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We have carried out a comprehensive theoretical and experimental study of electron scattering from
molecular nitrogen at energies below 10.0 eV. In the theoretical component of this project we have gen-
erated differential and integral cross sections for elastic scattering and vibrational excitation in con-
verged vibrational close-coupling calculations. In the experiments, we have measured dift'erential cross
sections for these processes at scattering angles from 20' to 130 in a crossed-beam experiment at a large
number of energies between 0.55 and 10 eV and, in a complementary time-of-Right experiment, total
cross sections at energies between 0.08 and 10.0 eV. The measured angular distributions have been ex-
trapolated to 0 and 180 using a procedure based on a nonlinear least-squares fit constrained by known
physical properties of the e-Nz scattering matrix; numerical integration of the resulting extrapolated dis-
tributions yields integrated cross sections with almost no error beyond that inherent in the measured an-
gular data. We find generally good agreement between the present experimental and theoretical cross
section, particularly at energies near the H~ resonance near 2.39 eV. In previous studies of scattering in
this region, such comparisons have been made problematical by the difhculty of ascertaining the ap-
propriate theoretical scattering energy. We recommend here a protocol for resolving this problem for
both elastic scattering and vibrational excitation.

PACS number(s): 34.80.6s

I. INTRQDUCTIQN

Molecular nitrogen has long been a fertile field for in-
vestigations of low-energy electron scattering. This sys-
tem marks a transition between simple, moderately non-
spherical few-electron systems and everything else and so
has become a prototype for theoretical and experimental
study of electron-molecule dynamics [1—6]. Beyond their
fundamental relevance, low-energy e-Nz cross sections
are important to gas-discharge devices, laser-kinetic mod-
eling, the physics of planetary atmospheres, and other ap-
plications [8—11]. Most prior theoretical work on e-N2
focused on the broad, low-energy (-2.4 eV) Ils shape
resonance, which induces dense, complicated oscillations
in vibrationally elastic (0~0) and inelastic (O~v) cross
sections and dominates the energy range below about 4.0
eV [12—36]. In addition to early articulations of the na-
ture of this resonance [14,15] and calculations of energies
and widths (as a function of internuclear separation) us-

ing a wide range of theoretical methods [17,20], previous
theoretical work elucidated the role of the resonance in
vibrational excitation, primarily through the "boomerang
model" [21—24], and led to increasingly sophisticated cal-
culations of vibrational cross sections [24,35]. Of partic-
ular concern in these theoretical studies were the energies
at which the difFerential cross sections (DCSs) and in-
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tegral cross sections (ICSs) exhibit the prominent peaks
that characterize this "intermediate lifetime resonance"
[23—30]. Of the many previous experimental studies of
low-energy elastic and vibrational e-N2 scattering
[37—58], several have focused on these important features
[43,44, 52,58].

By contrast, comparatively little attention has been
given to determining absolute resonant or nonresonant
cross sections at scattering energies below 10 eV. Neither
experimental nor theoretical vibrational cross sections ex-
ist of an accuracy comparable to those for e-H2, and ex-
tant results for this prototypical electron-molecu1e system
are fragmentary [4,6]. The importance of determining
these cross sections, whether by experiment or theory,
follows from the key roles both resonant and nonresonant
scattering play in low-energy e-Nz collisions. The under-
lying physics of resonant scattering, e.g., the aspects of
the electron-molecule interaction that control the col-
lision and the region of configuration space that most
influences distortion of the scattering function, divers
from that of nonresonant scattering. Moreover, the na-
ture of the nonresonant scattering is di6'erent below and
above the resonance region, which extends roughly from
1.5 to 4.0 eV.

For both resonant and low-energy (E (1.0 eV) non-
resonant scattering, prior experimental and theoretical
studies largely disagree [4,37—58]. Absolute DCSs for ei-
ther 0~0 or 0~1 scattering have been measured by
Ehrhardt and Willmann [38], Srivastava, Chutjian, and
Trajmar [41], Shyn and Carignan [45], Tanaka, Yamamo-
to, and Okada [47], Brunger et al. [56], Brennan et al.
[57], and Shi, Stephen, and Burrow [58]; comparisons of
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the data from many of these experiments appear in the
latter two papers. Integral cross sections can be deter-
mined from the results of some of the above DCS mea-
surements by extrapolation to 0 and 180 followed by in-
tegration over the scattering angle. In addition, ICSs
have been measured in attenuation experiments by
Baldwin [40], Golden [42], Kennerly [46], Jost et al. [53],
and Ferch, Raith, and Schweiker [55].

Of the innumerable theoretical investigations of low-
energy e-N2 scattering, absolute DCSs for 0~0 and 0~ 1

scattering are available from hybrid-theory calculations
of Chandra and Temkin [34] and their completion by
Weatherford and Temkin [35], Schwinger multichannel
calculations of Huo et al. [29,30], close-coupling calcula-
tions by Morrison and Saha [36] and by Rumble, Truhlar,
and Morrison [32,33], and R-matrix studies of Morgan
[27] and of Gillan et al. [28]. In addition, explicitly reso-
nant vibrational excitation in e-N2 collisions has been ex-
plored in R-matrix calculations by Schneider, LeDour-
neuf, and Lan [25], optical-potential calculations by Her-
man et al. [26], via a model-based treatment by Wadehra
and Drallos [31], and in numerous papers based on the
aforementioned boomerang model [21—23].

The considerable differences one 6nds upon comparing
results from the above experimental and theoretical stud-
ies often arise less from imprecision in one or another
cross-section determination than from the difhculty in es-
tabhshing meaningful points of comparison from two or
more different studies. This problem is particularly acute
in the resonance region, where the structure of the cross
section is complex and highly sensitive to energy. This
problem can be traced back to the initial observations by
Schulz [37] and Ehrhardt and Willmann [38], which were
subsequently con6rmed by high-resolution measurements
of Rohr [44], that the positions of the resonant peaks in
e-N2 elastic and vibrational cross sections depend sensi-
tively on both the final vibrational state and the scatter-
ing angle. More recent discussions by Brennan et al.
[57], Shi, Stephen, and Burrow [58], and Weatherford
and Temkin [35] have foregrounded the key observation
that within the resonance region, the vibrationally elastic
DCSs at two energies separated by as little as 50 meV
may differ radically in shape and absolute magnitude.
(This problem, as we shall show, appears to be less acute
for resonant inelastic scattering among low-lying vibra-
tional states, where the shape of the cross section is large-
ly independent of, and scales with, the energy. ) We have
made an important goal of the present collaborative
study of low-energy e-N2 scattering to articulate and test
a protocol for meaningfully comparing theoretical and
experimental DCSs in the resonance region. Since most
electron-molecule systems manifest shape resonances
below about 10 eV and many exhibit a distinctive
(quasi)vibrational structure, the need for a meaningful
way to make such comparisons extends well beyond the
e-Nz system.

In an effort to overcome these limitations of compar-
ison, Shi, Stephen, and Burrow [58] have proposed an ex-
perimental protocol for DCS measurements according to
which the incident energy in, say, an experimental and a
theoretical study would be chosen at each scattering angle

to correspond to the same structural feature in the reso-
nance region. Although this technique would clearly re-
move any ambiguity in comparison between results from
different experiments or from experiment and theory, we
favor a different protocol as perhaps more practical. Our
proposed protocol involves measurements at a fixed ener-

gy determined, for both experiment and theory, at corre-
sponding structures in the experimental and theoretical
cross sections, respectively. In particular, we here choose
the resonance peaks in both the 0—+0 and 0~1 cross sec-
tions at a predetermined angle. This protocol is dis-
cussed in more detail in Sec. V.

The present collaboration builds on previous work in
e-N2 scattering in the two groups involved. The earlier
theoretical study by Morrison, Saha, and Gibson [61]
centered on developing and testing a parameter-free mod-
el potential for polarization and bound-free correlation
effects in the rigid-rotor approximation, where, of course,
vibrational excitation cannot occur. The earlier experi-
mental measurements of vibrational cross sections by
Brennan et al. [57] were performed at only a few energies
and used a different normalization technique than is im-
plemented here. The present work represents a substan-
tial increase in the accuracy and sophistication of both
the experimental and theoretical techniques, as discussed
in Secs. II—IV. In Secs. VI and VII we extensively com-
pare elastic and inelastic (0~1) DCSs, total elastic cross
sections, and grand total cross sections; the experimental
ICSs in these comparisons were determined not by con-
ventional extrapolation and integration methods but
rather by a physically based 6tting procedure we summa-
rize in Sec. VII. Finally, we offer some concluding obser-
vations in Sec. VIII.

II. EXPERIMENTAL TECHNIQUES

A. DifFerential cross sections

The present experimental apparatus and the techniques
used for obtaining absolute DCSs have been described in
some detail previously [57,59]. However, as the current
implementation of the relative How normalization tech-
nique differs from that used in our previous e-N2 studies
[57], we shall provide a brief description that highlights
these differences.

The apparatus is a conventional crossed elec-
tron —molecular-beam spectrometer that uses electrostat-
ic hemispherical energy analyzers and electron optics to
create and analyze incident and scattered electrons. Typ-
ical overall energy resolution for the present measure-
ments is 40 meV at an incident electron beam current
that varies between 0.5 and 2.0 nA, depending on in-
cident energy. The incident energy scale was established
by determining the position of the second resonance peak
in the elastic e-N2 DCSs at a scattering angle of 60'; as
measured by Rohr [44], the position of this peak is 2.198
eV.

Physical constraints limit data collection to scattering
angles between —20 and 130'. We established the 0 po-
sition to within 1' by observing the symmetry of the
scattered signal at positive and negative angles. The ap-



paratus, which is constructed from nonmagnetic materi-
als, is surrounded by several 1ayers of magnetic shielding
and three orthogonal pairs of Helmholtz coils, which
reduce the ambient magnetic field in the region of the
spectrometer to less than 1 mG.

In our previous measurements of e-N2 DCSs [57], we
established an absolute scale by the relative Row tech-
nique [41,60], applying this normalization technique,
which involves measuring relative elastic scattering inten-
sities at several angles between the gas of interest and a
reference gas, usually helium, to the measured angular
distribution. The CKcicncy of the analyzer as a function
of angle was checked against the shape of the e-He cross
section [62]. In recent work on other systems (see, e.g. ,
Ref. [63]) we have improved the CIFIciency and accuracy
of our cross-section measurements by applying the rela-
tive Aow technique at each scattering angle. This pro-
cedure, applied in the present e-Nz measurements, re-
moves within reasonable limits the dependence of the
cross section on the size and shape of the interaction
volume. Moreover, both gases are present in the scatter-
ing chamber at a11 times during the measuremcnts; this
procedure, which aids in maintaining operational stabili-
ty and energy calibration, was first used and described by
Shi, Stephen, and Burrow [58].

For the present measurements, the atomic beam was
formed by a multicapillary array, which has been dis-
cussed previously. The experiments were conducted Un-
der the general guidelines established in a recent study of
the shape of c6'usive molecular beams and the depen-
dence of this shape on pressure and species [64]. This re-
quires adjusting gas pressures at the entrance to the capi1-
lary array so that the mean free paths A, of the two gases
are identical. To Ineet the secondary condition imposed
by Bucknlan et al. [64], that A, be greater than twice the
diameter of the capillary (40 pm), we kept the driving
pressures for He and N2 less than 1.0 and 0.7 Torf, re-
spectively.

As the energy resolution is clearly Dot SUNcicnt to
resolve rotational structure, the experimerltal data were
collected by scanning the analyzer energy loss across the
entire energy-loss peak for elastic or inelastic (0-~l)
scattering and recording the analyzed electron signa1 iIi R

multichannel analyzer (MCA). Thus the measurements
yield mtationally averaged elastic and vibrational excita-
tion cross sections. The M CA channel address was
stepped in sequence with the energy-loss voltage and the
mid-element of the analyzer optics zoom lens was swept
over a predetermined range to maintain optiInum
transmission for both elastically and inelastically scat-
tered electrons. As the absolute inelastic cross sections
Rrc determined by IIlcasU11Ilg 1ntcIls1ty I'atlos to thc clRs-
tic channel, it is important to consider the transmission
of the analyzer for the elastically and the inelastically
scattered electrons. En previous experiments, where the
ratio of the outgoing energies was 1arge, wc investigated
the transmission of the analyzer by measuring the yield of
ejected and scattered electrons following near-threshold.
ionization of helium and used the predictions of the Wan-
nier theory to estimate the analyzer transmission as R

function of energy [65]. Because the greatest difFerence

between the elastic and thc ine1astic scattered electron
cllclglcs 111 flic plcscllt mcasurcmcnts (fol' an incident cIl-
ergy of 1.98 CV) is about 15%, we have not applied this
technique, which has an associated uncertainty of the Or-
der of 10%, but rather have relied QD Optimization Qf thc
clcctfon XQQITl lcIlscs to minilllizc tI ansmission
differences. Data accumulation was performed entirely
UDdcI' computer contI'Ql.

The absolute uncertainty in the elastic DCSs is a com-
bination Qf random statistica1 errors Rnd known sys-
tematic errors due to the following factors: uncertainty
m the relative flow calibration (5%)' uncertainty in the e-
Hc cIGss section, wh1ch 1s taken to bc 2%, RIld dfifts 1Il

electron-beam current and molecular-beam number den-
sity (1—2%). The overall uncertainty, which is the addi-
tion in quadrature of random RDd systematic cAccts, is
typically between 6% and 10%. The vibrationally inelas-
tic cross sections have RD additiona1 uncertainty duc to
the transmission of the analyzer, which we estimate to bc
less than 10%.

8. Total cress sectioIIIs

The second class of mcasurcra. cnts reported in this pa-
per is of' the grand total cross section: the sum of cross
sections fQI clastic scattering RHd all cnc1gct1cally accessi-
ble inelastic channels. These mcasurcrncnts were carried
out using a linear time-of-flight (TOF) electron spectrom-
eter, which has been described previously [63,66]. This
RppaI'atus has dIAcfcntlally puDlpcd soUIcc, col11slon and
detector regions, and a scattering cell with R length of
255 mm and entrance aDd exit apertures 1.0 mm in diam-
eter. Electrons produced from R tungsten filament are ac-
celerated, collimated, Rnd forIIied into R puLsed beam by R

scf1cs Qf clcctI ostat1c clcct1QIl QpticR1 elements. Thc
pulsed beam, with an energy of 200 cV, a repetition rate
of (typically) 250 kHz, and a temporal width of 500 ps, is
retarded in energy before it enters the scattering cell. By
carefu1 adjustment of the electron optics, electrons with R

w1dc I'RIigc Qf cnclglcs can bc 1njcctcd 1Dto thc scatter'1ng
cell. Indeed, at low energies it is possible to exploit most
of the width of the thermal Maxwellian dj.stributiQD from
thc hot filament so that crQss sections can bc rneasuf cd
sirnultaneous1y over an energy I'ange Qf R few CV. The ab-
solute cDcI'gy Qf thc electrons 1s Obtained ffom thc11 ITlca-
surcd time-of-faight with an uncertainty that varies from
1 rneV at 100 mcV to about 50 1TlcV at 2.5 eV. The elec-
tron count rates are such that at any one time there is Rt
most only one detectable electI on in the scattering cc11.

Typical opcI'Rt1ng pf cssUI'cs, Rs IHcasUrcd with a cR11-
bfated spinning rotor viscosity gauge, werc in the range
from 5 X 10 to 2 X 10 mbar. Normal procedures
were followed to ensure that multiple scattering was
negligible. Cross sections were measured over a fine ener-
gy grid from 80 meV to about 4 eV. At higher energies„
we made measuferncnts at discrete 1-eV integrals to R
maximurll energy Qf 10 cV. Thc absolute uncertainty in
these measuf cments of the grand total cross section,
which is a combination of random statistical errors (typi-
cally less than. 1%) and known systelllatic efFects such as
the uncertainty in the pressure determination (2%) and
the scattering path length (1%)„lies typically between



3% and 5%. The energy resolution varies from an es-
timated 10 meV or less at low energies io around 50 meV
in the resonance region and above.

III. THE(DRY

In Sec. III A we describe the approximations inherent
in our theoretical calculations, identify key quantities in
determining the numencal precision of the theoretical
DCSs presented in Sec. VI, and summarize Qur pro-
cedures for solving the e-N2 scattering equations for the
reactance (IC) matrix we use to calculate the reported
cross sections.

A. Collision dyeamies

The essential dynamical approximations underlying the
present theoretical calculations are erst that the molecule
does not undergo electronic excitation and second that
rotational motion of the target can be treated adiabatical-
ly. Both are appropriate for e-N2 elastic scattering and
vibrational excitation at energies from a few tenths of an
eV to several eV [1,3,94]. We incorporate the first ap-
proximation by projecting out of the electron-molecule
Schrodinger equation the (Born-Oppenheimer) ground
electronic state wave function and allowing for virtual
electronic excitation (polarization effects) via a
correlation-polarization potential to be described in Sec.
III B. We incorporate the second by "freezing" the
orientation of ihe internuclear axis in the solution of the
scattering equations. This is the fixed-nuclear-orientation
(FNO) approximation, the foundation of the adiabatic-
nuclear rotation method for calculating approximate ro-

tational excitation cross sections [67—89]. Since we are
here interested in vibrational excitation cross sections, we
(in eff'ect) average the resulting FNO cross section over
all molecular orientations. This produces a "total" FNO
cross section for a vibrational transition vo —+U that for-
mally equals the sum of rovibrational cross sections for
all energetically allowed transitions Uo jo~Uj; in the FNO
approximation this sum is independent of jo.

In practice, we calculate the laboratory-frame DCS as
an expansion in Legendre polynomials of the laboratory-
frame (for which we use primed coordinates) scattering
angle 6',

L
do mRx

2 g BL (Uo~u)PL(cos6'),
Q UO~U 4ko L

TA (SA1

2E

for the transition of interest

(2)

BL(UD +U)=—g g g dL(//o, //O;AA)T, (, i T i* i
A, A /, I lo, lo

The additional coeNcient dL (//o, / /0;AA) contains details
of the angular-momentum coupling

where the maximum order I. „must be determined
empirically and will depend on the particular transition
and on the kinetic energy ko/2 of the incident electron.
The expansion coefficient BL(UO~U) contains the ele-
ments of the transition matrix [7]

dL(//o, //o, 'AA)=i ' ' —[(2/+1)(2/+1)(2/ -+1)(2/ +1)]'
2L, +1 0 0

X C (//L; 0,0)C (//L; A, —A )C (/o/OL „0,0)C (/o/OL; —A, A ) . (4)

The channel labels on the T matrix are (U, /;A), where
the quantum numbers correspond to the vibrational
Hamiltonian (U), the orbital angular momentum of the
projectile (/), and the projection of this angular momen-
tum along the internuclear axis (A). The latter is a good
quantum number in the FNO approximation [70], i.e.,
the FNO Hamiltonian commutes w1th ihe co1respond1ng
operator and the transiiion matrix is therefore diagonal
in A. To exploit this fact we express the scattering equa-
tions in a body-fixed (BF) reference frame whose z axis is
coincident with the (fixed) internuclear axis R; unprimed
coordinates refer to ihe body frame.

In contrast to the DCS (1), the computation of which
often requires a large number of expansion coefhcients
a, (u, U), the ICS and the momentum-tra»sfer cross
section are determined by only the L =—0 and 1

coe%cients as

0
U U

=
~ Bo(UO-~U)

ko

(~~)
2 [80(UO —mU) —Bi(UO —+U)]
O

I

Although the BF FNO formulation treats the rotation-
al motion of the nuclei adiabatically, it incorporates the
vibrational dynamics exactly [7,34,35,71]. In the present
implementation we obtain the BF FNO scattering equa-
tions by expanding the e-N2 system wave function in the
complete set of reduced N2 vibrational wave functions
[y„(R)].To obtain a sufficiently accurate representation
of target vibration for comparison to experiment, we
have found it essential to use a basis of Morse wave func-
tions. These are eigenfunctions of the one-dimensional
Morse Hamiltonian with the potential [72]

y(M)( )
—D ( 1 M )2 (7)

which we have written in terms of the dimensionless vari-
able x =(R —R, )/R, . We find that the choice of pa-
rameters l), =0.4480E&, e~ =2.5885a o ', and
=2.02ao reproduces the energies of the lowest 15 vibra-
tional states of N2 to four decimal places [73]. In prac-
tice, we include in the vibrational eigenfunction expan-
sion a sufhcient number of terms %, to converge reported
cross sections to 1% or better.
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To reduce the vibrationaHy coupled equations resulting
from this expansion to a set of radial equations we further
expand the wave function in a complete set of angular-
momentum eigenstates for the scattering electron. In the
BF reference frame, with R as the axis of spatial quanti-
zation, this is just the set of spherical harmonics I YI (r )].
We include in this second expansion Nl terms as required
by our convergence criteria on the reported cross sec-
tions. The full expansion of the e-N2 continuum function
1s

max max

ill (r, R)= —g g u, ( „ i (r)y, (R) Y( (r ) .
r u=O

(8)

As summarized below, the number of both vibrational
states X, and partial waves Xl difFers for resonant or non-
resonant scattering and, in the latter case, on whether the
energy is above or below the resonance region.

These expansions reduce the continuum e-N2
Schrodinger equation to a set of coupled radial integro-
diff'erential equations the solution of which leads (via the
radial wave-function matrix) to the transition (T) matrix
that appears in the cross section coefficients (3). Consid-
erable simplification in the structure of this matrix arises;
since A is a good quantum number in the FNO approxi-
mation and the BF wave function is independent of the
sign of A, the scattering equations separate into distinct
sets identified by A~ =0, 1, . . . and, for homonuclear
targets, by parity, as gerade or ungerade. These
simplifications lead to independent T matrices character-
ized by symmetry classes X,X„,II„,H, etc. Equation
(3) shows that different symmetries in the DCS (1) "inter-
fere" via products of T-matrix elements. By contrast, in-
tegrated BF FNO cross section separates according to
symmetry class as

A
~u U ~~u u ~

p p
A

where the BF FNO cross-section partial in A is

max max1 I

Up ~u 2 Ul~ Uplp
0 1=0 lp =0

(10)

This E matrix arises from the asymptotic form of the BF
FNO radial functions as [74]

u,(, i (r) —j( (kor)5(i 5„,
k

- ay2

+ '
e, (k„r)Z.'z, . i

U

(12)

where j& (kor) and h&(k, r) are the Ricatti-Bessel and

Since for any value of A~ )0, the projection quantum
number can assume values +A, there is implicit in Eq. (9)
a multiplicative factor of 2 for each partial cross section
except those of the X and X„symmetries.

In practice, it is more convenient to solve the scatter-
ing equations for the (real, symmetric) reactance matrix
K, which we can convert to a T matrix via

T =K(1—/K )

Ricatti-Neumann functions for the entrance and the exit.
channels, respectively [75]. The radial functions satisfy
the coupled diff'erential equations [7]

/(/+1) 2—V,i,i(r)+k, u, i, i (r)

=2 g [V,t, i (r)u, i, i (r)],
u', 1'W u, 1

(13)

where the coupling potential V (r) includes static, ex-
change, and correlation-polarization terms we shaH de-
scribe below. The structure of this potential is

maxV„„,(r)= g gi(//', A)w, , (r),
A, =O

where the angular coupling coefficient is
1/2

(14)

gi (//', A) = 2l'+ &

2l + 1
C(/'k/ AO)C(l'l, /'00)

In practice we evaluate these integrals on the follow-
ing grid of R values (in a„):1.60, 1.70, 1.80, 1.85, 1.90,1.95,
2.00,2.02,2.068,2. jI0,2.20,2.30,2.40,2.50. This grid, which
is used throughout these BF FNO studies, exceeds the
range of the (low-lying) vibrational wave functions of
greatest importance to the particular excitations we are
investigating. Although the Hartree-Fock Nz electronic
functions used in these calculations (discussed below) do
not dissociate properly, the depth and narrowness of the
N2 electronic energy curve are such that this limitation is
not significant for the process of primary interest here
(see Fig. 3 of Ref. [84]).

The solution of Eq. (13) proceeds via the integral-
equations algorithm [7,76], in which we first convert the
integro-differential radial scattering equations to a set of
coupled integral equations, then reduce this set to Volter-
ra form. We solve the resulting equations by numerical
propagation from the origin to the asymptotic region, as
detailed elsewhere [77].

For e-N2 and other typical electron-molecule systems,
the dimensionality of the radial solution matxix A, XXl
may become quite large if a large number of partial waves
is required to accommodate the strongly nonspherical
static potential in the near-target (small-r) region. Out-
side this region, however, the potential is comparatively
weak, far fewer partial waves are required, and we can
truncate the solution matrix [78]. For e-Nz scattering
below 10 eV, we truncate to %1=3 partial waves at a
truncation radius r„„„,=6.0a 0. This gambit significantly
reduces the CPU demands of the propagation from r,„„„,
to r „=85ao,except at low energies. The latter radia1
value is large enough that the K matrix does not change
significantly beyond it. But below a few tenths of an eV
(depending on the scattering process of interest), the

and the vibrational coupling potential, written in terms of
Legendre projections Ui (r) of the interaction potential, is

w„,(r)=(p, ~u ~y, ) = J y,'(R)U (r, R)y, .(R)dR .
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cross section is inAuenced by the potential at very long
range; these weak but important effects can be incor-
porated into the K matrix rapidly, efhciently, and analyti-
cally using "Born r closure, " a procedure we have
elaborated in Ref. [7].

The question of how many partial waves we require for
convergence arises in a different way when we use the
close-coupling T matrix from Eq. (11) in the expansion
coefficients (3) to calculate a particular DCS. The latter
equation entails four summations over partial wave order
(to upper limit 1,„)and two over the projection quan-
tum number A (to upper limit A,„)and these sums may
run to quite large upper limits, particularly at small
scattering angles. This situation does not, however,
necessitate enormous close-coupling calculations. Rath-
er, we can accurately augment low-order elements from
the close-coupling T matrix with high-order elements cal-
culated in the first Born approximation (FBA).

Elements of the K matrix corresponding to high
partial-wave order l are strongly influenced by competi-
tion between two terms on the left-hand side of the cou-
pled equations (13): the repulsive centrifugal barrier and
the predominantly attractive diagonal potential matrix

iu„„.(r)—

&q. Iq(R)lq. &

r 3

& q „
Ia,(R) Iq „&+ 5~2.

2r
(17)

This slowly varying long-range potential is weak
enough that for l sufticiently large, the BF FNO E matrix
elements may be approximated to high accuracy by their
FBA counterparts [94]. For elastic scattering, these are

element 2 V,& „I( r ). Because of the barrier, high-I K-
matrix elements are determined primarily by the long-
range potential, which contains only static (Coulomb)
and induced polarization terms. Specifically, this long-
range coupling potential involves vibrational matrix ele-
ments of the spherical and nonspherical polarizabilities of
the target ap(R ) and a2(R } and of the permanent quadru-
pole moment q(R); for electron scattering, it is given by
Eq. (15) with

~kp&q. , laplq. , & ~kp 21, +1
C (lp21; AO)C (lp21;00)

(21 +3)(21+1)(21—1) "P 4 21 + 1

4kp ( qr„ I a2I y„)
X

(2n +3)(2n +1)(2n —1)l ( —m +2)l (m +2)
q., lqlq. ,

n(n+1)I ( —m +—', )l (m+ —,') (18)

where n =(1+lp)/2 and m =(1—lp)/2. The form of the inelastic Born matrix elements is a little more complicated

and so is most easily expressed in terms of the angular-momentum coupling coefficients of Eq. (15),

K„„,= —2+k, kpggi(lip, A)R~(ul, vplp), (19)

where the sum over I, includes only A, =O (for the long-range spherical polarizability term) and A, =2 (nonspherical po-

larizability and permanent quadrupole terms). The inelastic FBA radial integral

Ri(vl, uplp)—: JI(k„r)iu„,(r}J& (kpr)drk„k
evaluates to

(20}

~k,'
Ri (vl uplp)=QB (A si ) i +3

l+lo —sg+3r '2'
—l + lo+s~

I I+—
2 2

l + lp —s&+ 3 l —lp —s&+2
2

' 2

k,
, l+ —,

kp

(21}

B„(o,4)= —
—,'(q, Ia, Iq, ) (x=o, s, =4), (22a)

Here si is the power of 1/r in the asymptotic (analytic)
form of the potential [see Eq. (17)] and F is the hyper-
geometric function. For the present case, the only non-
negligible long-range moment matrix elements in this ex-
pression are

I

B„,(2, 3)= &q. lqlg. & (X=2, s„=3), (22b)

B„„(2,4)= —
—,'(p, Ia2Iq), ) (A, =2, si =4) . (22c)

All these FBA K-matrix elements are well defined except
in the X symmetry, where the FBA radial integral for
A = l = lp =0 diverges. This poses no problem in practice
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since we use close-coupling K-matrix elements for low-I
channels in this symmetry.

To apply these results we identify (empirically) a "Born
order" la,„suchthat all elements with l + la„„aregiven
by the FBA to sufhcient accuracy to converge the desired
cross section(s) to the desired precision. These Born ele-
ments augment the lower-order close-coupling elements
in each of the X and 1I K matrices in Eq. (3). We also
identify a "Born symmetry" Az„„&0 such that all K ma-
trices with

~
A

~

~ AB„„areconstructed entirely of FBA
elements. In the present calculations, all X and H X-
matrix elements, except those of the lowest three partial
wave orders, are treated in the FBA, as are all the K ma-
trices for ~A~ ~ AB„„=2.This "Born / completion" pro-
cedure is essential to converge the DCS but not needed
for the ICS.

B. Interaction potential

Low-energy vibrational excitation is acutely sensitive
to all three constituents of the electron-molecule interac-
tion potential [1,2]

V;„,(r, R)= V„(r,R)+ V,„(r,R)+ Vcp(r, R) .

These are first, the electrostatic term arising from
Coulomb interactions between the projectile and the nu-
clei and electrons of the target, second, the exchange
term arising from the antisymmetrization requirement on
the e-N2 wave function, and third, the correlation-
polarization potential arising at short range from bound-
free many-body effects and at long range from induced
polarization effects. All three terms are nonspherical
and, strictly speaking, the last two are nonlocal and de-
pend on the scattering energy. In the present calcula-
tions we approximate these by local model potentials de-
scribed below.

Operationally, we calculate the static, exchange, and
correlation-polarization potentials from an R-dependent
near-Hartree-Fock (HF) wave function for the
X 'X+ Born-Oppenheimer ground electronic state of
Nz. This, in turn, we construct from the occupied
molecular orbitals of the ground-state configuration
lo. 1o.„2o2o.„3o.1m„,which we obtain by solving the
HF self-consistent-field equations in a basis of R-
dependent, contracted nucleus-centered Cartesian Gauss-
ian functions [79]. Each of these basis functions is a
(9s5p ld/5s3p ld) contraction of a (9s5p) nitrogen basis
[80] augmented by an additional 3d function to facilitate
bond formation [81].

To calculate the static potential V;, (r, R), i.e., the aver-
age over the ground electronic state of the sum of all
two-particle (bound-free) Coulomb potentials, we first
generate from the occupied molecular orbitals the target
charge density po(r, R) on a mesh of internuclear separa-
tions [82]. From this quantity we evaluate the Legendre
projections of the static potential U~z"'(r, R) [83]. Because
of a singularity in the electron-nuclear static potential at
r =R /2, each Legendre projection contains a potentially
troublesome cusp at this radius. But in the BF FNO
scattering equations (13), these projections are embedded

in coupling matrix elements (16). The integration over R
in these integrals (16) smooths out this cusp and may
reduce the number of partial waves required for conver-
gence from that required in a rigid-rotor calculation,
where the effect of the singularity is unmediated [84].

The long-range forms of the Legendre projections of'

the static potential define the theoretical permanent IY)mo-

ments of the molecule. So from the large-r behavior of
the A. =2 projection we can extract the R-dependent
quadrupole moment that appears in the vibrational
matrix elements (17). To assess its accuracy by compar-
ison to measured values we must average q (R )

over the ground vibrational state. Doing so yields
(yo~q(R)~po) = —0.961eao, which compares favorably
with the experimental value —( l.04+0.07)ea o deter-
mined from measurements of induced birefringence [85].
Beyond the Hartree-Fock level, multiconfiguration self-
consistent-field calculations of the quadrupole moment
(at the equilibrium bond length) yield —1.20eao [86].

Rigorously including the nonlocal, energy-dependent
exchange potential, although feasible for e-H2 scattering
[87], is problematic for significantly more aspherical sys-
tems with significantly more electrons. The present e-N2
vibrational excitation study is based instead on an exten-
sion by Hara to scattering problems of the familiar Slater
average exchange potential for bound states [88,89]. As
implemented by Morrison and Collins [90,91], Hara's
model is modified by treating the quantity I (R ) in the lo-
cal momentum as a theoretical parameter. The resulting
"tuned free-electron-gas exchange" (TFEGE) potential
has been shown to be viable and accurate for vibrational-
ly elastic scattering (in the rigid-rotor approximation)
[90—93] and for vibrational excitation of Hz [87,94]. im-
plementation of the TFEGE model for vibrational excita-
tion requires determining I(R) for a range of internu-
clear separations that encompasses the vibrational wave
functions included in the target-state expansion. In both
rigid-rotor and vibrational excitation studies, we base this
parameter entirely on theoretical calculations; it does not
entail adjustment to any experimental cross sections. To
obtain an e-H2 exchange potential, for example, Mor-
rison, Feldt, and Austin [94] determined this parameter
I(R) from the X„eigenphase sum in the static-exchange
approximation at a single energy just above the first vi-
brational threshold.

One of the major findings of the present theoretical
effort is that an accurate TFEGE potential for e-Nz vi-
brational excitation cannot be generated in this simple
way. For e-N2 scattering we seek a potential Aexible
enough to describe both resonant and nonresonant col-
lisions at energies from a few tenths of an eV to several
eV. Resonant vibrational excitation is notoriously sensi-
tive to exchange effects because near a resonance the
scattering function is predominantly localized in the re-
gion of the target. For shape resonances of intermediate
lifetimes like the one in e-Nz scattering, the subtle in-
teraction between the vibrational motion of the nuclei
and the projectile, as conceptualized by the boomerang
model of Birtwistle and Herzenberg [22], further exacer-
bates this sensitivity. Moreover, while low-energy vibra-
tional excitation of H2 is dominated by scattering in a sin-
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gle electron-molecule symmetry, e-N2 collisions involve

.several symmetries. Thus, while vibrationally inelastic
resonant e-Nz cross sections are entirely determined by
the H T matrix, elastic resonant ICSs entail comparable
contributions from the II& and the X transition matrices,
with lesser contributions to the DCSs from the X„and
the H„symmetries. All four of these symmetries make
significant contributions to nonresonant elastic and in-
elastic cross sections, the importance of each T matrix
depending on the scattering energy and excitatio~ of in-
terest.

Details of the tuning procedure we have developed to
accommodate systems like e-N2 will appear in a forth-
coming paper [95]. Sulfice it to say here that we use
separate R-dependent TFEGE potentials in X and H
symmetries. First we determine values of the tuning pa-
rameter I (R) for the (nonresonant) Xs and X„sym-
metries to reproduce the exact-exchange X eigenphase
sum at 0.1 eV. Second, we determine I"(R) for the reso-
nant H symmetry at each internuclear separation to
reproduce the correct resonance energy E„(R)at that R.
The resulting exchange potential is also sufI][ciently accu-
rate for the H„symmetry, which is the least important of
the four lowest symmetries for the cross sections of in-
terest. All these tuning calculations must be based on po-
tentials that include the correlation-polarization terms,
another important contrast to the situation for e-Hz
scattering [93]. Extensive tests showed that the resulting
e-Nz TFEGE potential accurately reproduced the compli-
cated energy and R dependences of the resonant and non-
resonant scattering matrices.

We conclude this description of the e-Nz interaction
potential with the correlation-polarization term
Vcp (r,R ). In the asymptotic region, this potential
reduces to the analytic form (17), which depends only on
the vibrationally averaged induced moments of the tar-
get. At intermediate distances, outside the target charge
cloud but not in the asymptotic region, the local kinetic
energy of the projectile is low enough that the bound
electrons respond as though it were a fixed charged parti-
cle. So in this region the projectile s motion can be accu-
rately treated as adiabatic and the dependence of the po-
larization potential on the projectile velocity neglected.
To implement this approximation we calculate the polar-
ization potential outside the charge cloud as the
difference between the mean energies of the polarized and
the unpolarized systems. The former mean energy is just
the expectation value of the e-N2 Hamiltonian with
respect to a target electronic function that has been po-
larized by the electric field of the (fixed) projectile; the
latter is the same expectation value calculated with
respect to an unpolarized (neutral) electronic function.
We generate both these expectation values with the linear
variational method, using our neutral X 'X+ basis aug-
mented with selected difFuse functions to allow sufticient
Ilexibility for polarization [61,96—98].

The resulting adiabatic potential accurately represents
polarization effects outside the charge cloud; one measure
of this are the long-range induced moments we extract
from its A, =O and 2 projections. Using spherical and
nonspherical polarizabilities ao(R) and o,z(R) extracted

from these moments at r =10ao, we find, after averaging
over the ground vibrational state, the values
(golcto po) =10.980ao and (yo~a2~yo) =3.096ao. The
first value compares favorably with the (room-
temperature) experimental spherical polarizability
(11.744+0.004)ao measured by Newell and Baird [99]
and by Orcutt and Cole [100]. We can further assess this
potential by comparing our nonspherical polarizabilities
to estimates based on the relative polarizability anisotro-
py measured by Bridge and Buckingham [85]. For this
estimate Miller and Bederson [101] report
(3.08+0.002)ao, a value in comparably good agreement
with ours. Near the present HF level of representation of
the ground electronic state of N2 lie the multireference
(singles and doubles) configuration-interaction results
1 1 ~ 52a o and 3 ~ 16a 0 of Langhoff Bauschlicher, and
Chong for the spherical and nonspherical polarizabilities
[102]; these values vivify the observation that the nitro-
gen molecule is a "good [self-consistent field] molecule, in
the sense that electron correlation is not very important
for the calculation of the dipole polarizabilities" [103].

The most problematic region for the correlation-
polarization potential is inside the target charge cloud.
Here two effects come into play. First, the velocity
dependence of Vcp(r, R) may be important. Second, and
more serious for low-energy e-Nz scattering, in this re-
gion many-body effects are important. Inside the charge
cloud the scattering electron is formally indistinguishable
from the bound electrons. Hence the independent-
particle model on which the adiabatic potential rests
ceases to be viable; the resulting many-body effects yield a
short-range nonlocal bound-free correlation potential for
the small-r behavior of Vcp(r, R).

Rigorously and accurately including these efFects in
low-energy electron-molecule calculations is extremely
difricult even in the rigid-rotor approximation; recent
efforts based on Green's functions and optical-potential
theories are summarized in the introduction to Ref. [104].
We have chosen a less rigorous approach based on a
parameter-free model potential that approximates short-
range many-body effects via an ad hoc stratagem first pro-
posed by Temkin [105] for electron-atom scattering. In
this "nonpenetrating approximation, " the polarization
potential Vcp(r, R) is corrected (i.e., weakened) in the
short-range region by "turning ofF" the two-particle
bound-free Coulomb interactions (in matrix elements of
the variational calculation) whenever the coordinate of
the projectile is less than that of one of the bound elec-
trons. This yields a multipole expansion of which we re-
tain only the dipole term. Hence we have dubbed
the result the "better-than-adiabatic-dipole" potential
[97,98,36]. Elsewhere we have provided extensive discus-
sions of the generation of this R-dependent potential
[98,61] along with details of its implementation for vibra-
tional excitation [36] and a diagnosis of its strengths and
weaknesses [104].

IV. CONVERGENCE MATTERS

DifFerential cross sections are notoriously more sensi-
tive than integrated cross sections to physical and numer-
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ical approximations. Because of the prototypical nature
of low-energy e-N2 scattering, this system can serve as a
laboratory for developing criteria for accurate calcula-
tions of DSCs for other systems. Here we shall focus on
the number of vibrational states and partial waves in the
eigenfunction expansion of the e-N2 wave function near
the target and the number of partial waves and electron-
molecule symmetries in the expression for the DCS in
terms of BF FNO T-matrix elements.

The BF FNO close-couphng method sketched in the
preceding section is predicated on an expansion of the
electron-molecule wave function (for a particular symme-
try class) of the form given in Eq. (8). In this section we
are concerned with the number of vibrational states (N, )

and partial waves (N&) one must include in these expan-
sions in the near target -region, i.e., for r (r„„„,. (Outside
this region we can truncate both expansions severely with
no loss of accuracy. )

First, the number N, of partial waves I'I (r) included
in the expansion of the system wave function in the near-
target region r &r„„„,must allow fully for couphng by
the nonspherical Legendre coefficients vi (r, R) in the cou-
pling potential (14). Second, the sums over partial-wave
orders and projection quantum numbers in the expansion
coefficient (3) must include enough terms to account for
the often subtle interference eft'ects exhibited in these
DCSs. Finally, we must include a sufhcient number &„of
vibrational states in the expansion of the system wave
function.

A. Vibrational states

The number of vibrational states one must include in
Eq. (8) depends rather loosely on the energy, especially on
whether the scattering is resonant or nonresonant. For
scattering below the resonance region, we require six
states to converge the reported elastic and inelastic DCSs
to 1% at energies from 0.02 to 0.32 eV and nine states at
energies to 1.36 eV; above the resonance, from 5.0 to 10.0
eV, nine states again suKce.

Convergence in the resonance region is more interest-
ing, the requisite number of states exhibiting considerable
sensitivity to the energy. The 0—+0 DCS at 2.45 eV (the
theoretical energy of the third peak in the elastic DCS at
60'), shown in Fig. 1(a) is typical of elastic scattering in
this energy range. Convergence requires 14 vibrational
states, higher-lying states (v ) 8) contributing primarily
at 0 & 30 and 0 & 150'. Similarly, the inelastic 0~1 cross
section at this energy, shown in Fig. 1(b), is well con-
verged only by N, =14. Such behavior is not, however,
typical of inelastic cross sections. At 2.60 eV (the energy
of the third peak in the 0~1 cross section), the inelastic
0~1 DCS in Fig. 1(c) exhibits nonmonotonic conver-
gence, with X, =6 providing a surprisingly good expan-
sion.

The essential point of these comparisons (apart from
the warning implicit in nonmonotonic convergence) is
that more vibrational states are required for resonant
than for nonresonant scattering. This finding is expected
from the nature of the resonance. As reviewed by Bards-
ley and Mandl [21], by Schulz [39,10], and by Lane [1],

the e-Nz shape resonance around 2.4 eV exempli6es a spe-
cial case that is intermediate between the "compound
molecule limit" (resonances of small widths that can be
understood as temporary negative-ion complexes) and the
"impulse limit" (very wide structures). Because polariza-
tion of the Nz charge cloud by the projectile is significant
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at such energies, the vibrational eigenfunctions of the
Born-Oppenheimer Hamiltonian of the undistorted neu-
tral, as used in Eq. (8), are not the most physically ap-
propriate basis for the e-N2 system in the resonance re-
gion. Although this basis is mathematically valid, it
forces vibrational relaxation during the lifetime of the
resonance into the coupling matrix elements tU„„(r)of
Eq. (16), incorporating this effect through nonadiabatic
coupling of the electronic and nuclear motion. Hence
such an expansion may increase the number of basis func-
tions required for convergence, as demonstrated in Fig. 1.
Yet, as the boomerang model analysis of Birtwistle and
Herzenberg clarifies, neither is an expansion in terms of
vibrational states of the transient N2 complex physically
appropriate. In fact, as articulated by Schneider [106],
the most suitable representation is a "compound-state
model" formulated around the "resonant" electronic
state of the electron-molecule complex (e.g., with the R-
matrix method) [26]. Extensive, sophisticated calcula-
tions of this resonance using such methods have been per-
formed by Schneider, Le Dourneuf, and Lan [25], Hazi,
Rescigno, and Kurilla [24], and Gillan et aI [28]..

As a final caveat concerning representation of the vi-
brational dynamics in the resonance region, we em-

phasize that care must be exercised in determining the vi-
brational wave functions in the vibrational coupling po-
tentials (16). 'In the present study, neither simple
harmonic-oscillator functions nor numerical wave func-
tions generated by solving the nuclear Schrodinger equa-
tion for a Hartree-Fock ground-state potential proved
su%ciently accurate for resonant e-N2 scattering; instead
we use eigenfunctions of the Morse potential [72] with
parameters based on the experimentally measured energy
levels of the 15 lowest vibrational states [73].

B. Partial waves in the near-target region

The other critical expansion in the near-target region is
the sum in Eq. (8) over BF spherical harmonics. The
number of these partial waves required to converge a
given DCS depends more critically than the number of
vibrational states on the energy, the scattering angle, the
excitation, and whether the scattering is resonant or non-
resonant. Below the resonance, the magnitude of the
elastic DCS is controlled largely by the X T matrix and
its shape by X„andH„.As illustrated at 0.55 eV in Fig.
2(a), the shape is given correctly by a seven-term partial-
wave expansion while the magnitude requires XI=11
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(i.e., l,„=20in the Xs symmetry).
Above the resonance, forward scattering dominates the

vibrationally elastic cross section. As illustrated by the
5.0-eV DCS in Fig. 2(b), including partial waves with
I ~ 5 in the near-target expansion Eq. (8) is vital to con-
verging the DCS for scattering angles below about 45'.
[As discussed below, above-resonant small-angle scatter-
ing is also sensitive to the number of partial waves and
symmetries included in the DCS sums in Eq. (3).] Con-
vergence of the above-resonance 0~1 inelastic DCS (not
shown) is quite smooth, with typically X&=9 partial
waves required at large angles. At still higher energies,
these high-order partial waves are less important; by 10
eV (not shown), a seven-partial-wave expansion gives the
shape and magnitude of the 0~0 DCS to 1% at all an-
gles.

Convergence of the resonant inelastic DCS is marked
by the importance of the H symmetry. But for the reso-
nant elastic DCS, illustrated at 2.45 eV in Fig. 2(c), we
find the characteristic shape [see Eq. (1)] of a II~ reso-
nance modulated by contributions from other sym-
metries. The characteristic angular variation of a pure-
resonant DCS, which is unmodulated for inelastic
scattering, arises from the overwhelming dominance of
the i =l0=2 element of the II T matrix in Eq. (3). The
Clebsch-Gordan coefficients in Eq. (4) result in contribu-
tions to the DCS from Legendre polynomials Pi (cos8')
for L =0, 2, and 4; the resulting DCS is large at forward
and backward angles, has a minimum near 60' and 120',
and a small peak at 90. The detailed shape, of course,
depends on the particular admixture of Legendre polyno-
mials that results from the T matrices for the energy and
scattering process of interest. The skewed shape of the
elastic DCS, which results from symmetries other than
H, is roughly approximated by few-partial-wave expan-
sion and converged by X& =13, with convergence slowest
at forward and backward angles. No such modulation
affects the 0~1 DCS, shown at 2.45 eV in Fig. 2(d), be-
cause H dominates all inelastic e-N2 DCSs. Conver-
gence is attained by X& = 11.

C. "Asymptotic" symmetries and partial waves in the DCS

Thus far we have considered only the expansion (8) in-
partial waves of the near-target e-N2 wave function; the
number X& of terms controls convergence of the (truncat-
ed) close-coupling T-matrix elements we extract from the
asymptotic form of the radial functions u„~,&

(r). An
0 0

entirely separate issue is the number of partial waves re-
quired to converge the Legendre coefficients BL (uo~u)
in the DCS (3). Each of these coefficients contains sums
over the projectile orbital angular momentum quantum
numbers in the entrance and the exit channels and over
the corres onding projection quantum numbers with
respect to, the BF z axis. Interference effects crucial to
the DCS arise from terms containing T-matrix elements
from difFerent symmetry classes (e.g., X and IIg) or
different partial waves within a symmetry class. These
high-order and high-symmetry terms correspond to
"asymptotic partial waves"; they are not involved in con-

verging the close-coupling T matrix and so, as discussed
in Sec. III, are accurately (and very efficiently) given by
their first Born approximates from Eq. (18).

To illustrate, we shall examine the convergence in A of
typical elastic cross sections at energies below, in, and
above the resonance region as well as convergence of a
typical above-resonance inelastic DCS. [The maximum
partial-wave order l „and the Born order lB„„are
much less sensitive to energy and excitation —and so are
less interesting —than L, „.For the X and H contribu-
tions to the DCS coe%cients we use close-coupling T-
matrix elements for the lowest three partial waves and
augment these with FBA matrix elements for nine addi-
tional values of l. In all higher-order symmetries
( ~A~ & 1), which we include entirely via the FBA, we use
12 partial waves. ] To generate the unconverged DCS in
these figures we systematically included in the sums in
Eq. (3) T matrices of successively higher-order symmetry
class: the X curve in Fig. 3(a), for example, includes only
A =0 matrix elements, with the sum over l completed to
convergence.

We begin in Fig. 3(a) with the 0~0 DCS at 0.55 eV,
whose convergence behavior typifies elastic scattering
from 0.1 to 1.5 eV. Although the X T matrix is primari-
ly responsible for the magnitude of the cross section at
this energy, the 11 symmetries, with ~A~ =1, determine
the shape. High-order symmetries up to the convergence
limit

~

A =7 induce subtle but important alterations in
the shape, especially at small and large angles.

Such high-order symmetries are largely irrelevant for
resonant scattering. As illustrated by the 2.20-eV elastic
cross section in Fig. 3(b), the shape of the DCS is essen-
tially determined by the Hg symmetry. The shape and
the magnitude at all angles are given almost perfectly by
the H and the X T matrices, other contributions intro-
ducing negligible adjustments at small angles. This point
may be clarified by noting that the 2.20-eV elastic H in-

tegrated partial cross section o 0 o [see Eq. (9)] is in error
by about 40%, while the sum of this and the X cross sec-
tions gives an ICS accurate to a few percent.

Above the resonance region, H ceases to be the con-
trolling symmetry. The characteristic 4.0-eV elastic cross
section in Fig. 3(c) illustrates the importance of the Xs
and the X„symmetries to the shape and the magnitude of
above-resonance elastic DCSs. Contributions for
2 &

~
A

~

~ 7 are essential to correctly reproducing the
small-angle behavior of the elastic DCSs from 4.0 to 10.0
eV, where this cross section is characterized by a pro-
nounced downturn with decreasing scattering angle
0(60'. These high-order symmetries do not, however,
contribute to the corresponding ICSs, which are con-
verged by A,„=2.

%'e now turn to the 0~1 DCSs. Below-resonance in-
elastic cross sections are extremely small and resonant in-
elastic DCSs exhibit no interesting convergence behavior,
their shape and magnitude being entirely controlled by
the H symmetry. Above the resonance, however, quite
different behavior obtains. At these energies low-order
partial waves, which in our implementation pertain to
close-coupling elements of the T matrix, are more
penetrating than below the resonance and hence are sub-
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FIG. 3. Convergence in the number of electron-molecule symmetry classes included in the Legendre coe%cients of the DCS for
the elastic e-N2 DCSs at (a) 0.55 eV, (b) 2.2 eV, and (c) 4.0 eV and of (d) the 0~1 DCSs at 10.00 eV. These results are converged in
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contributions from the first 16 symmetry classes. The experimental data (open circles) are from the present crossed-beam measure-
ments.

ject to greater distortion. As the 0~1 cross section at
10.0 eV in Fig. 3(d) illustrates, these low-order partial
waves essentially determine the DCSs except at small an-
gles. Thus the DCS for 6&90 is entirely determined by
the X, the H„,and the H symmetries, while these sym-
metries and the X„control intermediate-angle scattering
45'& 19&90'. Only for 0&45 do we require high-order
symmetries (A,„=8)to converge the inelastic DCSs.

Although the specific partial-wave and vibrational-
state requirements for accurate DCS calculation will, of
course, vary from system to system, the general princi-
ples illustrated here should pertain to low-energy reso-
nant and nonresonant elastic and inelastic scattering
from nonpolar targets.

V. PRQTQC(OI. FAR THE CGMPARIS(ON
QF RES&NANT CRASS SECTIONS

Much of the disagreement evident in previous pub-
lished comparisons of experimental and theoretical
electron-molecule cross sections at energies near an
intermediate-duration shape resonance, like that in the e-

N2 system, may arise from the inappropriateness of the
comparisons themselves. As several prior investigators

have discussed [44,56—58], the acute dependence of the
DCS on energy throughout the resonance region makes it
imperative that comparisons be made at identical
structural features (e.g. , peaks and valleys) rather than at
some value of the incident energy de6ned in measure-
ments or calculations.

In the present work, where meaningful comparison be-
tween experiment and theory is essential, we have estab-
lished a protocol whereby both experimental and theoreti-
cal BCSs are determined at energies corresponding to
structures in the resonance profile in either the 0~0 or the
0~1 channel. As Table I demonstrates, the "absolute"
energies at which many of these structures occur in ex-
perimental and theoretical cross sections do not agree.
Since their energies vary with scattering angle, we have
chosen a scattering angle of 60' as the point of compar-
ison for experiment and theory. Note that this protocol
does not limit such comparisons to structures in the cross
section of interest; for example, in Sec. V 8 we compare
elastic DCS measured and calculated at energies corre-
sponding to a particular structure in the 0—+1 inelastic
cross section.

Thus, in addition to comparisons at energies below and
above the resonance, we present in Sec. VI elastic and in-
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TABLE I. Energy (in eV) of the resonance peaks in the 0—+0 and 0~1 differential cross sections at a
scattering angle of 60'. Also shown in parentheses are the valleys in the theoretical and the experimen-
tal DCS at 60'.

Peak no.

1

2
3
4
5

6

Present

1.92 {2.04)
2.198' (2.33)
2.46 (2.S9)
2.71 (2.85)
2.96 (3.08)
3.20

Experiment

Rohr (Ref. [44])

(a) Elastic channel
1.924
2.198
2.451
2.700
2.934

Theory

DCS at 60'

1.90 (2.20)
2.20 (2.35)
2.46 {2.60)
2.70 (2.95)
3.10 (3.30)
3.50 (3.70)

ICS

1.95
2.20
2.484
2.80
3.10
3.40

1.98 (2. 14)
2.30 (2.48)
2.61 (2.76)
2.89 (3.01)
3.13 {3.27)
3.37

(b) Inelastic (0~1) channel
1.9S (2. 10)
2.30 (2.46)
2.60 (2.80)
3.00 (3.20)
3.35 {3.60)
3.75

1.95
2.30
2.60
3.00
2.25
3.75

'Energy for normalization to Rohr [44].

elastic (0~1) DCSs as measured and calculated at the
positions of the first and the third resonance peaks in
both channels at a scattering angle of 60'. Figure 4 shows
the experimental and the theoretical energy dependences
of these cross sections at this angle. The experimental
data include both the "excitation functions, " where the
yield of scattered electrons for a particular process is
measured as a function of incident energy, and values ob-
tained from the DCS measurements (to be discussed
below) at several energies. We emphasize that our choice
of these particular peaks, although convenient, is not
essential; rather the essential point is that comparisons be
made at the same relative positions within the resonance
envelope.

To be sure, other comparison protocols are possible.
In fact, Shi, Stephen, and Burrow [58] have proposed an
"energy optimized" protocol in which the scattering en-
ergy is changed as a function of scattering angle to ensure
that measurements are made at the same structural posi-
tion within the resonance at all angles. We consider our
alternative protocol a reasonable compromise that is
perhaps more pragmatic for the experimentalist and
theorist.

VI. RESULTS: DIFFERENTIAL CROSS SECTIONS

A. Resonant inelastic (0—+ 1) scattering

We have measured and calculated DCSs for resonant
excitation of the first vibrational mode of N2 at three en-
ergies that correspond to the first and the third peaks in
the 0~1 excitation function and to the third peak in the
0—+0 excitation function. As Table I shows, the latter
comparison, which is determined by a structure in the
elastic cross section, corresponds to the second valley in
the theoretical 0—+1 DCS at 60 . Our results are given in
Tables II and III and compared in Fig. 5.
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FIG. 4. Energy dependence of the (a) elastic and (b) inelastic
(0~1)DCSs from theoretical (solid line) calculations compared
to measured excitation functions (dots) and DCS data (solid cir-
cles).

The inelastic 0—+1 DCSs measured and calculated at
the first peak in this cross section appear in Fig. 5(a); the
experimental and theoretical energies for this compar-
ison, from Table I, are 1.98 and 1.95 eV, respectively.
The characteristic shape arising from the dominance of

0.3
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TABLE II. Experimental resonant elastic (0—+0) and inelastic (0—+1) differential cross sections for
e-N2 scattering (10 ' cm' sr ') at incident energies chosen with reference to structures in the mea-
sured excitation function at 60 .

Angle
(deg) 1.98 eV

u, =o u =1
2.46 eV 2.605 eV 1.92 eV

v0=0 —+u =0
1.98 eV 2.46 eV 2.605 eV

15.0
20.0
25.0
30.0
35.0
40.0
4S.O
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0

100.0
105.0
110.0
115.0
120.0
125.0
130.0

0.749
0.621
0.523
0.420
0.333
0.267
0.231
0.208
0.208
0.230
0.261
0.307
0.357
0.379
0.396
0.398
0.374
0.352
0.315
0.272
0.246
0.214
0.199

0.313
0.269
0.241
0.187
0.1S6
0.128
0.097
0.080
0.072
0.080
0.086
0.101
0.109
0.126
0.132
0.142
0.141
0.135
0.123
0.111
0.098
0.088
0.079
0.075

0.849
0.716
0.623
0.514
0.415
0.328
0.267
0.223
0.199
0.200
0.226
0.255
0.299
0.331
0.360
0.368
0.365
0.361
0.323
0.288
0.256
0.230
0.211
0.206

2.046
1.732
1.479
1.299
1.168
1.111
1.093
1.139
1.220
1.345
1.479
1.580
1.687
1.775
1.776
1.722
1.650
1.536
1.437
1.301
1.184
1.101
1.022

2.304
1.978
1.771
1.511
1.348
1.252
1.207
1.171
1.169
1.217
1.269
1.385
1.430
1.450
1.450
1.419
1.348
1.274
1.178
1.092
1.021
1.001
0.994

4.960
4.522
4.114
3.604
3.194
2.740
2.334
1.975
1.735
1.530
1.403
1.307
1.301
1.332
1.286
1.303
1.27S
1.218
1.155
1.088
1.056
1.095
1.150
1.335

2.829
2.637
2.508
2.311
2.120
1.892
1.691
1.520
1.336
1.189
1.082
0.978
0.941
0.883
0.841
0.800
0.758
0.742
0.710
0.696
0.714
0.741
0.815
0.912

the II resonant inelastic e-N2 T matrix is immediately
obvious and agreement between experiment and theory is
exceptionally good. At angles greater than about 100,
the experimental cross section appears to be shifted
slightly towards higher angles than the theory, though
both exhibit the characteristic angular dependence.

For our second comparison we consider an energy
defined by the third peak in the elastic channel; this
structure occurs at 2.46 eV in the measured excitation
function, about 30 meV below the position of the second
valley in the experimental 0—+1 DCS at 60'. According-
ly, we compare to the theoretical DCS calculated at an
energy 30 meV below the position of this valley in the
theoretical 0—+1 DCS at this angle, i.e., at 2.43 eV.
Agreement between the two DCSs, which are shown in
Fig. 5(b), is exceptionally good. This comparison illus-
trates the extension of the protocol in Sec. V to energies
that are "off peak" for a particular excitation.

We make our final comparison of inelastic DCS at an
energy corresponding to the third peak in the 0—+1 exci-
tation function; this peak occurs at 2.61 eV in the experi-
mental and 2.60 eV in the theoretical results at 60 (see
Table I). Here too agreement between the two cross sec-
tions is excellent at all angles. We have demonstrated
convergence of these results in vibrational states and par-
tial waves in Figs. 1(b) and 2(a), respectively.

To conclude, we note that the DCSs at these three en-
ergies exhibit differences in-magnitude but not in shape.
This rejects the relative position of the comparison ener-
gies within the resonance profile and the overwhelming

dominance of resonant —as opposed to direct—
scattering in vibrational excitation of N2.

B. Resonant elastic scattering

In the resonance region we have measured and calcu-
lated elastic DCSs at four energies selected according to
the protocol established in Sec. V. These cross sections,
at experimental (theoretical) energies of 1.92 (1.90), 1.98
(1.95), 2.46 (2.46), and 2.61 (2.60) eV, which correspond
to the first and the third peaks in the elastic and inelastic
DCS at 60', respectively, are listed in Tables II and III
and are compared with prior experimental and theoreti-
cal results in Fig. 6. Agreement between the present ex-
perimental and theoretical DCSs is least satisfactory at
the first of these energies, which corresponds to the first
peak in the 0~0 DCS at 60'. As Fig. 6(a) shows, this
disagreement is largest at angles less than about 30'.
Nevertheless, the importance of the II symmetry is clear
in both results, but not in the DCS of Shyn and Carignan
[45], which were also (apparently) measured at the first
resonance peak in this channel. This difference may arise
from somewhat lower-energy resolution in their measure-
ments than in ours.

The elastic DCS at the energy of the first peak in the
0~1 inelastic cross section is shown in Fig. 6(b). This
structure occurs at 1.98 eV in the measured excitation
function and 1.95 eV in the calculated DCS; the corre-
sponding inelastic cross sections were shown in Fig. 5(a).
(Note that these energies are off the peak of the DCS in
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the 0~0 channel. ) Strikingly, the slight increase in ener-
gy (60 meV) from that of Fig. 6(a) results in substantial
changes in the shape and magnitude of the elastic DCS.
Agreement between experimental and theoretical results
is also slightly better at this energy; both manifest a
marked increase in the forward cross section and skewed
shape (not symmetric about 90') due to significant contri-
butions from nonresonant T matrices (of symmetry other
than II ).

Equally good agreement is apparent in Fig. 6(c), where
we compare elastic DCSs at the third elastic peak which
occurs at 2.46 eV in both the experimental and theoreti-
cal results. At an energy so near the middle of the reso-
nance region, one might naively expect the resonant H
symmetry to dominate the elastic cross section, as it does
the inelastic cross sections of Fig. S(c). But the shape of
the DCS in Fig. 6(c) shows that this DCS only weakly
manifests the resonant symmetry —a conclusion borne

out by symmetry studies like that of Fig. 3(b), which
show the importance of nonresonant symmetries at this
energy. Both the present results di6'er substantially from
the DCS of Shyn and Carignan [45], which, although also
(notionally) measured at the third peak in the elastic
cross section, is lower than both present results at all an-
gles and lacks the oscillations near 90'.

Finally, in Fig. 6(d) we show the elastic DCS at the
third peak in the 0—+1 inelastic DCS. This peak occurs at
2.61 eV in the excitation function and quite nearby, at
2.60 eV, in the theoretical DCS, i.e., about 150 meV
higher than the energies of Fig. 6(b). This comparison,
then, corresponds roughly to the valley between the third
and the fourth peaks in the elastic cross section and so,
like that in Fig. 6(b), is oF peak in this channel. Both
DCSs in Fig. 6(d) vary smoothly and show little trace of
the characteristic angular H dependence so evident at
lower energies [see Figs. 6(a) and 6(b)]. The major

vo =0~v =0
1.9S eV 2.46 eV1.90 eV

TABLE III. Theoretical resonant elastic (0~0) and inelastic (0~1) di6'erentia1 cross sections for e-

N& scattering (10 ' cm sr ') at incident energies chosen with reference to structures in the calculated
DCSs at 60'.

Angle Up =O~U 1

(deg) 1.95 eV 2.46 eV 2.60 eV 2.60 eV

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0

100.0
105.0
110.0
115.0
120.0
125.0
130.0
135.0
140.0
145.0
1SO.O
15S.O
160.0
165.0
170.0
175.0
180.0

1.016
0.998
0.945
0.862
0.757
0.641
0.524
0.41S
0.324
0.256
0.215
0.201
0.211
0.240
0.278
0.320
0.356
0.381
0.389
0.380
0.356
0.319
0.278
0.239
0.211
0.201
0.216
0.257
0.325
0.418
0.527
0.645
0.762
0.867
0.949
1.003
1.021

0.276
0.271
0.259
0.238
0.211
0.179
0.146
0.116
0.090
0.070
0.059
0.054
0.056
0.063
0.073
0.084
0.094
0.101
0.104
0.103
0.097
0.088
0.077
0.067
0.059
0.056
0.059
0.069
0.086
0.109
0.137
0.167
0.197
0.224
0.245
0.259
0.264

1.015
0.998
0.948
0.869
0.767
0.651
0.532
0.421
0.328
0.258
0.215
0.198
0.206
0.232
0.269
0.309
0.345
0.371
0.381
0.374
0.351
0.317
0.277
0.240
0.212
0.202
0.215
0.254
0.320
0.408
0.514
0.628
0.740
0.842
0.922
0.973
0.991

2.106
2.049
1.899
1.699
1.S01
1.337
1.220
1.150
1.123
1.136
1.187
1.271
1 ~ 377
1.490
1.S93
1.672
1.716
1.720
1.681
1.601
1.488
1.355
1.218
1.091
0.988
0.922
0.900
0.929
1.007
1.129
1.283
1.455
1.629
1.787
1.915
1.998
2.027

2.575
2.521
2.376
2.180
1.975
1.786
1.626
1.497
1.399
1.335
1.308
1.316
1.353
1.404
1.456
1.496
1.513
1.502
1.459
1.386
1.291
1.186
1.083
0.998
0.943
0.930
0.964
1.050
1.187
1.366
1.575
1.797
2.015
2.210
2.364
2.464
2.498

5.745
5.656
S.407
S.038
4.597
4.117
3.626
3.146
2.703
2.322
2.023
1.812
1.683
1.620
1.600
1.599
1.596
1.574
1.524
1.443
1.341
1.233
1.142
1.095
1.113
1.218
1.423
1.734
2.143
2.634
3.177
3.737
4.273
4.743
5.111
5.345
5.425

2.666
2.656
2.632
2.S99
2.551
2.477
2.361
2.202
2.010
1.805
1.605
1.423
1.264
1.128
1.012
0.915
0.834
0.766
0.709
0.662
0.627
0.608
0.608
0.631
0.681
0.761
0.870
1.010
1.175
1.361
1 ~ 559
1.756

2.100
2.223
2.300
2.327
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difFerence between the experimental and the theoretical
DCSs—the former manifests a shallower minimum than
the latter —may be due to the finite energy resolution of
the measurements.

C. Nonresonant elastic scattering

Comparison of experimental and theoretical DCSs
below and above the resonance region requires no special
protocol and reveals fascinating features. We begin with
three energies below the resonance (0.55, 1.0, and 1.5 eV),
then turn to six above it (4.0, 5.0, 6.0, 7.0, 8.0, and 10.0
eV) —energies chosen in part to facilitate comparison to
the several other measured and' calculated elastic e-N2
DCSs in the literature. Our results at below-resonance

energies appear in Tables IV and V.
Figure 7(a) compares the present elastic DCSs at our

lowest energy, 0.55 eV, with those from previous mea-
surements by Sohn et al. [54] and by Shi, Stephen, and
Burrow [58]. Agreement between the present experimen-
tal and theoretical results is generally good. The agree-
ment between our DCS and that of Shi, Stephen, and
Burrow [58] is also encouraging, with points across the
entire angular range lying well within the overlap of un-
certainties. The results of Sohn et al. [54) are uniformly
lower than ours by about 20%; moreover, these authors
predict a decrease in the DCS at scattering angles above
120' that is not present in other experimental DCSs and
in the theoretical cross sections appears only weakly and
at larger angles. More interesting difFerences appear in

1 2 ' ~ ( I
\ I

I ~ I I ~
I

~ I t i 0..4 I I I ~ I
I $ $ I f $

I
\ ~

2
V

0 PS

Q

o.6—

N2 0-1
{peak 1, O-l}

e Prese

0.35

0.3

0.25

OIM

O.2

N, 0-I
{Peak 3,

Present e

Present t

X
X
O

p 4

v5
~W

V 0.2—
V

~ I I I I I I ~ I & ~ I I I I I ~0
0 30 60 90 120 150 180

Scattering Angle (deg )

N
X0

~ IK

0.15

0.1

0.05—

0
0

(b)
I ~ I ~ I M I ~ I ~ ~ I ~ p I ~

30 60 90 120 150
Scattering Angle (deg )

180

X

0.8—

g 0.6—
0

~M

e Present e

Present th

X 0.4—
0

~ W

P2

0, I I I I I I I ~ I I I I ~ ~ I I I

0 30 60 90 120 150 180
Scattering Angle (deg )

FIG. 5. Absolute DCS for vibrational excitation of N~ at the position of (a) the first resonance peak in the 0—+1 channel, (b) the
third resonance peak in the 0—+0 channel, and (c) the third resonance peak in the 0~1 channel, all determined at 60: theoretical
DCSs (solid line), measured DCSs (closed circles).
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the 1.0-eV DCS in Fig. 7(b). The present experimental
and theoretical results have nearly the same shape and
both show a maximum near 100'. But, except in the vi-
cinity of this maximum, the two DCSs appear out of
phase by about 10. The experimental results of Sohn
et al. are again uniformly lower than our DCS by about
20-30 %.

The most extensively studied energy for elastic e-N2
scattering is 1.5 eV. Previous measurements include
those by Shyn and Carignan [45], Sohn et al. [54], Bren-
nan et al. [57], and Shi, Stephen, and Burrow [58]; previ-
ous calculations include hybrid-theory calculations by
Chandra and Temkin [34], Schwinger multichannel cal-

culations by Huo et al. [30], and rigid-rotor calculations
by Morrison, Saha, and Gibson [61]. Indeed, the lack of
agreement at this energy between previous experimental
and theoretical DCSs motivated (in part) the recent ex-
perimental investigations of Brennan et al. , Shi, Stephen,
and Burrow, and the present work.

Regrettably, as Fig. 7(c) indicates, the outcome of this
recent Burry of measurements remains inconclusive. It is
apparent that, while the measured DCSs of both Brennan
et al. and Shi, Stephen, and Burrow are in rough agree-
ment as to the absolute magnitude of the peak at inter-
mediate angles, there remain substantial systematic
discrepancies between them. The measurements of Bren-
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and theoretical (solid lines) results, we show in (a) and (c) the measured DCS of Shyn and Carignan [45] (open circles).
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nan et a/. were taken on the same apparatus used in the
present study, although as discussed in Sec. II, in those
earlier experiments the relative Bow technique was ap-
plied in a fashion we now consider to be less accurate
than the one used here. Still, we consider the differences
near the maximum of the DCS in Fig. 7(c) to be greater
than we would expect in absolute measurements of non-
resonant cross sections. As at 1.0 eV, in Fig. 7(c) at 1.5
eV we find the present experimental and theoretical re-
sults to be out of phase by about 10 . The present results
support the conclusions of Brennan et a/. and Shi,
Stephen, and Burrow that the absolute magnitudes of the
elastic cross sections reported by Shyn and Carignan and
Sohn et a/. are too low.

The totality of theoretical data at this energy provides
little further claliflcatloil. As at, 1.0 eV in Fig. 7(b), the
present theoretical DCS at 1.5 eV agrees better with the
present measured data at angles above about 110 than at
smaller angles, where it is slightly higher. The calculated
cross section of Huo et a/. , however, agree best with our
measured data at precisely these smaller angles, while the
DCS of Chandra and Temkin overestimates this cross
section at all but the largest angles.

Turning now to energies above the resonance, we have
measured and calculated the elastic DCSs on a relatively
fine energy grid (see Tables VI and VII) in order to track
a fascinating feature that develops at small angles. This
feature first appears at the high end of the resonance re-
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FIG. 7. Absolute elastic differential cross sections at energies of (a) 0.55 eV, (b) 1.0 eV, and (c) 1.5 eV. In addition to the present
experimental (solid circles) and theoretical (solid lines) results, we show the data of Sohn et al. [54] (open triangles) and in (a) and (c)
of Shi, Stephen, and Burrow [58] (open squares). Also shown in (c) are measured DCSs of Shyn and Carignan [45] (open circles) and
the hybrid-theory results of Chandra and Temkin [34] (long-dashed line) and Schwinger multichannel DCSs of Huo et al. [30]
(short-dashed line).
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TABLE IV. Experimental elastic (0~0) differential cross
sections for e-N2 scattering (10 ' cm sr ') at incident energies
below the resonance region.

Angle
(deg)

20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
7S.O
80.0
85.0
90.0
95.0

100.0
105.0
110.0
115.0
120.0
125.0
130.0

0.55 eV

0.306

0.385

0.461

0.580

0.685

0.761

0.819

0.868

0.888

0.896

0.924

1.0 eV

0.227
0.2S6
0.324
0.378
0.466
0.524
0.576
0.669
0.731
0.811
0.864
0.913
0.921
0.978
0.970
1.006
0.978
0.970
0.965
0.965
0.928
0.905
0.856

1.5 eV

0.336
0.354
0.386
0.432
0.525
0.597
0.670
0.794
0.890
1.001
1.041
1.139
1.188
1.176
1.213
1.186
1.187
1.105
1.048
0.997
0.914
0.853
0.782

gion, in the 4.0-eV DCS in Fig. 8(a). Both the experimen-
tal and theoretical results at this energy exhibit a max-
imum at about 30'. As noted in regard to Fig. 3(c), this
small-angle feature arises from long-range scattering in
high-order partial waves: only when we complete the
sums in Eq. (3) to convergence does it appear. Although
the small-angle theoretical DCS exceeds the present ex-
perimental data (as well as that of Shyn and Carignan), at
higher angles agreement between the present experimen-
tal and theoretical DCSs is excellent.

The most extensively studied above-resonance e-Nz
DCS is that at 5.0 eV. In Fig. 8(b) we compare our re-
sults at this energy with prior results measured by Srivas-
tava, Chutjian, and Trajmar [41] and Brennan et al. [57]
as well as DCSs calculated in previous theoretical deter-
minations. The present experimental data agree with
that of Brennan et al. except at small angles, where the
earlier results are larger by about 20%%uo, and with that of
Shyn and Carignan except at the largest (common) an-
gles, where the latter is also larger. The DCS of Srivasta-
va, Chutjian, and Trajmar, however, is uniformly smaller
than the present data at all scattering angles.

As at 4.0 eV, the present theoretical 5.0-eV DCSs agree
very well with the present experimental points above the
maximum. Indeed, all the theoretical calculations, ex-
cept the R-matrix study of Gillan et al. [28], yield DCSs
that exhibit the experimentally observed maximum at
roughly 30. But only the Schwinger multichannel DCSs
of Huo et al. [30] agree in magnitude with our experi-
mental data at small angles. These Schwinger results be-
gin to deviate from these data above about 100', where

TABLE V. Theoretical elastic (0~0) differential cross sec-
tions for e-N2 scattering (10 ' cm sr ') at incident energies
below the resonance region.

Angle
(deg)

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
6S.O
70.0
75.0
80.0
85.0
90.0
95.0

100.0
105.0
110.0
115.0
120.0
125.0
130.0
135.0
140.0
145.0
150.0
155.0
160.0
165.0
170.0
175.0
180.0

0.55 eV

0.101
0.105
0.120
0.149
0.193
0.248
0.307
0.36S
0.418
0.468
0.516
0.565
0.613
0.660
0.702
0.739
0.771
0.798
0.819
0.835
0.846
0.854
0.859
0.862
0.864
0.862
0.858
0.851
0.843
0.835
0.828
0.823
0.818
0.815
0.813
0.813
0.812

1.0 eV

0.187
0.190
0.203
0.234
0.286
0.356
0.435
0.513
0.587
0.655
0.720
0.783
0.842
0.895
0.938
0.971
0.993
1.005
1.006
0.997
0.980
0.957
0.930
0.901
0.870
0.836
0.802
0.767
0.734
0.703
0.677
0.655
0.638
0.625
0.616
0.611
0.609

1 ~ S eV

0.383
0.376
0.363
0.362
0.388
0.443
0.521
0.609
0.701
0.792
0.884
0.974
1.059
1.133
1.191
1.230
1.248
1.245
1.222
1.182
1.126
1.060
0.988
0.914
0.840
0.770
0.706
0.648
0.601
0.563
0.535
0.516
0.50S
0.499
0.497
0.497
0.497

they show an angular dependence not seen in any other
results. In shape, the hybrid-theory DCS of Chandra and
Temkin agrees well with the present results, but in mag-
nitude they are uniformly 30—50%%uo higher.

As the energy increases above 5.0 eV, the small-angle
maximum in the elastic DCS gradually flattens out and
then begins to increase. This trend is evident in the DCSs
at 6.0, 7.0, 8.0, and 10 eV, shown in Figs. 8(c)—8(f).
Throughout this energy range the theoretical small-angle
DCSs remain larger than the experimental points but ex-
hibit the same structural development.

At 7.0 eV, where data from previous experiments are
available, we see in Fig. 8(d) that below 40', our measured
DCSs are systematically lower than those of Srivastava,
Chutjian, and Trajmar and Shyn and Carignan, but our
calculated DCSs are in better agreement with data from
these two prior determinations than from the present
measurements. Srivastava, Chutjian, and Trajmar used
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the relative Bow technique with their own e-He cross sec-
tion to determine the absolute elastic e-N2 DCS. Repeat-
ing their determination using instead the theoretical e-He
cross sections of Nesbet [62] as the reference standard (as
in the present experiment) reduces the forward-scattering
cross section by about 10%, but does not significantly
affect the comparison. Here, as at other above-resonance
energies, the present theoretical DCSs agree with experi-
ment except at small angles. We do consider the qualita-
tive differences evident in this figure to be significant: the
present measured DCSs assume an essentially constant
value about 30—40% lower than the values predicted by
other experiments, which do not show a maximum, while
the maximum in our theoretical DCS remains strong.

By 8.0 eV, as shown in Fig. 8(e), the experimental elas-
tic DCS at forward angles rises rather steadily through a
broad shoulder at around 40', behavior quite different
from that seen at 4.0 eV in Fig. 8(a). Finally in the 10.0-
eV DCS in Fig. 8(f), the small-angle maximum has disap-
peared from the measured data and is all but absent from
the theoretical result. At this energy we can again com-
pare with prior experimental results. We find good agree-
ment between the present measured DCS and those of
both Srivastava, Chutjian, and Trajmar and Shyn and
Carignan at angles above about 50' but not below. The
present theoretical results at small angles agree best with
those of these two earlier experiments, but at large angles
do not show the marked rise evident in their data.

VII. RKSUI.TS: INTKGRAI, CRQSS SECTIONS

The present study provides information on a number of
integral cross sections, including the grand total cross

section as measured with the TOF spectrometer, the total
cross sections for elastic scattering and 0—+1 vibrational
excitation as derived from the DCS measurements, and
all of these cross sections as calculated within the
theoretical context described in Sec. III. Moreover, one
can use the adiabatic-nuclear-rotation theory to extract
from total vibrationally inelastic cross sections in the res-
onance region any desired rovibrational ICS or DCS as a
function of energy at any desired angle [107]. Determin-
ing these total ICSs from the normalized angular distri-
butions measured in the crossed beam experiments, how-
ever, requires extrapolation of these data to 0' and 180'
and subsequent numerical integration, a procedure that
in the past has introduced significant additional error
into the ICS beyond that inherent in the angular distribu-
tions. We have implemented a physically based phase-
fitting procedure that eliminates most of this additional
error; this procedure is described in Sec. VII A, following
which we present and compare to prior studies our mea-
sured and calculated ICSs in Sec. VII B.

A. Determination of electron-molecule ICSs
from measured angular distributions

To facilitate comparison of measured angular distribu-
tions with ICSs from other experiments and theory, we
require the DCS over the entire angular range. We have
designed an extrapolation procedure for producing such
ICSs by a nonlinear least-squares fit to the measured an-
gular distributions using the following guidelines: (i) the
fitting equations should reAect known physical properties
of the system and its S matrix but (ii) should be indepen-

TABLE VI. Experimental elastic (0~0) di6'erential cross sections for e-N2 scattering (10
cm sr ') at incident energies above the resonance region.

Angle
(deg)

15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0

100.0
105.0
110.0
115.0
120.0
125.0
130.0

4.0 eV

1.613
1.705
1.781
1.782
1.742
1.686
1.625
1 ~ 521
1.405
1.239
1.138
0.986
0.878
0.784
0.697
0.649
0.625
0.609
0.608
0.586
0.594
0.601
0.606
0.634

5.0 eV

1.572
1.605
1.617
1.678
1.599
1.509
1.400
1.291
1.115
0.998
0.882
0.789
0.704
0.649
0.600
0.551
0.543
0.520
0.521
0.527
0.536
0.551
0.558

6.0 eV

1.481
1.495
1.547
1.567
1.582
1.557
1.510
1.417
1.305
1.200
1.051
0.926
0.800
0.705
0.629
0.565
0.522
0.516
0.513
0.508
0.520
0.534
0.540
0.570

7.0 eV

1.565
1.552
1.572
1.557
1.567
1.540
1.452
1.357
1.221
1.101
0.954
0.847
0.714
0.647
0.559
0.512
0.480
0.465
0.462
0.469
0.492
0.514
0.535
0.568

8.0 eV

1.719
1.641
1.603
1.564
1.535
1.484
1.442
1.357
1.262
1.133
1.000
0.858
0.693
0.607
0.529
0.472
0.436
0.433
0.438
0.448
0.492
0.511
0.551
0.588

10.0 eV

2.342
2.036
1.875
1.774
1.654
1.587
1.454
1.299
1.154
0.990
0.842
0.704
0.573
0.471
0.402
0.354
0.351
0.352
0.378
0.410
0.465
0.515
0.561
0.609



DETAILED THEORETICAL AND EXPERIMENTAL ANALYSIS. . . 1249

dent of particular theoretical calculations, which bring
into play a host of additional assumptions (see Sec. III).
This philosophy underlies the widely used phase-shift
analysis methods of electron-atom scattering [108,109],
but as those methods are appropriate to spherically sym-
metric potentials, they are incorrect for electron-
molecule systems.

Our method is based on the equation for the DCS in
the BF FNO theory described in Sec. III, i.e., Eq. (l) with
expansion coe%cients (3). In formulating the fitting equa-
tions we must identify the "free parameters" that will
vary in order to fit the measured angular distribution
data in the DCS equation (l). Consistent with our philo-
sophy of constraining the fit as much as possible, we seek
the smallest number of free parameters that allows
sufticient Aexibility to fit the data. To this end we use the
first Born approximation expressions (l8) for high-order
partial waves as described below.

The dynamical information is contained entirely in the

T-matrix elements in Eq. (3). But these elements them-
selves are not convenient as parameters: they are com-
plex, so each element would lead to two real parameters.
We choose instead the IC matrix of Eq. (12), the elements
of which are easily parametrized in terms of the "phase
parameters" 51 defined by

(24)

Since the E matrix is real and symmetric, the correspond-
ing S matrix is guaranteed to be unitary. Since we seek to
determine only elastic ICSs, we do not allow Aux to leave
the elastic channel; although this approximation is satis-
factory over the energy range of the present study to
within the accuracy of the raw data, it would have to be
checked for other systems.

As noted in Sec. III, the number of E-matrix elements
that contributes to the DCS may be large, and to allow
all such elements to be free parameters would lead to a

TABLE VII. Theoretical elastic {0—+0) difterential cross sections for e-N& scattering (10
cm sr ') at incident energies above the resonance region.

Angle
(deg)

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
4S.O
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0

100.0
105.0
110.0
115.0
120.0
125,0
130.0
135.0
140.0
145.0
150.0
155.0
160.0
165.0
170.0
175.0
180.0

2.390
2.414
2.482
2.577
2.668
2.709
2.668
2.535
2.330
2.085
1.829
1.583
1.359
1.163
1.000
0.870
0.772
0.702
0.656
0.628
0.614
0.611
0.617
0.631
0.653
0.684
0.725
0.777
0.841
0.915
0.996
1.079
1.159
1.229
1.282
1.316
1.327

5.0 eV

1.980
2.003
2.071
2.178
2.296
2.382
2.394
2.320
2.170
1.973
1.755
1.538
1.332
1 ~ 146
0.986
0.854
0.752
0.678
0.629
0.599
0.585
0.583
O.S87
0.595
0.606
0.618
0.633
0.651
0.673
0.699
0.728
0.758
0.787
0.813
0.833
0.845
0.850

6.0 eV

1.939
1.955
2.007
2.098
2.210
2.298
2.320
2.258
2.119
1.931
1.719
1.503
1.297
1.109
0.945
0.810
0.706
0.632
0.585
0.560
0.552
0.5S6
0.567
0.580
0.593
0.605
0.616
0.628
0.640
0.653
0.668
0.683
0.697
0.709
0.718
0.724
0.726

7.0 eV

2.01S
2.022
2.052
2.118
2.210
2.286
2.303
2.237
2.096
1.903
1.686
1.465
1.254
1.060
0.892
0.756
0.653
0.582
0.540
0.523
0.524
0.538
0.557
0.578
0.596
0.611
0.624
0.635
0.644
0.654
0.662
0.671
0.678
0.685
0.689
0.793
0.694

8.0 eV

2.140
2.136
2.139
2.174
2.238
2.296
2.300
2.225
2.075
1.874
1.650
1.422
1.204
1.006
0.836
0.699
0.599
0.533
0.499
0.491
0.502
0.525
0.554
0.581
0.605
0.624
0.639
0.650
0.659
0.666
0.672
0.677
0.680
0.684
0.686
0.688
0.688

10.0 eV

2.460
2.432
2.371
2.328
2.323
2.329
2.297
2.195
2.025
1.807
1.567
1.327
1.100
0.897
0.726
0.593
0.501
0.448
0.430
0.440
0.470
0.511
0.555
0.595
0.628
0.652
0.669
0.681
0.689.
0.695
0.698
0.699
0.700
0.701
0.702
0.703
0.703
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severely underconstrained fit. So we incorporate into this
procedure the fact that most of these elements, in particu-
lar, diagonal elements with high partial-wave order and
all non-negligible off-diagonal elements, are accurately
given in the first Born approximation. So although these
high-order and ofF-diagonal elements are extremely im-
portant to determining the shape of the DCS (especially
at low angles), their inclusion via the FBA is trivial. For
e-N2 scattering, only oA'-diagonal elements with

~

b.l—:1 —
la ~

=2 contribute appreciably to the DCS
coe%cients (3), and we set all other such elements to zero.
The fit, then, must determine only a few free parameters,
those corresponding to low-order partial waves. Further

X
tan60'

&(FBA)
2, 0

0

0

~(FBA)
0, 2

X
tan52'
~(FBA)

4, 2

0

~ (FBA) 02, 4

~ (FBA) ~ (FBA)
44 46

(25)

details of this analysis may be found in a forthcoming pa-
per [110].

Under these assumptions and with the parametrization
(24}, the fitted K matrix in each symmetry assumes a
form illustrated here by the Xg symmetry with two free
parameters:
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FIG. 8. Absolute elastic differential cross sections at energies of (a) 4.0 eV, (b) 5.0 eV, (c) 6.0 eV, (d) 7.0 eV, (e) 8.0 eV, and (f) 10 eV.
In addition to the present experimental (solid circles) and theoretical (solid lines) results, we also show in (a), (b), (d), and (f) the mea-
sured DCSs of Shyn and Carignan [45] (open circles), in (b), (d), and (fl the results of Srivastava, Chutjian, and Trajmar [41] (open dia-
monds), and in (b) measured data of Brennan et al. [57] (closed squares) and theoretical results from hybrid-theory calculations by
Chandra and Temkin [34] (medium-dashed line), Schwinger multichannel DCSs of Huo et al. [30] (short-dashed line), and R-matrix
calculations of Ciillan et al. [28] (long-dashed line).
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FIG. 8. (Continued).

This procedure differs significantly in implementation
from our original version, as described by Crompton and
Morrison [111]in a study of e-H2 scattering. That earlier
implementation, which was more directly based on Eq.
(3), did not allow easy incorporation of off-diagonal T
matrix elements. Such elements are unimportant for
low-energy e-H2 collisions, but vital for e-Nz scattering.

Operationally, we determine the free parameters using
the Levenberg-Marquardt nonlinear least-squares fit
[112]. As a measure of the quality of the fit we have
adopted the usual definition of the reduced y function
[75]. Thus a value of g near 1 indicates that the model
and the data (with the given error estimates) are con-
sistent. In Fig. 9 we demonstrate the fitting procedure

TABLE VIII. Elastic integral and momentum transfer cross sections (10 ' cm sr ') for e-N2

scattering. The "fitted" cross sections were determined from measured angular distributions using the
procedure described in the indicated free parameters. The reduced chi square for each fit is given as y .

E (eV)

0.55

1.5

1.92'

1.98b

2.46

2.605'

4.0

5.0

6.0

7.0

8.0

10.0

Free

parameters

x r„ II„
»og, ») ",»I "

x r II II
»o' »I" »~" »z'
r x n„n»o' »I" 51" »z'
x x II H
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X X II II
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X X II I1
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x r x II II
»P » I 53»] 52

X X 11
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X X II n
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X X n II

5o, »& ",5r ",»z
x r x„rI n

»p 5[ 53 »] 52
X X X II 11

»o 5$ 53 »I 52
X X X II II

»o, »l ",53",»I ",52 ~

0.107

0.073

0.090

0.047

0.926

0.827

0.452

0.088

0.033

0.156

0.070

0.114

0.352

Fitted

9.12

9.84

10.83

17.93

21.10

14.78

12.01

10.90

10.69

10.44

10.60

10.55

(v)0~0

Theory

8.8928

10.1186

11.2967

17.0401

17.3932

25.8745

15.0368

14.3925

13.0709

12.5510

12.2596

12.0432

11.6851

Fitted

10.68

10.78

11.12

17.40

18.03

16.65

12.38

9.64

8.64

8.29

8.31

8.53

8.40

Theory

10.1048

10.5726

11.0233

16.5394

16.7119

24.3806

13.0533

10.9250

9.5663

9.0816

8.8525

8.7124

8.5161

'First peak in the 0~0 DCS at 60', the theoretical energy is equal to 1.90 eV.
Third peak in the 0~1 DCS at 60; the theoretical energy is equal to 1.95 eV.

'Third peak in the 0~1 DCS at 60'; the theoretical energy is equal to 2.60 eV.
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FIG. 9. Fits to measured e-N2 angular dis-
tributions (open circles with error bars) at 2.46
eV, the third resonant peak of the experimen-
tal elastic DCSs at 60'. The fitted DCSs are
converged in asymptotic partial waves and
symmetries with the indicated parameters left
free.

20 40 60 80 100 120 140 160 180

Scattering Angle (deg)

for the measured e-Nz DCS at 2.46 eV, the energy of the
third resonance peak in the elastic angular distribution.
At this energy, it is essential to allow the two d-wave pa-

X H
rameters 52' and 5z ' to be free so the At can reproduce
the rather subtle angular variation between 45' and 135'.
At small angles, the inclusion of high-order asymptotic
partial waves and symmetries as described in Sec. IV is
essential. The elastic integral and momentum-transfer Energy

Theory

Cross section Energy

Experiment

Cross section

TABLE X. Experimental and theoretical grand total e-N2
cross sections (10 ' crn sr ') in the resonance region. Note
that incident energies (in eV) for comparison should be chosen
with reference to structure in the measured excitation function
at 60'.

Energy

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.35
0.55
0.70
0.80
1.00
1.50
4.00
5.00
6.00
7.00
8.00
9.00

10.00

Theory

2.568
3.351
3.951
4.452
4.883
5.261
5.598
5.902
6.178
6.431
7.816
8.893
9.415
9.685

10.120
11.313
14.596
13.120
12.570
12.270
12.050
11.861
11.689

Experiment

4.468
4.771
4.960
5.324
5.562
5.858
6.098
7.740
8.758
9.123
9.324
9.734

10.910
13.391
11.812
11.442
11.196
11.111
11.325
11.818

TABLE IX. Experimental and theoretical grand total cross
sections for e-N2 scattering (10 ' cm sr ') at selected
nonresonance incident energies (eV).

1.500
1.600
1.700
1.800
1.850
1.900
1.950
1.980
2.000
2.050
2.100
2.200
2.350
2.400
2.430
2.480
2.500
2.600
2.700
2.730
2.800
2.900
2.950
3.000
3.070
3.200
3.300
3.420
3.500
3.900

11.313
11.816
12.663
14.357
15.920
18.191
19.549
18.181
16.769
15.055
16.532
26.279
15.811
18.831
23.213
28.730
27.586
16.80S
22.311
24.762
22.785
17.325
17.011
18.423
20.322
17.702
16.356
17.013
16.600
14.962

1.500
1.601
1.704
1.748
1.802
1.850
1.900
1.916
1.92S
1.951
1.978
2.005
2.081
2.100
2.151
2.213
2.301
2.335
2.455
2.505
2.598
2.688
2.717
2.746
2.776
2.813
2.860
2.907
2.956
3.006

10.910
11.772
13.252
14.100
15.802
18.000
21.443
22.830
23.153
25.041
26.103
25.904
23.831
24.390
28.2S2
33.328
27.728
26.401
32.700
29.756
25.028
28.109
26.936
25.271
23.679
22.649
22.809
23.370
22.329
20.068
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ICSs obtained via this procedure at all energies are given
along with the theoretical BF FNQ cross sections in
Table VIII.

B.Experimental and theoretical ICSs

Finally, we turn to the grand total ICS, the sum of
cross sections for the elastic and all open inelastic chan-
nels. We tabulate, this quantity as measured by the TOF
apparatus described in Sec. II and as calculated via the

theory of Sec. III at nonresonant energies in Table IX
and at resonant energies in Table X. These data are com-
pared graphically in Fig. 10 in the three regions of
interest —below, in, and above the resonance region-
and compared to previously determined data where avail-
able.

Throughout the entire energy range below the reso-
nance, Fig. 10(a) shows good agreement between the
present TOF and theoretical results, although above 0.7
eV the present TOF data are slightly lower than the
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FIR. 10. Absolute grand total cross sections for e-N2 scattering at energies (a) below 1.5 eV, (b) in the resonance region from 1.5 to
4.0 eV, and (c) from 4 to 10 eV. Experimental data shown include results from the present time-of-gight (solid circles) and crossed-
beam (solid squares) exP™ntsas well as measured data by Kennerly [46] (open circles), Ferch, Raith, and Schweiker [55] (solid
squares), Jost et al. [53] (solid triangles), and Baldwin [40] (open squares). Theoretical results are shown from the present BF FNO
calculations (solid curve), R-matrix calculations of Civilian et al. [28] (long-dashed line), hybrid-theory calculations by Chandra and
Temkin [34] (short-dashed curve), and partial di6'erential equation calculations of ~eatherford and Temkin [3g] (dot-dashed curve).
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theoretical ICSs. We consider the close agreement be-
tween the TOF results and the fitted elastic ICSs deter-
mined from the measured angular distributions (which at
these energies should closely approximate the grand total
cross section due to the lack of significant inelastic
scattering) particularly significant, considering the quite
different nature of these two experimental methods.
Turning to other experimental and theoretical results in
this energy range, we find best agreement with the TOF
data of Kennerly [46] and Perch, Raith, and Schweiker
[55]. Above about 0.7 eV, our TOF data also agree well
with those of Baldwin [40] and Jost et al. [53], although
at the lower end of this energy range both of the latter re-
sults differ significantly from the present data.

In the resonance region, as shown in Fig. 10(b), we find
excellent agreement between our TOF cross sections and
those of Kennerly [46]. Agreement with theory is very
good at the lowest few peaks (see Table I), but at higher
energies in this region there appears a systematic
difference between theory and experiment, the origin of
which we do not understand.

Above the resonance region, we compare in Fig. 10(c)
various theoretical and experimental grand total ICSs at
energies between 4.0 and 10 eV. Once again the agree-
ment between the present TOF data and that of Kennerly
[46] is excellent, while both lie below that of Jost et al.
[53].

The present theoretical ICSs exceed the experimental
points below 7.0 eV, as expected from the elastic DCSs,
and manifest a different energy dependence above 7 eV.
The elastic ICSs derived from the measured elastic angu-
lar distributions, which do not account for inelastic
scattering, lie below the grand total cross sections
throughout this energy range.

VIII. CONCI. USIQNS

The present results provide a thorough experimental
and theoretical data base for elastic, 0~1 vibrational,
and total e-N2 cross sections at energies from 0.55 to 10.0
eV. In the theoretical calculations we have emphasized
high numerical precision, especially in regard to the im-
portant issue of convergence of sums over electron-
molecule symmetry classes and asymptotic partial waves
as well as a number of vibrational states and partial
waves in the near-target expansion of the system wave
function. Our theoretical formulation treats exactly (to
within our convergence criteria) the coupling of molecu-
lar vibrations and the projectile wave function and uses a
refined local exchange potential and a well-tested
correlation-polarization potential, all based, like the stat-
ic potential, on a near-Hartree-Fock description of
the target. (These simplifications made it possible to per-
form the entire theoretical study reasonably efhciently on
a SparcStation-10 computer workstation. ) In the mea-
suremenis we have used an improved implementation of
the relative How normalization technique and encom-
passed a more complete range of energies than in our pre-
vious work on this system.

A particular focus of this collaboration is the long-
standing problem of how to undertake comparisons be-

tween results of two experiments (or of experiment and
theory) in the resonance region. The central difficulty-
the extremely strong energy dependence in both the
shape and magnitude of elastic and inelastic cross sec-
tions in this region —plagues a number of electron-
rnolecule systems other than e-N2. We have proposed
and demonstrated a general protocol for such compar-
isons that allows for the frequent disagreement between
two data sets on the absolute energies of the important
structures that characterize such resonances (see Table I),
as a result of which comparisons based directly on energy
can be extremely misleading. Instead we compare results
at energies determined by their proximity to correspond-
ing well-defined structures in the two data sets. Our de-
velopment of this protocol also highlights the advantages
of collaboration between experiment and theory, as we
consider it unlikely that such a scheme would have
developed without such detailed interaction.

In general, we consider the comparison between the
present experimental and theoretical DCSs extremely en-
couraging for resonant elastic and inelastic (0~1)
scattering. The extreme sensitivity of the resonant DCS
to short-range nonlocal and many-body eff'ects (exchange
and bound-free correlation) makes the agreement among
these DCSs suggestive of the validity of the models we
have adopted for these effects. Above and below the res-
onance, agreement is satisfactory if less compelling. Here
we note the centrality of high-order asymptotic partial
waves in the construction of the small-angle maximum
observed in the measured angular distributions, a feature
present in the theoretical results with a magnitude larger
than that of the experimental DCS. Interestingly, such
small-angle behavior also occurs in other diatomic (e.g. ,
02 and NO) and polyatomic (e.g., N20) molecules. Al-
though for these systems the quantitative details of this
behavior is different from that in e-N2 scattering, the
qualitative similarity (and the aforementioned importance
of high-order partial waves) suggests that this feature is
primarily due to long-range moments rather than to the
intricacies of the nonlocal short-range interactions.

In addition to these DCS determinations we have cal-
culated ICSs from the measured angular distributions us-
ing an extension of a previously proposed physically
based fitting procedure. The resulting elastic ICSs suffer
little more error than the raw (normalized) angular distri-
bution data. These, in turn, we have compared to grand
total cross sections measured in a complementary experi-
ment with a TOF apparatus. Although the extensive
comparisons presented here indicate a high general level
of concordance between experiment and theory, there
remain points requiring further effort, especially at the
high end of the resonance region.
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