers, Nucl. Fusion Suppl. 3, 1S (1992).

[39] W. C. Fon, K. A. Berrington, and A. E. Kingston, J.
Phys. B 24, 2161 (1991).

[40] D. C. Cartwright, G. Csanak, S. Trajmar, and D. F. Reg-
ister, Phys. Rev. A 45, 1602 (1992).

[41] M. J. Brunger et ol. , J. Phys. B 23, 1325 (1990).
[42] A. Chutjian and L. D. Thomas, Phys. Rev. A ll, 1583

(1975).
[43] S. Trajmar, Phys. Rev. A 8, 191 (1973).
[44] D. G. Truhlar et oL, Phys. Rev. A 8, 2475 (1973).
[45] W. C. Fon, K. A. Berrington, and A. E. Kingston, J.

Phys. B 13, 2309 (1980).
[46] W. C. Fon, K. A. Berrington, and A. E. Kingston, J.

Phys. B 12, 1861 (1979).
[47] A. Chutjian and S. K. Srivastava, J. Phys. B 8, 2360

(1975).
[48] A. Chutjian, J. Phys. B 8, 2360 (1975).
[4S] C. B. Opal and E. C. Beaty, J. Phys. B 5, 627 (1972).
[50] A. Yagishita, T. Takayanagi, and H. Suzuki, J. Phys. B

9, L53 (1976).
[51] M. A. Dillon and E. N. I.assettre, J. Chem. Phys. 62,

2373 (1975).
[52] M. A. Dillon, J. Chem. Phys. 63, 2035 (1975).
[53] R. McAdams, M. T. Hollywood, A. Crowe, and J. F.

Williams, J. Phys. B 13, 3691 (1980).
[54] N. C. Steph and D. E. Golden, Phys. Rev. A 27, 1678

(1983).
[55] H. B. van Linden van den Heuvell, J. van Eck, and

H. G. M. Heideman, J. Phys. B 15, 3517 (1982).
[56] P. A. Neill and A. Crowe, J. Phys. B 21, 1879 (1988).
[57] P. A. Neill, B. P. Donnelly, and A. Crowe, J. Phys. B 22,

1417 (1989).
[58] D. C. Cartwright and G. Csanak, J. Phys. B 19, L485

(1986).
[59] B. P. Donnelly, P. A. Neill, and A. Crowe, J. Phys. B 21,

L321 (1988).
[60] B. P. Donnelly, D. T. McLaughlin, and A. Crowe, J.

Phys. B 27, 319 (1994).
[61] M. Eminyan, K. B. McAdam, J. Slevin, and H. Klein-

poppen, J. Phys. B 7, 1519 (1974).
[62] D. T. McLaughlin, B. P. Donnelly, and A. Crowe, Z.

Phys. D 29, 259 (1994).
[63] A. G. Mikosza, R. Hippler, J. B. Wang, and J. F.

Williams, Z. Phys. D 30, 129 (1994).
[64] H. Batelaan, J. van Eck, and H. G. M. Heideman, J.

Phys. B 24, L397 (1991).
[65] H. J. Beyer, H. A. Silim, and H. Kleinpoppen, in XVI In

ternational Conference on the Physics of Electronic and
Atomic Collisions, Abstracts, edited by A. Dalgarno, R.
S. Preund, P. M. Koch, M. S. Lubell, and T. B.Lucatorto
(Academic Press, New York, 1989), p. 165.

[66] J. P. Beijers, D. H. Madison, J. van Eck, and H. G. M.
Heideman, J. Phys. B 20, 167 (1987).

[67] M. Eminyan et al. , J. Phys. B 8, 2058 (1975).
[68] M. T. Hollywood, A. Crowe, and J. F. Williams, J. Phys.

B 12, 819 (1979).
[69] J. Slevin et al. , J. Phys. B 13, 3009 (1980).
[70] R. McAdams and J. F. Williams, J. Phys. B 15, L247

(1982).
[71] D. H. Madison (private communication).


