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Rotational excitation in two-center Coulomb-scattering systems:
Application to electron-molecule collisions

A. Ernesti
Department of Chemistry, University of Durham, South Road, Durham DH1 SLE, England

M. Gote and H. J. Korsch
Fachbereich Physik, Universitat Kaiserslautern, D-67658 Kaiserslautern, Germany

(Received 1 March 1995)

Rotational excitation in electron —diatomic-molecule collisions at intermediate collision energies

( 10 eV) is discussed within a quantum-mechanical two-center model using a Coulomb-scattering
approximation. Rotational rainbow efFects are discussed, in particular for heteronuclear diatomic
molecules. The model is applied to collisional excitation of HCl and CO as well as to the homonuclear
cases Nq and C12. The model predictions are compared with recent experimental results as well as
with elaborate numerical computations for the homonuclear systems.

PACS number(s): 34.80.Gs, 34.50.Ez

I. INTRODUCTION

In previous articles the rotational excitation of di-
atomic molecules by collisions with electrons at about 10
eV has been studied for the case of Na2 molecules, where
state-to-state differential cross sections have been exper-
imentally determined [1,2]. The most prominent feature
of these cross sections is the pronounced rotational rain-
bow structure, i.e. , a characteristic maximum, the "rota-
tional rainbow, " accompanied by oscillations ("rotational
rainbow oscillations"). This is found in the rotational
distributions at fixed scattering angle as well as in the
angular dependence of the inelastic cross sections as dis-
cussed in the recent reviews [3,4] on rotational rainbow
effects in atom-molecule or electron-molecule scattering.

For Na2, the experimental results could be compared
with quite elaborate theoretical computations based on
the 6xed-nuclei approximation including, e.g. , electron
exchange (see [1,5,6] for details) in very good agreement
with the measurements. In addition, it turned out that
a very simple two-center scattering model was capable of
describing the rotational state-to-state cross sections sur-
prisingly accurately [6,7] (see also the discussion in [3]).
The two-center model was then extended to vibrationally
excited molecules [8—10], again in good agreement with
the experiment for Na2 [8], as well as to rotational ex-
citation of polyatomic molecules [3,11—13], where no ex-
perimental state-to-state differential cross sections have
been reported up to now.

Because of the restriction of the previous studies to
Na2 molecules, it is of interest to analyze different sys-
tems. In this work we report on such a study for two
homonuclear diatomic molecules, N2 and C12, and for
two heteronuclear ones, HC1 and CO, where experimen-
tal measurements have been carried out very recently.
Section II gives a short outline of the two-center scatter-
ing model emphasizing the effects due to heteronuclear
molecules. The comparison of the model with recent ex-

periments (described in Sec. III) and more elaborate the-
oretical results is discussed in Sec. IV.

II. COULOMB-SCATTERING SPECTATOR
MODEL

The two-center scattering model for rotational excita-
tion of diatomic molecules [3,6,7] has been successfully
applied to Naz targets at intermediate energies [1,2,6,8].
For molecules not vibrationally excited initially, it has
been demonstrated that the rotational excitation of the
target can be well described within the rigid rotor ap-
proximation, where the distances of the molecular atoms
from the scattering center are Axed at their equilibrium
values. The collision is treated as vibrationally elastic.
This collision model has been discussed quite extensively
in previous articles [3,7] and a number of useful analytic
formulas has been derived. Here we give a short out-
line of those results, which are important for an applica-
tion to heteronuclear molecules, in particular within the
Coulomb-interaction approximation.

The scattering of the (fast) electron is approximated
by an impulsive collision with only one of the molecular
atoms, where the interaction is moreover approximated
by a simple potential scattering. The collision is assumed

to be (energetically) elastic, ik'i —ik] = k, and the mo-

mentum transfer is

4k = ik' —ki = 2k sin(8/2),

where 6 is the scattering angle.
Since for diatomic targets the cross sections for the ex-

citation of initially excited molecules may be calculated
from j ~ 0 cross sections using a well-known factor-
ization formula [7,14], in the present study we confine
ourselves to molecules initially in the rotational ground
state. The experimentally not resolved m transitions

1050-2947/95/52(2)/1266(6)/$06. 00 52 1266 1995 The American Physical Society



ROTATIONAL EXCITATION IN T%0-CENTER COULOMB-. . .

have been summed and thus the difFerential cross section
is given by

(j m ol8)

= P,"(~)f"(~) + (—1)'P,"(~)f"(~) (2)

where the form factor E "(6.) for rotational transitions
0 ~ j is given by the simple expression

4„=r Ak = 2r k sin(6/2) (4)

(note that r2/rr ——mr/m2, where mi ) m2 are the
masses of the molecular atoms).

In addition, the difFerential cross sections (2) depend
on the elastic scattering amplitudes fl l(8) =

I
fl"ll e'~"

for collisions with atom v.
The two-center scattering model can be extended to N-

center scattering describing collisional excitation of poly-
atomic molecules. Furthermore, it may be of interest to
note that the model shows a close similarity to the Born-
type approximation developed for inelastic electron-atom
scattering at high energies (see, e.g. , [15, Sec. 145] or [16,
Sec. 4.3]).

The rotational excitation of homonuclear molecules
has been studied quite extensively for Na2 [7], where the
elastic scattering amplitude f(8) has been determined
by 6tting a screened Coulomb potential

V(r) = —[(1 —a)e s'+ ae "]
r

to numerical data for the electron-Na2 interaction [z is
the number of protons of the target atom; atomic units
are used in Eq. (5) ]. Such a description of the interaction
is of essential importance if one is actually interested in
the angular dependence of the difI'erential cross sections.
Here, we will only discuss the rotational transition prob-
abilities P(j E ol6) a—t fixed scattering angle, i.e. ,

+," (@) = /2j+1j, (A„), r =1, 2.
Here, jz is the spherical Bessel function and its argument
is the momentum transfer multiplied by the distance of
the atom v from the center of mass:

The inHuence of the electron-atom potential on the
normalized transition probabilities at fIxed 6 is less im-
portant [note, for instance, that P(j +- ol6) is in
dependent of the interaction potential for homonuclear
molecules] and we therefore include only the dornj-
nant term of the interaction potential at short range,
the Couloxnb part. Using the fact that the Coulomb-
scattering amplitude is proportional to the nuclear charge
number, f l ~ z, we obtain our working equation

P(& ~ ole) = PM(& ~ ol~)+Pr(& ~ ol~)

with the main contribution

PM(~ ~ ol~)

= (2j+1) :j;(~.) +.,'~;(~.)
sIn Ap

z, + z, + 2zrzg — —cos(pr —P2)
0

and the interference term

Pr(j E—ol8) = (—1)~ 2(2j + 1)
z»2j, (&r)j, (&2) co'(0i —4)

z2 + z22+ 2z, z2 "~—' cos(P, —P2)

Here, Pr and P2 are the Coulomb-scattering phase shifts
(see, e.g. , [15, Sec. 133])

+V ~ . z= 2
"

ln [sin(8/2)] —arg I'
I
1+i

I (ll)
kap kap)

Z2
P, (J ~ ole) =, ', P,"(J~ ole)

Zl + Z2

+ 2
'

2 Pc~. '(J +- 0l~)"+.: (12)

with

(ap is the Bohr radius).
lt is instructive to analyze the rotational excitation in

a classical model as discussed for homonuclear targets in
[3,7]. Here, the corresponding classical rotational distri-
bution is given by

„„(j ol~) = P(~ ol~) „„(~)
tot

We further note that the total (j summed) difFerential
cross section can be evaluated in closed form [7] using
the addition theorem of the spherical Bessel functions,
which yields

d~ (~) = ) .d~ (~ +- 0l~)
tot

= If'"(~)I'+ If"'(~) I'

+2lf" (~)f"(~)
I

cos(&r —&2) (7)
Lp

with Ap = Ar + A2 = dAk (d = t'r + r2 is the infer-
molecular distance) .

J J ( J(v)
Pl'(J ~ ol~) = ~

~'"' (J") —1
0,

(13)

and J = j + 1/2. The classical cross sections diverge at
the rotational rainbows JR ——A„[3].For heteronuclear(v)

targets, two rainbows appear at JR & JR, where the(1) (2)

6.rst one, JR, is due to scattering from the heavier atom
(mass mi ) m2 ) of the molecule. Rotational excitation
of J & JR is classically forbidden.

Semiclassically, these rainbows are accompanied by so-
called rotational rainbow oscillations [3] on the classically
allowed side (the "bright" side of the rainbow), which ap-
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pear in the quantum cross sections (8) as oscillations in
the spherical Bessel functions. In addition, we observe
interference terms of both rainbows, oscillating because
of the phase mismatch Pq —P2 of the Coulomb-scattering
phases. The importance of this interference term is dis-
cussed in more detail below.

III. EKPEB.IMENTAL SETUP ANI3
EVALU ATION PB.OCEI3U B,E

The measurements have been performed with a
newly designed. high-resolution electron spectrometer of
crossed-beam type. An almost monochromatic electron
beam, produced in a revolving electron gun, is crossed
perpendicularly with an elusive target gas beam. The
scattered electrons are detected in an electron analyzer
with acceptance half angles of 3 . The electron gun
and electron analyzer are of id.entical structural form
and size. Tandem hemispherical condensers are used
for energy selection. The electron optics is computer
controlled for better handling and improved stability.
Both systems are diKerentially pumped to a pressure
smaller than 10 mbar during operation. All com-
ponents of the spectrometer are made &om stainless
steel. To achieve undisturbed surfaces and homoge-
neous electron work functions they were electropolished
after fabrication. During all measurements the overall
energy resolution (electron gun, analyzer, and Doppler
broadening) of the spectrometer was 10—12 meV (full
width at half maximum), and the beam current about
10-"A.

A rather high energy resolution is necessary since the
information about the rotational excitation is extracted
from a line-shape analysis of the rotationally broadened
energy loss spectra. An unbroadened reference appara-
tus profile is obtained by electron scattering from rare gas
atoms under identical scattering conditions for each en-
ergy and angle. State-to-state rotational transition cross
sections have been deconvoluted as was proposed by Shi-
mamura [17]. The formalism, developed for linear and
spherical-top molecules, is based on the adiabatic nuclei
rotation approximation, which is very well fulfilled in the
present case. This formalism was extended to take care
of the Doppler eIII'ect. Much emphasis was laid on robust
numerical algorithms.

A d.etailed discussion of the experiment may be found
in Refs. [18,19].

contribute proportionally to the Fourier transform of the
electron density. However, it can be shown that the latter
is negligible for a large momentum transfer, i.e. ,

apeak y) 1 (14)

E = 500 eV

0.2

0.1

I
C)

CL

0 '--

0.2

(see, e.g. , [15, Sec. 139]), where ao is Bohr's radius.
For electron-molecule collisions, this condition limits the
use of the Coulomb-scattering spectator model derived
in Sec. II.

For backward scattering and high collision energies
such as 500 and 1000 eV, the value of apeak equals 12.1
and 17.1, respectively, and thus in this high-energy region
the condition (14) has been found to be well fulfilled (see
also the discussion below). The transition probabilities of
two high-energy collisions by CO are shown in Fig. 1. As
discussed in Sec. II, the classical distribution possesses a
d.ouble rainbow structure. For backward scattering and
a collision energy of 500 eV, the two classical square-root
rainbow singularities are found at j = 10.58 and 14.26.
The erst rainbow corresponds to the oxygen atom and
the second one to the carbon atom. For both energies,
at the bright sides of the rainbows the quantum rainbow
patterns show two quite pronounced maxima and a few
less intensive maxima called rainbow oscillations. At the
dark side of the rainbow singularities the quantum pat-
terns decrease exponentially. As discussed above, both
quantum distributions can be expected to give quite good
predictions of the realistic cross sections at these high en-
ergies.

For lower impact energies such as 100 eV at the fixed
scattering angle of 120, the value of apeak is just smaller
than 5 and the Coulomb approximation of the electron-
atom interaction seems to break down. However, as has
been shown in previous work [6,7,11], for homonuclear
targets the transition probabilities are independent of the

IV. EX.PEB.IMENTAL B.ESULTS ANI3
THEE)B.ETICAL ANAL% SIS 0.1

Elastic collisions of fast electrons with atoms are well
described. within the Born approximation. The prerequi-
site for such a simple description is that the electronic
projectiles are faster than the electrons of the target
atom. Applying Born's method leads to an integral over
the charge distribution of the target atom. The contri-
bution from the nucleus turns out to be proportional to
the number of its protons, whereas the atomic electrons

0 ="=

0 5 15 20

FIG. 1. Quantum (~ ) and classical ( ) transition prob-
abilities of the rotational excitation of CO from its rotational
ground state for electron backward scattering at 500 and 1000
eV.



ROTATIONAL EXCITATION IN TWO-CENTER COULOMB-. . .

0.8

0.4

e-N,
6= 10

e -CI2

6=10

0
0.8

iL L L L LT T T T wr

6= 50' — 08— 6 = 50'-

Q 4

CO

0
0.8

CL

0.4

T 0 I I T T T T

V=90 — 08- 6=90

0.4 0.4

0
0.8

4 At Jh &L
T wr I I r T T

160 — 0.8 — 6 = 160'

0.4 0.4

04
0 8 12 0 4 8 12

FIG. 2. Rotational rainbow distributions for electron-Nq
and -C12 at 100eV and four fixed scattering angles 8. Results
from close-coupling calculations (o) and from the spectator
model (—o—) are compared with the experimental results
(~). Also shown is the distribution ( ) from a classical
spectator model.

electron-atom cross section. Since in this particular case
zr ——z2 and Pr ——P2, this may be seen &om the equa-
tions given in Sec. II, which simplify to the equations
discussed in Ref. [7]. Thus, in the case of homonuclear
targets, the rotational excitation probability depends on
the molecular form factor, which for diatomic molecules
is only a function of the internuclear distance d.

Previously, the homonuclear spectator model has been
found to provide an excellent description for electron-Na2
collisions at intermediate energies and large scattering
angles [1,2,6,8]. For N2 and C12, the results of the spec-
tator model are compared with experimental results by
Gote [18] and close-coupling calculations by Kutz [20,21]
in Fig. 2. The rainbow pattern predicted by the two-
center spectator model is in very good agreement both
with the close-coupling and with the experimental re-
sults, which demonstrates that this simple model can also
successfully describe rotational excitation of molecules
diferent &om Na2. As expected, for large scattering an-
gles such as 160 all distributions agree well and pro-
nounced maxima appear at the bright sides of the classi-
cal rainbows close to their singularities. Surprisingly, this
agreement holds for small angles such as 10 as well. In
this case, the scattering angle is so small that the classical
rainbow position JR is below 1/2 and since j = J —1/2
it gets shifted below j = 0. Therefore no classical distri-
bution is drawn for 8 = 10 . For both targets, at such
small scattering angles the spectator model predicts ro-
tationally elastic collisions again in excellent agreement
with experiments and close-coupling calculations.

Note that, since the rotational excitation of hornonu-
clear targets is independent of the electron-atom cross
section, the assumption of a Coulomb-scattering system
has not been used and so in this case the condition (14) is
meaningless. This is difFerent, however, for heteronuclear
molecules such as HCl and CO, where for decreasing col-
lision energy or decreasing scattering angle the condition
(14) shows the limits of the Coulomb-scattering approx-
imation for electron scattering by atoms and molecules.

Therefore, it is instructive to discuss the quantum rain-
bow distribution in more detail and to distinguish the
more stable or unstable features. Since the main and the
interference contributions of the transition probabilities
depend on the Coulomb-scattering phases, for decreasing
Ak both terms are affected. However, for reasonable Ak
values, the quantity Ao in Eqs. (9) and (10) will still be
of the order of 10 and thus the main contribution may
be approximated as

zrg, (Ar) + zb,. (K2)
M (g +- 0I~) = (2g + 1)

and the interference term as

I', (~ +- ole) = (—1)'2(2~+1)
Zl Z2

-,—.~'(&r)5 (&2) cos(&r —&2)

Within this approximation, it can be seen that in first
order the Inain contribution is independent of the phase
difference Pr —P2, and thus this term turns out to be
rather stable for decreasing Ak. Differently, the inter-
ference term depends still on the diIII'erence of the scat-
tering phases Pr and P2. For homonuclear molecules
(i.e. , Pr ——Pz), the magnitude of the interference reaches
its maximum leading to the well-known selection rule of
"Aj = j =even" for nonvanishing probabilities. In the
case of heteronuclear rnolecules (i.e. , Pr g P2), the inter-
ference term is weakened into a propensity rule. The vari-
ation of the strength of the interference depends strongly
on the term cos(Pr —P2), which is shown in Fig. 3 as
a function of the scattering angle 6 for HCl and CO.
Since the charge of the Cl nucleus is much larger than
the charge of either the carbon or oxygen atom, the
cos(Pr —P2) term oscillates much faster in the HC1 case.
However, both figures are similar since for decreasing an-
gle the oscillations increase (note that for CO this is not
directly obvious in Fig. 3 because of the resolution for
small angles) .

Since the spherical Bessel function j~(A) decreases ex-
ponentially for increasing j in the region j & A, the
inhuence of the interference disappears more or less at
the dark side of the inner rainbow. At the bright side of
this rainbow, the interference contribution increases the
frequency of the rainbow oscillations.

From the discussion above, it is obvious that for de-
creasing impact energies or decreasing scattering angles
a breakdown of the Coulomb-scattering approximation of
the electron-atom collision shows its first evidence in the
rainbow oscillation pattern at the bright side of the inner
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FIG. 4. For two energies and two angles, the experimental
results (~ ) of electron-HC1 scattering are compared with the
predictions of the spectator model (—o—) and the classical
rainbow distribution ( ). The inset shows a magnification
of the outer rainbow region.

FIG. 3. Contribution of the interference term as a function
of the scattering angle 8 for HCl and CO collisions at 200 eV.

classical rainbow, whereas the outer rainbow structure is
less disturbed.

Since for HC1 molecules the center of mass is very close
to the Cl atom, for energies of 10 eV the position of the
inner rainbow singularity, JR, is very close to the rota-
tional elastic channel, whereas the outer rainbow singu-

larity at JR, which corresponds to the H atom, appears(2)

for large changes of the rotational angular momentum.
This can be clearly seen from the ratio

JR rg(~)

J(2) P2R

m2- 1

mg 35

Accordingly, electron-HCl scattering seems to be one
of the best suited heteronuclear targets for a possible
application of the Coulomb-scattering approximation to
lower collision energies. The region of reasonable interfer-
ence contributions is extremely compressed around j = 0.
However, since the charge of the Cl nucleus is 17 times
larger than the proton charge, the outer rainbow is about
300 times weaker than the inner one, as clearly shown in
Fig. 4. The elastic channel dominates the whole rainbow
pattern and the outer rainbow can only be seen in the
magnified inset. The experimental result shown in Fig. 4
agrees well with the above predictions of a very weak
outer rainbow, since for j & 3 no population of the Anal
levels has been found. Because of the limited resolution
of the experiment no further details of the outer rain-
bow have been observed and therefore the experimental
values are not shown in the inset.

Finally, electron-CO collisions are investigated. In this
case, both rainbows are quite close together which may
be seen from the ratio

0.6
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corresponding to scattering from the carbon atom is
only slightly weaker than the contribution caused by the
electron-oxygen collision. As discussed above, for this
case a breakdown of the Coulomb-scattering approxima-
tion should be clearly observable at small scattering an-
gles. The condition (14) for applicability of the Coulomb
approximation may be approximately fulfilled for an im-

pact energy of 200 eV and scattering angles larger than
120, i.e. , for values of aoLk of about 7. As demon-
strated in Fig. 5, the rainbow patterns predicted by the
spectator model within the Coulomb-scattering approx-
imation agree quite well with the experimental results
for a collision energy of 200 eV and large scattering an-

gles. For scattering angles larger than 140 the double
rainbow structure is well resolved, but for decreasing an-

gles both quantum rainbow maxima overlap, forming a
single pronounced maximum. Additionally, larger dif-
ferences between experiment and the above theory ap-
pear for decreasing scattering angles. The same effect

(18)

Since the charge of the carbon nucleus is 6e and the
charge of the oxygen nucleus is 8e, the outer rainbow

FIG. 5. Experimental results (~ ) of electron-CO scattering
in comparison with the predictions of the quantum (—o—)
and classical ( ) spectator model for an impact energy of
200eV and various scattering angles 8.
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approximation leads to quite reliable transition proba-
bilities at fixed scattering angle. Note, however, that for
prediction of the absolute values of the differential cross
sections in electron-molecule collisions, the condition (14)
requires much higher aoLk values.
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V. SUMMARY

FIG. 6. Experimental rotational transition probabilities

(~ ) in electron-CO scattering in comparison with the quantum

(—o—) and classical ( ) spectator model for an impact
energy of 100 eV and a scattering angle of 160'.

has been found for lower energies such as 100 eV, where
even for large scattering angles the Coulomb approxima-
tion breaks down. This can be seen in Fig. 6.

Here, we can conclude that for aoLA: & 7 the Coulomb

State-resolved differential cross sections for rotational
transitions in electron-molecule collisions at intermedi-
ate collision energies ( 10 eV) for N2, C12, HC1, and
Co molecules revealed pronounced rotational rainbow
structures similar to the Na2 scattering results reported
previously. These rainbow structures may therefore be
considered as a general phenomenon in electron-molecule
scattering. In all cases, the two-center scattering model
using an additional Coulomb-scattering approximation
was found to provide an extremely good quantitative de-
scription of the rotational transition probabilities.
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