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Six-state algebraic close-coupling calculation of positron-hydrogen scattering at low energies
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We did the Harris-Nesbet algebraic close-coupling calculation for positron-hydrogen scattering at low

energies with the (1s,2s)H-(1s, 2s)Ps, (1s,2s, 2p)H-(1s, 2s)Ps, and (1s,2s, 2p)H-(1s, 2s, 2p)Ps coupling
schemes. Cross sections of elastic scattering, posiironium formation, and Ps(1s)-p elastic scattering were

obtained for L =0, 1,2, 3,4, S,6 partial waves. The integrated cross sections for the relevant processes
were then estimated. We compared our six-state close-coupling results with the ones calculated by solv-

ing the Lippmann-Schwinger coupled equations in momentum space. Many special features were seen in

these cross sections.

PACS number(s) 34.80 —i

INTRODUCTION

In the last decade, the atomic collision physics com-
munity has been interested a great deal in positron col-
lisions with atomic targets above the positronium (Ps)
formation threshold [1]. The revitahzation of this in-
terest is perhaps due to the fact that experimental data
for some positronium formation processes have now be-
come available, and experimental research activities on
positron collision with atomic targets have been vigorous-
ly pursued in laboratories worldwide during recent years
[2]. Especially, some experimental data for positron col-
lisions with atomic hydrogen have also appeared in the
literature just during the last two years or so [3,4].

On the theoretical side, the calculation of positron
scattering from atomic targets is much more diS.cult
than the one for electron scattering. This difticulty arises
from the fact that for a realistic calculation, one has to
consider the positronium formation channels in the posi-
tron case, and dealing with a collision system that gets in-
volved with two diA'erent systems of coordinates (depend-
ing on whether one is within a hydrogen scattering chan-
nel or within a positronium formation channel) is not a
simple matter. To carry out their task of analytical
reduction of formulas, theorists usually had to transform
these two diferent sets of coordinate variables to the ones
that they could use to factorize their reduced formulas.
This difhculty may also be the reason for the few detailed
theoretical calculations of Ps formation cross sections in
the literature.

For positron collisions with hydrogen at energies above
the positronium formation threshold, there had been
some earlier calculation of positronium formation cross
sections using the Kohn variational method [5,6]. How-
ever, the calculation up to this point, to our knowledge,
had been restricted to only a few lowest partial waves
(1.=0, 1, and 2). In recent years, a few theoretical
groups [7—11] have attempted to obtain cross sections for
positronium formation and positron scattering from hy-
drogen with the close-coupling approximation. The
number of target states that they included in the close-
coupling expansion varied from one calculation to anoth-
er. Except for the work by Higgins and Burke [10], who
employed the R-matrix technique for the calculation, the

remaining groups solved the coupled Lippmann-
Schwinger equations in momentum space. Unfortunate-
ly, the results obtained by these diferent groups for the
same coupling scheme were at times conflicting [7—9,11],
even when exactly the same numerical method was used.
In the method of solving the Lippmann-Schwinger equa-
tions in momentum space, the calculation had to resort to
the discretization of the integrals of the coupled equa-
tions. This discretization was used to transform the ana-
lytic coupled equations to a matrix equation, which could
then be solved by known procedures [7,8]. For the nodal
points close to the poles of the kernel functions, accurate
results of calculation would seem to be di%cult to obtain,
if care had not been taken to handle the calculation at
these nodal points. We suspect that a slightly improper
handling of the calculation near the poles may lead to
inaccurate or even erroneous results, and this might be
the source of the discrepancy that at times exists among
results calculated by these various research groups.
Thus, it is very much desirable to obtain these close-
coupling cross sections by a completely di6'erent numeri-
cal method for comparison.

In recent years, Liu and Gien [12] and Gien and Liu
[13] used the Harris-Nesbet method [14,15] to also carry
out the close-coupling calculation for positron-hydrogen
scatterings. This algebraic method of approach had been
proposed and developed earlier by Harris [14] and Nesbet
[15]. It had been successfully considered by Seiler,
Oberoi, and Callaway [16] for electron (and positron)
scattering below the positronium formation threshold
and by Wakid and Labahn [17] and Wakid [18] for posi-
tron scattering and positronium formation. Wakid and
Labahn [17], however, had done the calculation for S-
wave scattering only.

Our Harris-Nesbet algebraic calculations [12,13,19,20]
for close-coupling approximation indicated that the
method can handle the positronium formation channel
well. It can also provide reliable and accurate results for
cIoss sections, especially at low energies. Indeed, the
method supplies many self-consistency checks for the re-
liability of the results of calculation, such as the agree-
ment between the Kohn and inverse Kohn cross sections,
the stability of the results of calculation with a change of
the values of the stability parameters, and the stability of
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the results of calculation with a change of the number of
bound basis functions. Within the method, some cri-
terion could also be set to select the more accurate value
between the Kohn and inverse Kohn ones [15]. Contrary
to popular belief, the Harris-Nesbet method is further-
rnore anomaly-free [15]. The effect of the singularity near
the eigenvalues of the bound basis functions usually does
not materialize in the calculation of the reactance ma-
trices. The possibility for producing pseudoresonances in
the calculation might not become a matter of concern, if
proper care is taken to eliminate them. In more difficult
cases (concerning the zeros between poles of Moo and
Mii), Nesbet and Harris also proposed various improved
procedures to overcome the anomaly [15,21].

In this work, we employed the Harris-Nesbet method
to carry out an extensive calculation of positronium for-
mation, elastic e Hscatter-ing and elastic Ps(ls)-p scatter-
ing cross sections, with the consideration of a more en-
larged six-state coupling scheme ( 1s, 2s, 2p )H-
( ls, 2s, 2p)Ps. These states are the first six lowest "actual"
states of the positron-hydrogen collision system. The cal-
culation was done for the lowest seven partial waves
(L=O, 1, 2, 3, 4, 5, and 6). To our knowledge, the
Harris-Nesbet method has never been used to do high
partial-wave (L= 6) close-coupling calculations for a cou-
pling scheme that contains excited Ps states. Note that
within the Harris-Nesbet method, the inclusion of excited
Ps states to the coupling scheme in the case of a high par-
tial wave required the development of an additional set of
general formulas. As was mentioned above, results ob-
tained by different research groups for this six-state cou-
pling scheme [7—9,11] were conflicting. Our calculation
with the Harris-Nesbet method for this coupling scheme
can, therefore, also be used to resolve this controversy.
For comparison, we also carried out our Harris-Nesbet
calculation with the ( ls, 2s)H-(1s, 2p)Ps and ( ls, 2s, 2p)H-
(ls, 2S)Ps coupling schemes. Since calculations employing
variational techniques have been known to be reliable at
low scattering energies, we limited our calculation in this
work to scattering energies below the first excitation
threshold of H, where conAicting results obtained by oth-
er research groups seemed to exist.

The plan of this paper is as follows. For the sake of
clarity, we briefly review the basic formalism of the
Nesbet-Harris method in Sec. I. We also briefly describe
in Sec. II how to transform the relevant formulas to ex-
pressions that can be ready for use in subsequent numeri-
cal calculations. In this section, we also describe the nu-
merical work that we carried out for this calculation.
The purpose of this section is to help clarify our subse-
quent calculation and to expose the effort that we had in-
vested in this calculation in order to achieve these results.
In Sec. III, we present the results of our calculation with
discussion. Finally, in the Conclusion section, we draw
some useful conclusions from this work and brieAy men-
tion some subsequent works that we plan to carry out
within our project of algebraic close-coupling calculation.

I. FORMALISM

The Hamiltonian of the positron-hydrogen collision
system is either

2 2e e2 2

2m ~ 2m "2 r,

f2 g2 2
H= — -T — V' — +

m & 4m ~
p

, (lb)

depending on whether the process channel is an H
scattering or a Ps formation one. r

&
is the position vector

of the positron, and r2 is that of the target electron.
p'=r, r2 and —R =(r, +r2)/2.

Let %1 (1,2) be the trial wave function of the collision
system, corresponding to a total angular momentum L
and a parity ~. This wave function is formulated in the
LS-coupling scheme. As usual, VL(1,2) is expanded in
terms of the target wave functions as

e~(1,2) = y u„ / (r, )F„, i (r2) YLI / (r r2)
n 11/2

+ g p„ i G„ I i (R)YIi I (p R) .
n 1314

(2)

We shall use p = ( n I i l2 ) and q = ( n~ l 3 l4 ) to indicate re-
spectively a hydrogen scattering channel and a positroni-
um formation channel. n, I„and I2 are respectively the
principal quantum number, orbital angular momentum of
H, and orbital angular momentum of the scattered posi-
tron, while n, l3, and l4 are respectively the principal
quantum number, intrinsic orbital angular momentum of
Ps, and orbital angular momentum of Ps referred to the
proton of H. A primary part of the method is to con-
struct scattered (trial} wave functions for the hydrogen
and positronium formation channels. These scattered
waves are composed of two parts: a free part and a
bound part. These scattered waves are explicitly written
as

F~(r2) =aopS~(r2)+ai~C~(r2)+Q~(ri. ) (3a)

S„=k j& (k rz), (4a)

S (R}=V'2k jI (k R),

C (R) =&2k (1—e r }
' +'„I (k R)

(4c)

(4d)

It should be noted that shielding factors have been, as
usual, introduced to force the spherical Newmann func-
tions to behave correctly in terms of r2 and R near the
coordinate origin. These shielding factors are expressed
in terms of the "stability parameters" P and y.

G (R)=ao S (R)+ai C (R)+Oq(R),

where the indices 0 and 1 correspond respectively to an S
or to a C function. The independent free wave functions
Sand Care
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The bound parts A (r2) and Q (R) are also expanded
in terms of a numerable set of normalized basis functions

;(rz) or g (R),

0 (rz ) = g c;i),(r2 ), (5a)

0 (R ) = g cq/ re J ( R ) .
J

(Sb)

Q~(r2) and Qq(R) can also themselves be normalized.
However, in practical calculations of a cross section, the
normalization of these bound parts do not acct the re-
sults of the calcolation.

The Harris-Nesbet procedure requires (as any method
using variational techniques) that (H —E)%'L (1,2) has no
component in the subspace of state vectors spanned by
the short-range bound functions. This condition provides
a "linkage" between the internal and external parts of the
scattered waves, namely, the possibility for expressing the
expansion coefficients of the bound parts in terms of
those of the external parts.

By applying the Kohn variational method, Nesbet
proved that the stationary reactance matrix is expressed
in terms of the M matrix according to

R""= —2 Mg + g y„,MP() (6)

The M matrix is defined (by consequence of the "link-
age") in terms of the so-called free-free N matrix and
bound-free B matrices [15—17] of the processes

(7)

y„, is a solution of the inhomogeneous system of linear
equations

gM"„'y„,= —M",(P .

where P„, are solutions of the system of linear equations

g M~DO'p„, = M()," . — (10)

Once the R matrix was determined, the corresponding
cross sections can then be evaluated according to the usu-
al formula that relates the transition matrix with the
reactance matrix.

In M- and X-matrix elements, i and j (equal to 0 or 1) in-
dicate an element corresponding either to a spherical
Bessel or a spherical Newmann free channel, while
p=p, q and p'=p', q' denote diff'erent (hydrogen or posi-
tronium) scattering channels. However, bound-free ma-
trix elements such as 8~ connect an eigenstate a of the
set of independent bound basis functions to a free state
(either spherical Bessel or spherical Newmann function).
Nesbet also proved that if the inverse Kohn variational
method is considered, then the inverse reactance matrix
will be expressed in terms of the M matrix according to

Rpp =2 M", ii'+ XMo~i P„, (k k ~ )

II. NUMERICAL METHOD

In this calculation, the normalized basis functions that
we used to expand the bound part of the scattered wave
are of a Slater type. The exponents Z, of these basis
functions were chosen over a wide range of values to
secure the convergence of the results of the calculation.
The calculation was done with both Kohn and inverse
Kohn methods for a mutual verification of the results.
Essentially, we needed to analytically reduce elements of
the bound-bound, overlapping, bound-free and free-free
matrices [15—17] to forms that can be calculated by nu-
merical computations. For matrix elements where both
"in" and "out" channels are either hydrogen channels or
positronium channels, we can obtain closed-form expres-
sions. Their numerical computation can thereby be done
quite easily and fast. However, matrix elements that in-
volve both hydrogen and positronium channels can only
be analytically reduced to two-variable integrals. As was
pointed out above, the matrix elements in this latter case
contain two diff'erent sets of coordinates (r „rz, and R,p).
In order to reduce these formulas to two-variable in-
tegrals, we had to use the spheroidal coordinates,
g=(ri+p)/r2 and il=(r& —p)/rz, and y, which is an an-
gle between the e+e p plane an arbitrary plane running
through the line e+p. The double integrals were then
evaluated with numerical quadrature. The analytical
reduction of these matrix elements to either closed forms
or two-variable integral forms were tedious and time con-
suming. Every extort had been made to ensure that the
reduced formulas we obtained were absolutely free from
error.

Depending on the number of basis functions used to
expand the bound part of the trial function, the number
of independent matrix elements that we needed to com-
pute could be very great. For example, the number of in-
dependent bound-bound matrix elements for the six-state
coupling scheme alone could be more than 60000. Out
of these, about one fourth of them required double quad-
rature to evaluate. Furthermore, the computation of
some of these matrix elements for higher partial-wave I
was difficult. As a result, the Harris-Nesbet calculation
for positron scattering consumed a large amount of corn-
puter time.

The analytical formulas derived for these matrix ele-
ments and their numerical evaluation had also been
double-checked by a comparison of the values, calculated
with two completely di6'erent formulas that were in-
dependently obtained for these symmetric matrix ele-
ments. We were, therefore, confident that our analytical
formulas obtained for these matrix elements should be
free from error.

In general, our results of phase shifts (below the posi-
tronium formation threshold) and of cross sections (above
the Ps formation threshold) calculated in the Kohn and
inverse Kohn methods agreed with each other to four
figures of significance at least. We also increased the
number of bound basis functions until the results of cross
section and phase shift did not change significantly. The
stability of the results of calculation was also checked,
employing the Schwartz's principle, by tentatively vary-
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ing the values of the stability parameters. Wc believe
that our numerical phase shifts had an accuracy better
than 0.5% for partial-wave cross sections with L, less
than 4. For higher partial waves, we estimated that this
accuracy might be a bit lower, but might not exceed 1%
or, at worse, 2%. However, the values of these higher
partial-wave cross sections are at least two orders of mag-
nitude smaller than those of lower partial waves, and the
1% accuracy of these higher partial-wave cross sections
would result in an inaccuracy of less than 0.0jI% for the
integrated cross section as a whole. We were therefore
content with the accuracy tolerance that we attained for
the cross sections of I.=4, 5, and 6 partial waves.

A. Below the Ps formation threshold

We obtained the phase shifts and elastic cross sections
at energies below the Ps formation threshold for the cou-
pling schemes ( ls, 2s)H-(ls, 2s)Ps, ( ls, 2s, 2p)H-(ls, 2s)Ps,
and (ls, 2s, 2p)H-(ls, 2s, 2p)Ps. In Table I, we show the
S-, I'-, D-, I'-, and 6-wave phase shifts that we calculated
with the Harris-Nesbet method, using these various cou-
pling schemes. For the six-state [( 1s, 2s, 2p )H-
( 1s, 2s, 2p )Ps] coupling scheme, our phase-shift values
were found to agree very well with the ones calculated by
Mitroy [7,8], who employed a completely dilferent nu-
merical method. This excellent agreement could imply
two things. First, the Harris-Nesbet method did seem to
be able to provide reliable results for large coupling
schemes, as well as for higher partial-wave scatterings.
Second, the calculation by Mitroy seemed to produce
faiIly RccuI'Rtc results fol thc phase shifts. Indeed, plcv1-
ous results of 5- and P-wave phase shifts calculated by
Mitroy [7] with the ( ls, 2s, 2p)H-lsPs coupling scheme
seemed to also agree excellently with our previously cal-
culated Harris-Nesbet values [12,13]. We quote these
sets of phase-shift values in Table I for comparison. Also
shown are the 5-wave phase shifts calculated by Wakid
and Labahn [17], who employed the same Harris-Nesbet
method as we did. We believe that our 5-wave phase
shifts for the ( ls, 2s, 2p)H-(ls, 2s, 2p)Ps scheme are slightly
more accurate, since our values agreed better with those
calculated by Mitroy [7] and since we considered for our
calculation 8 number of basis functions greater than the
one that Wakid and Labahn [17]had considered for their
calculation. The agreement between our six-state S-, I'-,
and D-wave phases shifts and those of Sarkar and Ghosh
[11] are only fair or poor. At some energy points, the
discrepancy between our values and theirs is significant.
For example, we quote their S-wave phase shifts in Table
I.

For all cases, we noticed that the phase shifts were
smaller in size for higher (L ) 3) partial-wave scatterings.
Also, the di6'crencc between the phase shifts obtained
with the coupling schemes ( ls, 2s, 2p)H-(ls, 2s)Ps and
(1$,2$)H-(1$, 2$)PS were quite significant. This seemed to
indicate that the polarization c6ect, included through the
2p state of hydrogen, infIucnced significantly the scatter-
ing of positron at low energies. However, the inAuence of

the 2p Ps state on the phase shifts seemed to be much less
dramatic. This was rejected in a smaller diA'erence be-
tween the phase shifts calculated with the (ls, 2s, 2p)H-
( ls, 2s, 2p)Ps and ( ls, 2s, 2p)H-(ls, 2s)Ps coupling schemes.

Wc also showed in Table I the S- and P-wave phase
sh Jfts calculated with 8 varlat1OI181 method by Bhatla
et al. [22] to be compared with our close-coupling re-
sults. Assuming that these variational values are used as
a yardstick for coupled-state calculations, the agreement
of the six-state close-coupling values is expected not to be
good, since the number of states (or pseudostates) that we
included in the coupling scheme here may have not yet
been suKcicntly high to take care of all of the scattering
cfFccts, cspcclally thc onc of thc continuum polarization.
It may be worthwhile to attempt a "large" coupled-state
calculation with the Harris-Nesbet method.

To see how closely our six-state high-L, phase shifts fol-
low the approximate modified elective range theory
(MERT) formula by O' Malley, Rosenberg, and Spruch
[23] at low energies, we compared these L=5 and L=6
phase shifts in Fig. 1. Note that the approximate MERT
formula is useful for high partial-wave scatterings when
the "exact" numerical calculation becomes too involved.
It was also very useful when the state-of-the-art of elec-
tronic computation was still not so good. Since the 2p
physical state represents only about two thirds of the di-
pole polarizability [24] of the ground-state hydrogen, the
polarizability used for the MERT formula in this case
should be about 2.96 a.u. (ao). It may be worth noting
that here the Ps(2p) state also makes some contribution
to the CA'ective dipole polarizability and may, therefore,
modify this value somewhat. We used this value (2.96ao )

for the dipole polarizability in the MERT formula of
L, &0 to calculate the phase shifts. We found that the
MERT formula provides 1.=5 and I.=6 phase shifts,
agreeing well at low energies with those we calculated
with the Harris-Nesbet method (see Fig. 1). As expected,
the agreement tends to worsen at higher energies. We
also considered the L=0 MERT formula to the 0 (k ) to
estimate the scattering length Ao of the collision system
when the six-state [( ls, 2s, 2p)H-(ls, 2s, 2p)Ps] scheme is
employed. Wc found that Ao = —0.87478 a.u. The neg-
ative value obtained for the scattering length is as expect-
ed. It implies that the attractive long-range polarization
potential alone in positron scattering does not gain a
sufBcient strength to produce S-wave bound states for
the hydrogen-e system.

The elastic cross sections below the positronium for-
mation cross sections shown in Fig. 2 reconflrmed the re-
marks we made above about the phase shifts. Among
these partial-wave cross sections, the S- and P-wave ones
exhibit some distinct behavior. As usual, the Ramsauer-
Townsend CItect can be clearly seen in the S-wave cross
section at an energy around 1.2 CV. The P-wave cross
sections increase to a maximum and then gradually de-
crease as the positron energy increases. As the energy
crosses the Ps threshold, the P-wave cross sections exhib-
it a visible bump just above the Ps formation threshold.
We shall discuss this bump in more detail below. All the
other partial-wave cross sections (L=2, 3, 4, 5, and 6;
some of these were not shown) increase gradually as the
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TABLE I. Partial-wave phase shifts (in radians) of positron-hydrogen scattering at energies below the positronium formation
threshold. (al) Wakid and Labahn [17] with coupling scheme (ls, 2s, 2p)H-( ls)Ps; (a2) Mitroy [7] with coupling scheme ( ls, 2s, 2p)H-
lsPs; (a3) Harris-Nesbet algebraic calculation [12] with coupling scheme ( ls, 2s, 2p)H-lsPs; (b3) present Harris-Nesbet algebraic cal-
culation with coupling scheme (1s,2s)H-(1s, 2s)Ps; (c) present Harris-Nesbet calculation with coupling scheme (1s,2s, 2p)H-(1s, 2s)Ps;
(dl) Wakid and Labahn [17] with coupling scheme (ls, 2s, 2p)H-(ls, 2s, 2p)Ps; (d2) Mitroy [7] with coupling scheme (ls, 2s, 2p)H-
(1s,2s, 2p)Ps; (d3) present Harris-Nesbet algebraic calculation with coupling scheme (1s,2s, 2p)H-(1s, 2s, 2p)Ps; (d4) Sarkar and Ghosh
[11] with coupling scheme (is, 2s, 2p)H-( ls, 2s, 2p)Ps; (I) variational calculation by Bhatia et al. [22]. Numbers in brackets denote
powers of 10 by which the preceding number is to be multiplied.

(a1)
(a2)
(a3)
(b3)
(c)

(d1)
(d2)
(d3)
(d4)
(f)

0.1

0.0324
0.0328
0.0331
0.0160
0.0508
0.0491
0.0526
0.0525
0.0530
0.1483

0.2

0.020 4
0.021 2
0.021 3
0.0140
0.042 0
0.032 1

0.0451
0.045 06
0.045 7
0.187 7

0.3

S wave
0.018 9

—0.0164
—0.016 3
—0.011 8

0.000 9
0.005 5

0.005 53
0.005 54
0.004 49
0.167 7

0.4

—0.0696
—0.0672
—0.0672
—0.0567
—0.0524
—0.0500
—0.0472
—0.0473
—0.0492

0.1201

0.5

—0.1259
—0.1231
—0.1235
—0.1120
—0.1095
—0.1150
—0.1041
—0.1044
—0.1035

0.0624

0.6

—0.1831
—0.1796
—0.1799
—0.1698
—0.1665
—0.1773
—0.1607
—0.1609
—0.1605

0.0039

0.7

—0.2362
—0.2324
—0.2328
—0.2248
—0.2206
—0.2260
—0.2138
—0.2141
—0.2146
—0.0512

(a2)
(a3)
(b3)
(c)

(d2)
(d3)
(f)

0.005 33
0.005 32
0.001 30
0.005 43
0.006 27
0.006 24
0.009

0.0182
0.018 2
0.008 63
0.018 6
0.022 2
0.022 1

0.032 5

0.0342
0.0342
0.0221
0.0348
0.0402
0.0401
0.0659

P wave
0.0496
0.0495
0.0371
0.0506
0.0558
0.0558
0.1010

0.0615
0.0613
0.0487
0.0632
0.0679
0.0676
0.1303

0.0690
0.0688
0.0553
0.0717
0.0759
0.0758
0.1541

0.0770
0.0768
0.0618
0.0803
0.0856
0.0853
0.1792

(b3)
(c)

(d2)
(d3)

0.167[—4]
0.888[ —3]
0.904[ —3]
0.903[—3]

0.398[—3]
0.354[—2]
0.375[—2]
0.372[ —2]

D wave
0.215[—2]
0.803[—2]
0.848[ —2]
0.845[ —2]

0.633[—2]
0.145[—1]
0.151[—1]
0.150[—1]

0.134[—1]
0.230[—1]
0.238 [—1]
0.236[ —1]

0.233[—1]
0.340[ —1]
0.352[ —1]
0.350[—1]

0.378[—1]
0.494[ —1]
0.519[—1]
0.517[—1]

(d2)
(d3)

0.296[ —3] 0.122[ —2]
0.292[ —3] 0.119[—2]

F wave
0.278[ —2] 0.502[ —2]
0.275[ —2] 0.497[ —2]

0.809[—2]
0.799[—2]

0.124[ —1]
0.123[—1]

0.191[—1]
0.189[—1]

(d2)
(d3)

0.130[—3]
0.131[—3]

0.542[ —3]
0.526[ —3]

6 wave
0.123[—2] 0.222[ —2]
0.120[ —2] 0.217[—2]

0.351[—2]
0.342[ —2]

0.524[ —2]
0.514[—2]

0.772[ —2]
0.755[ —2]

positron energy increases. The most significant contribu-
tions to the integrated cross sections some from S-, I'-,
and D-wave scatterings. A somewhat less significant con-
tribution comes from F-wave (and probably G-wave)
scattering. Contributions from L=5 and L=6 partial-
wave scatterings to the integrated cross sections are al-
most negligible at these low energies. For this reason, we
only calculated the partial cross sections up to L=6 to be
summed for the integrated cross sections. The integrated
elastic cross sections at energies below the positronium
formation threshold are shown in Fig. 6 for the
( is, 2s, 2p)H-( ls, 2s, 2p)Ps coupling scheme. It shows the
Ramsauer-Townsend efFect at a very low energy around
1.2 eV. In particular, the integrated cross sections for the
six-state coupling scheme (Fig. 6) seemed to agree very

well with those shown in Mitroy and Stelbovics s publica-
tion[8].

B. Above yositronium formation threshold

In Tables II and III, we tabulate elastic cross sections
and Ps formation cross sections for S-, I'-, and D-wave
scatterings for a number of energy points. These cross
sections were calculated with the ( ls, 2s)H-(ls, 2s)Ps,
( ls, 2s, 2p)H-( is, 2s)Ps, and ( ls, 2s, 2p)H-( ls, 2s, 2p)Ps cou-
pling schemes. We also show the so-called integrated
cross sections for elastic scattering and positronium for-
mation processes. Values of cross sections were obtained
at several energy points in the Ore gap for seven first par-
tial waves L=O, 1, 2, 3, 4, 5, and 6. The integrated cross
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MERT formula [23] for L=S and L=6 partial waves. 0,0-+-
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sections were estimated by adding these seven partial
cross sections together. The contribution from partial
cross sections with L higher than 6 is very small, and
their contribution, if counted, is expected to not alter the
integrated cross sections signi6cantly. For example, the
values of the L = 5 and L =6 Ps formation cross sections
at k=0.71 a.u. were extremely small. Thus, neglecting
these higher partial-wave cross sections (with L greater
than 6) is not expected to alter the integrated cross sec-

Pesitnen energy (eV)

FIG. 2. S-wave elastic cross sections in atomic units for
positron-hydrogen scattering. S, S wave; P, I' wave; D, D wave;
F, I' wave.

tions by more than 5%.
We also included in Tables II and III the elastic and

positroniurn formation cross sections calculated with a
variational method by Humberston and Brown [5,6] for

0.600 6250.525 625 0.6806250.56250.5041

TABLE II. Elastic cross sections (in mao) for positron-hydrogen scattering at energies in the Ore gap. Same as in Table I, except
that (0 is a variational calculation [5,6]. Numbers in brackets denote powers of 10 by which the preceding number is to be multiplied.

y (Ry)
ositron 0 6400 0 7225

(a3)
(b3)
(c)
(d2)
{d3)
(f)

(a3)
(b3)
(c)
(d2)
(d3)
(f)

(a3)
(b3)
(c)
(d2)
{d3)
(f)

(b3)
(d2)
(d3)

0.439
0.412
0.397
0.374
0.375
0.26[ —1]

0.984[ —1]
0.165
0.189
0.188
0.789

0.929[—1]
0.635[—1]
0.106
0.118
0.117
0.323

0.581
0.710
0.708

0.449
0.422
0.407

0.384

0.155
0.101
0.168

0.189

0.104
0.73S[—1]
0.119

0.132

0.604

0.736

S wave
0.462
0.436
0.421
0.397
0.398
0.43[ —1]

I' wave
o.14a
0.942[ —1]
0.153
0.170
o.a69
0.724

D wave
0.122
0.907[—1]
0.141
0.158
0.157
0.403

Integrated
0.632
0.763
0.761

0.472
0.448
0.433

0.410

0.124
0.838[—1]
0.136

0.150

0.134
0.104
0.155

0.171

0.651

0.776

0.481
0.458
0.443
0.419
0.420
0.65[ —1]

0.108
0.736[—1]
0.121
0.134
0.133
0.622

0.140
0.113
0.161
0.178
0.177
0.423

0.664
0.786
0.784

0.488
0.466
0.451

0.428

0.947[ —1]
0.644[ —1]
0.107

0.142
0.115
0.162

0.673

0.492
0.472
0.457
0.434
0.435
0.85[ —1]

0.831[—1]
0.565[—1]
0.958[—1]
0.107
0.106
0.547

0.141
0.121
0.160
0.176
0.175
0.413

0.678
0.787
0.784
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TABLE III. Positronium formation cross sections (in mao) for positron-hydrogen scattering at energies in the Ore gap. Same as in

Table I, except that (dl) is now Hewitt, Noble, and Bransden [9]; {d4) is Sarkar and Ghosh [11];and (f) is a variational calculation

[5,6]. Numbers in brackets denote powers of 10 by which the preceding number is to be multiplied.

gy «y)
ositron 0.5041 0.525 625 O.S625 0.600 625 0.7225

(a2)
(a3)
(b2)
(b3)
(c)
(d1)
(d2)
(d3)
(d4)
(f)

(a2)
(a3)
(13)
(c)
(d1)
(d2)
(d3)
(d4)
(f)

(a2)
(a3)
(13)
(c)
(d1)
(d2)
(d3)
(d4)
(6

(b3)
(d2)
(d3)

0.253[ —2]
0.254[ —2]
0.58[ —3]
0.582[ —3]
0.101[—2]

0.181[—3]
0.181[—3]

0.41[—2]

0.115[—1]

0.988[—2]
0.112[—1]

0.172[—1]
0.173[—1]

0.27[ —1]

0.289[ —3]
0.289[ —3]
0.310[—3]
0.321[—3]

0.435[ —3 j
0.436[—3]

0.62[ —3]

0.108[—1]
0.179[—1]
0.179[—1]

0.428[ —2]

0.154[—3]
0.164[—2]

0.103[—3]

0.129
0.105
0.126

0.161

0.229[ —1]
0.236[ —1]
0.257[ —1]

0.344[ —1 ]

0.132

0.197

S wave
0.407[ —2]
0.411[ —2]
0.256[ —2]
0.257[ —2]
0.163[—2]
0.49[ —2]
0.154[—4]
0.963[—5]
0.30[—3]
0.44[ —2]

I' wave
0.276
0.278
0.238
0.265
1.47
0.294
0.295
0.279
0.365

D wave
0.145
0.144
0.142
0.163
0.570
0.199
0.199
0.192
0.335

Integrated
0.401
0.5194
0.521

0.343[—2]

0.331[—2]
0.146[ —2]

0.593[—5]

0.361
0.322
0.340

0.362

0.309
0.304
0.348

0.277[ —3]
0.271[—2]
0.389[—2]
0.380[—2 j
0.126[—2]
0.64[ —2]
0.538[—4]
0.417[—4]
0.84[ —4]
0.49[ —2]

0.412
0.411
0.377
0.388
0.259
0.406
0.404
0.380
0.482

0.465
0.464
0.462
0.516
0.933
0.576
0.575
0.558
0.812

1.00
1.201
1.20

0.203[—2]

0.403 [—2]
0.105[—2]

0.790[—4]

0.445
0.415
0.424

0.434

0.590
0.599
0.650

0.710

1.29

0.143[—3]
0.144[ —2]
0.404[ —2]
0.404[ —2]
0.844[ —3]
0.12[ —2]
0.886[ —4]
0.964[ —4]
0.40[ —4 j
0.58[ —2]

0.470
0.470
0.441
0.455
1.44
0.460
0.459
0.445
0.561

0.687
0.685
0.712
0.749
0.771
0.809
0.809
0.790
1.057

1.56
1.812
1.81

comparison. As was pointed out above, the agreement of
the six-state close-coupling results with the variational
values is not expected to be good. The agreement be-
tween the positronium formation cross sections seems
somewhat better.

It can be seen in Table III that our S, I', and D partial-
wave cross sections for positronium formation that we
calculated with the six-state [( is, 2s, 2p)H-( ls, 2s, 2p)Psj
coupling scheme agreed very well with those calculated
by Mitroy [7,8], but completely disagreed with those cal-
culated by Hewitt, Noble, and Bransden [9]. It should be
stressed again that the reliability of our algebraic results
was safeguarded by many self-consistency checks that are
provided by the Harris-Nesbet method. The discrepancy
between the two sets of results at some energy points, .

taking under consideration the round-off e8ect, was es-
timated to be, at worst, less than 0.5'. We believe that
this slight discrepancy could be narrowed down further

by improving the accuracy of both calculations.
We note that the cross sections that were also calculat-

ed by the Durham group but for the (1s,2s, 2p)H-lsPs
coupling scheme [9] are in fair agreement with our
Harris-Nesbet ones and hence, they also agree fairly well
with those calculated by Mitroy. This slight di6'erence
might arise from the fact that the Durham group used
the Gaussian-type basis functions for their calculation,
while Mitroy and Stelbovics, presumably, used the exact
hydrogen wave functions. The fair agreement for this
coupling scheme implies that the serious disagreement
found for the results of the Durham group in the
(1s,2s, 2p)H-( is, 2s, 2p)Ps coupling scheme might origi-
nate from their calculation of the transition matrix ele-
ments between the 1s, 2s, and 2p positronium states. This
point was also mentioned by Mitroy [7,8]. The agree-
rnent between our Ps formation cross sections and those
of Sarkar and Ghosh [11]is also very poor. In particular,
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the S-wave values of this group differ considerably from
ours and Mitroy's [7].

Only a minor discrepancy between our results and
those calculated by Mitroy [7] was detected for the S-
wave positronium formation cross sections at E=0.5625,
E=0.64, and E=0.7225 Ry, but this slight discrepancy
should not be of any concern, since these values of S-
wave cross sections were very small [of the order of
1.00( —4) ]. In spite of this smallness, we believe that this
unimportant discrepancy may be resolved by improving
the accuracy of both calculations further. Our S-wave Ps
formation cross sections for the coupling scheme
( ls, 2s)H-(1s, 2s)Ps also agreed well with those calculated
by Mitroy [7].

The elastic cross sections for partial waves above L=3
increased gradually in this energy region of the Ore gap.
The D-wave cross sections also increased gradually but
began to drop slightly at the top end of the Ore gap. The
elastic cross sections above the positronium formation
threshold are shown in more detail in Fig. 2 for S-, P-, D-,
and F-wave scatterings.

A feature which might be worth noting was seen near
the positronium formation threshold in the elastic cross
sections for P wave scat-tering (Fig. 3). There was a clear
bump just above the positronium formation threshold.
After the elastic cross sections slightly dipped down, they
immediately rose at energies just below the Ps threshold
to form this bump through the Ps threshold. This bump
occurred for all the three coupling schemes considered
here. The bump was more enhanced for a coupling
scheme that contains a strong polarization effect, through
the presence of the 2pH and 2pPs states in the coupling
scheme. Thus, its existence might be enhanced by the
long-range polarization potential. However, the dynami-
cal origin of the formation of this P-wave bump remains
unclear. It was also seen in Higgins and Burke's calcula-
tion [10] and for other coupling schemes [12,25]. The P
wave bump left a slight but visible trace at this energy re-
gion in the integrated elastic cross sections (see Fig. 6).
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FIG. 4. Ps formation cross sections in atomic units for
positron-hydrogen scattering. A, (1s,2s)H-(1s, 2s)Ps coupling
scheme; B, (1s,2s, 2p)H-(1s, 2s)Ps coupling scheme; C,
(1s,2s, 2p)H-(1s, 2s, 2p)Ps coupling scheme.

This trace was also visible in the integrated and partial
cross sections of Mitroy and Stelbovics [8], using the
same six-state coupling scheme. Our integrated elastic
cross sections for the six-state coupling scheme in the Ore
gap shown in Fig. 6 also agreed very well with those cal-
culated by Mitroy and Stelbovics [8].

The positronium formation cross sections in the Ore
gap are shown in Figs. 4 and 5 for S-, P-, D-, and F-wave
scattering. Except for the case of S-wave scattering, for
all other cases, including the G-, H , and I wave one-s (n-ot

shown), the Ps formation cross sections increase as the
positron energy increases from the Ps formation thresh-
old to the upper end of the Ore gap ( —10.10 eV). The
P-wave cross sections and, to a lesser extent, the D-wave
cross sections flatten out at the top end of the Ore gap.
The only exception is the S-wave positronium formation
cross sections calculated with the six-state coupling
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FIG. 3. P-wave elastic cross sections in atomic units for
positron-hydrogen scattering. A, (1s,2s, 2p)H-(1s, 2s, 2p)Ps cou-
pling scheme; B, (1s,2s, 2p)H-(1s, 2s)Ps coupling scheme; C,
(1s,2s)H-( 1s,2s)Ps coupling scheme.
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FIG. 5. Positronium formation cross sections in atomic units
for positron-hydrogen scattering. P, P-wave; D, D wave; F, F
wave.
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schemes ( ls, 2s, 2p)H-( ls, 2s, 2p)Ps. Here, similar to the
results of the Ps formation cross section obtained in one
of our previous calculations with the (ls, 2s, 2p)H-lsPs
coupling scheme [12],a dip was seen to form in this ener-
gy region (see Fig. 4). OfFhand, we could not find a sound
(dynamical) explanation for the formation of this dip in
the S-wave positronium formation cross sections and
especially for the fact that this dip was found to form
only in the ( is, 2s, 2p)H-( ls, 2s, 2p)Ps coupling scheme but
not in the other two. The positronium formation cross
sections calculated with the two other coupling schemes
[(ls,2s, 2p)H-(ls, 2s)Ps and ( ls, 2s)H-( ls, 2s)Ps] tend to
Aatten out after a quick rise at the threshold. The dip
seen in the case of the (1s,2s, 2p)H-(1s, 2s, 2p)Ps coupling
scheme did not, however, affect the integrated positroni-
um formation cross sections significantly, since the S-
wave positronium formation cross sections were very
small in this region. The most significant contribution to
the integrated positronium formation cross sections in
this energy region comes from the P-, D-, and F-wave
scattering. In Fig. 6, we exhibit the integrated positroni-
um formation cross sections for the ( 1s, 2s, 2p )H-
( ls, 2s, 2p)Ps coupling scheme. The integrated positroni-
um formation cross sections increase linearly as the ener-

gy incr eases.
We also show in Fig. 6 the total (elastic plus positroni-

um formation) cross sections for positron-hydrogen
scattering at energies in the Ore gap. These cross sec-
tions were calculated with the six-state coupling scheme.
We tentatively (and tentatively only) made a visual com-
parison with experimental values of cross section mea-
sured by the Detroit group [4] in this energy region.
While there seemed to be a qualitative agreement in the
shape of the cross sections, the theoretical and experi-
mental cross sections did not seem to agree well with
each other quantitatively. The discrepancy is as expect-
ed. Indeed, we did not expect that the coupling schemes
we considered here had been sufficient to obtain "conver-
gent" cross sections for a meaningful quantitative com-

't 00.0-

8—8
a--a P
aw 0

F

~—o T

parison. However, experiments of positron scattering
from atomic hydrogen have been known to be difficult,
and one should not, therefore, expect to have accurate re-
sults obtained right away for these early measurements.
Besides, it has also been well known that in the Detroit
experiment there was some difficulty with a discrimina-
tion against incident positrons going into small scattering
angles, and this difficult may distort its results of cross
section as well.

For completeness, we also show in Fig. 7 the S, P, D,
and F waves and integrated cross sections for Ps(ls)-p
elastic scattering. These cross sections were calculated
with the six™statecoupling scheme. In general, the cross
sections for this process are much greater than the corre-
sponding ones for elastic positron-hydrogen scattering.
The elastic Ps( ls)-p cross sections exhibit many interest-
ing features worth noting. The S-wave cross sections cal-
culated with the ( ls, 2s, 2p)H-(1s, 2s, 2p)Ps coupling
scheme show the Ramsauer-Townsend effect at an energy
below 0.25 eV. However, we found that this effect does
not seem to remain visible for the ( ls, 2s, 2p)H-( ls, 2s)Ps
and ( ls, 2s)H-( ls, 2s)Ps coupling schemes. The P-wave
cross sections of the six-state coupling scheme show a
maximum peak near the zero-energy threshold, before
they fall ofF quickly to zero. This P-wave Ps( ls)-p peak
was found to totally disappear in the four-state coupling
scheme case and to only leave a slight trace in the five-
state coupling scheme case. For D-wave scattering, this
peak becomes much broader and again, it can only be ob-
viously seen in the six-state coupling scheme case. Since
the 2p Ps state was present only in the six-state coupling
scheme, the relatively strong long-range polarization po-
tential that comes from this state may be responsible for
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FIG. 7. Ps(ls)-p elastic cross sections in atomic units with
the ( ls, 2s, 2p)H-( ls, 2s, 2p)Ps coupling scheme. S, S-wave cross
sections; P, P-wave cross sections; 0, D-wave cross sections; F,
I'-wave cross sections; I, integrated cross sections.



SIX-STATE ALGEBRAIC CLOSE-COUPLING CALCULATION. . .

these special features, especially for the Ramsauer-
Townsend effect in the Ps(ls)-p incoming channel. The
integrated cross sections shown in this figure were again
taken to be sums of the cross sections of the first seven
partial-wave scatterings. The integrated cross sections
for the six-state coupling scheme exhibit the Ramsauer-
Townsend eA'ect at a very small Ps energy. They then
flatten out at energies in the Ore gap.

CANCLUSIQN

In this work, we employed the Harris-Nesbet method
to carry out an extensive calculation of elastic and posi-
tronium formation cross sections with the six-state
(ls, 2s, 2p)H-( ls, 2s, 2p)Ps coupling scheme at low ener-
gies. We have succeeded in carrying out the calculation
for high partial waves with coupling schemes of this type.
Despite the complexity of this calculation, this work
demonstrated that the Harris-Nesbet method can provide
numerically reliable results for a more extended coupling
scheme, as well as for high partial waves. Many interest-
ing features were found for these results of cross section.
These features may not disappear when a larger coupling
scheme, including pseudostates, is considered for the cal-
culation. The results of cross section presented here,
which were obtained with a completely diA'erent numeri-
cal method, were also useful for a comparison with the
close-coupling results obtained by solving the coupled

Lippmann-Schwin ger equations in momentum space.
Our Harris-Nesbet calculation confirmed that one [7,8] of
the three close-coupling results previously calculated by
other groups for this coupling scheme is numerically ac-
curate, while the other two [9,11] seem to be erroneous
and/or inaccurate. Considering the fact that the algebra-
ic method by Harris and Nesbet by itself has several self-
consistency checks to safeguard the reliability and accu-
racy of the results obtained, the results of this method
might also be used to double check the correctness of the
results obtained by other methods of approximation.
%'ith the success gained in this work, we are conternplat-
ing the use of the Harris-Nesbet method to calculate
cross sections in larger coupling schemes (including pseu-
dostates and/or correlation functions), as well as to inves-
tigate Feshbach and shape resonances in positron col-
lisions with hydrogen. We also plan to extend the range
of scattering energy to higher energies. It may be worth
noting that Mitroy, Berge, and Stelbovics recently [26]
carried out some of these large calculations, using the
method of solving the coupled I.ippmann-Sch winger
equations in momentum space.
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