PHYSICAL REVIEW A

VOLUME 52, NUMBER 2

AUGUST 1995

Time dependence of the subexcitation electron distribution generated by high-energy electrons
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The time-dependent behavior of subexcitation electrons is studied by a technique that employs the
continuous slowing-down approximation, combined with the Spencer-Fano equation via a time-dependent
version of the entry spectrum. The method is used first to establish generalities about the time behavior
of subexcitation electrons generated by initially-high-energy electrons and then is employed to follow the
development of subexcitation electron degradation spectra generated by 1-keV electrons in argon.

PACS number(s): 34.80.Gs, 52.20.Fs, 52.25.Fi

I. INTRODUCTION

The interaction of high-energy radiation with matter
gives rise to the liberation of energetic electrons that cas-
cade to lower energies by inelastic collisions. The ensu-
ing electron degradation process involves the generation
of additional electrons and ions by ionizing collisions, as
well as the production of excited states and reactive inter-
mediates by energy transfers, resulting in simple electron-
ic excitation. For energies above the inelastic threshold
of atomic and molecular gases, the behavior of the elec-
tron energy distribution function, or the electron energy
degradation spectrum in pure substances [1-4] and in
mixtures [S—7], has been thoroughly discussed in terms
of both the steady-state and time-dependent Spencer-
Fano equation (SFE). In the final state of degradation in
atomic gases, electrons with energies below the first exci-
tation threshold are moderated by momentum transfer
alone. Because of their long life and relatively low ener-
gies, these electrons are the principal component of innu-
merable reactions, including ion neutralization; electronic
excitation of minor additives; and, in the case of molecu-
lar gases, dissociative and nondissociative electron at-
tachment and rotational and vibrational excitation. The
importance of electrons with energies below the first elec-
tronic excitation threshold was first recognized by
Platzmann, who termed them subexcitation electrons [8].
The prime motivation for the present work is the appear-
ance over the past several years of experiments that mon-
itor the products of subexcitation electrons after the in-
troduction of a pulse of electrons in a rare gas [9—11] or a
mixture of a rare gas and a minor additive [12-14].

In Sec. II we address the problem from the point of
view of an extension of the original SFE. In the subexci-
tation energy range, the temporal connection is obtained
by generating a time-dependent entry spectrum from the
original numerical solution of the SFE at energies above
the excitation threshold. In Sec. II A, a model calcula-
tion is used to demonstrate certain common features of
subexcitation electron degradation. In Sec. II B, the gen-
eral method is used to follow the moderation of subexci-
tation electrons in argon after the introduction of 1-keV
electrons.
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II. FORMULATION AND RESULTS

A. The time-dependent Spencer-Fano equation

The degradation of energetic electrons in a rare gas
occurs in two successive energy domains. The first stage
covers the energy range from the initial electron energy
T, to the threshold of inelastic scattering E,. Energy
moderation in this range is governed by the time-
dependent SFE given by [2,7]

0z

vr =nKpz+u(T,t), (1)

where T is the electron energy; ¢ is the time; v, is the
electron speed; u is the number of source electrons per
unit energy per unit time; n is the gas density; and
the incremental degradation spectrum, z (length
Xenergy ! Xtime™!), is given in terms of the electron
density p (energy 1), as follows:

z=vpp(T,t) . (2)

Because all calculations in the present work are
density scalable, we have used n=2.686764X10"
molecules/cm® [at standard temperature and pressure
(STP) which is 0°C at 1 atmosphere] as the reference den-
sity. In Eq. (1), the cross-section operator K1 is defined
in terms of an integral operation, as follows:

Kz(T,0)=S 0 ,(T+E,)z(T+E,,t)

T+1,do;(T+E,E)

> fla T z(T +E,t)dE

T, do (T, T+I,)
+§' f2T+Ia dE

—0o( Tz (T,2)+(Auger terms) . (3)

z(T',t)dT’

Here nK;z is the number of electrons reaching energy T
per unit time as a result of all collision processes. In Eq.
(3), do;,(T,E)/dE is the differential ionization cross sec-
tion for the ath shell at energy transfer E, where the ion-
ization threshold is I, and o is the cross section for ex-
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citation of the discrete state s with excitation energy E;.
The total ionization cross section from the ath shell is

(T+1,)/2do,;(T,E)
————dE

o D)= [, T , @

and the total inelastic cross section is given in terms of
o, and the excitation cross sections o, by

o= 0,1+ o (T) . (5)

Here the sums are taken over s discrete states and a sub-
shells. The partial integro-differential, Eq. (3), is an ap-
proximation to the Boltzmann equation known as the
cold-gas approximation (CGA) [15,16]. This approxima-
tion describes the moderation of electrons in the absence
of internal and external fields with energies much above
the thermal background.

Certain quantities result from an integration over time.
These quantities include the cumulative degradation spec-
trum Z (T,t), defined by

Z(1,0= [ 2(T,)dh . (6)

Such quantities are important concepts in radiation phys-
ics and chemistry because the time-dependent yield N ()
for a product induced by electron collisions in a gas of
density N, and a cross section o, is given by

T2
N@0=N, [ o (DZ(T,ndT . (7)
1 .

Integrating Eq. (3) over time shows that Z is the solution
of an equation similar to Eq. (1) but with u (7,¢) replaced
by

U(T0= [ u(T,)dh . (8)

From Eq. (1) it is useful to isolate the quantity
r=Krz—o0oz-(Auger terms). In an operation analogous
to Egs. (6)—(8), a function R can be defined by

R(T,0= [ 'r(T,M)dA . ©)

The quantity nR (T, oo ) has been discussed in consider-
able detail and is known as the entry spectrum [17,18]. Its
time-dependent generalization nR (T,t) is essential for
understanding the temporal behavior of subexcitation
electron yields.

B. Subexcitation electron domain

The second stage of energy degradation, which was the
subject of a recent review [19], covers the range from the
first electronic threshold at 7, =FE, to some arbitrary
lower limit T;. For the present analysis, 7, should be
10-20 times the thermal energy, so that energy acquired
from the medium by the subexcitation electron can be ig-
nored (i.e., the CGA). If m, is the mass of the electron
and M is the mass of the background gas, the mean ener-
gy transfer per elastic collision [19] is AT, where
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A=2m,/M. In the case of an argon medium gas, M =40
and A=1.4X107°, Hence, the energy step AT is small
enough so that the cumulative spectrum Z for subexcita-
tion electrons can be obtained by solving the time-
dependent continuous slowing-down approximation
(CSDA). In this limit, the continuity equation [19,20] for
electron degradation is

_,9Z, aS(T)Z
vy =n
ot orT
In Eq. (10), the stopping cross section S is given in terms
of the momentum transfer cross section o, by

S(T)=ho, (T)T . (11)

At the steady-state limit (8Z; /3t =0), R =R(T, ), and
Eq. (10) can be integrated immediately to give

Y(T)=Z,(T, )

> +nR(T,t) . (10)

T
:[S(T)]_l[fTuR(A,oo)dA+S(Tu)Z(Tu,oo) ,
(12)

where Z (T, «) is the steady-state solution of Eq. (3) for
Z at the lower bound of the first degradation stage.
It is useful to define a CSD time by
v dA

= __er 1
I nv,S(A) (13a)

and the inverse of Eq. (13a) by
T=g(7).

Equation (13a) gives the time 7(7) required for an elec-
tron to slow down from T, to T in a medium gas of den-
sity n with a stopping cross section S (7). We may then
use Eqgs. (13a) and (13b) to transform from 7 to 7 in Eq.
(10), yielding an equation for the cumulative spectrum
Z:

5

(13b)

sz asz,
=———+nv;S(g(7))R(g(7),t) .
ot or

s

(10"

The solution of Egs. (10) and (10’) can be written as the
sum of the homogeneous solution, Z,, and a particular
solution, Zsp, as

Z(T,)=Z4(T,)+Z,(T,1), (14a)
where
S(T”)Z(T t—r) for ¢t>
s t—7) fort=71
Z,(T,t)=1 S(T) “ (14b)
0 fort<r.
Equation (14b) follows from the solution of

dy /9t = —09y /dx. Here y=F(x —t), and an anticipated
boundary requirement is that Z(T,,t)=Z(T,,t), which
is the solution of Eq. (1) at the lower bound of the first de-
gradation stage. The analogous steady-state quantity in
the case of Eq. (12) is the second term in the brackets.
The particular solution Z, of Eq. (10') is then given by
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Z,(T,nH=[S(D)]~ nfvg(T 4 Sg(T—t+y)R(g(r—t+y),7)dy
=[S(T nf epS @R (gly),y —r+1)dy fort=7, (14c)
Zy(TO=[S(D] "0 [ vy iayS(g(r—t+y)IR(g(r—t+7),7)dy
=[S(T] nf Vg S(&(¥)IR(g(y),t—7+y)dy fort>7. (14d)
Examination of Eqgs. (14c) and (14d) shows that Z,(T,,t)=0. As required, the interface condition at T=T, is then

satisfied by Z, (T, ,t)=2Z

(T,,t). In addition, because we will show below that Z (T, « ) is never more than a few per-

cent of Z (T, »), properties of Z,, will dominate the behavior of Z;. A characteristic property of the particular solu-
tion is readily discerned if we consider the slope of SZ in the SZ-7 plane Taking partial derivatives in Egs. (14c) and

(14d) gives the slope in the two regions as

9(SZ)

or znfrv

Tt

These forms show that SZ is continuous at t =7. In both
cases, the second term is positive and the same in each re-
gion. However, the first term is negative because
dR /93t >0, from Eq. (9). Moreover, because of the in-
creasing interval of integration in Eq. (15a), the contribu-
tion of the first term causes the slope to decrease continu-
ously in the range 0=7<¢. In the case of Eq. (15b), for
7>t, the interval of integration has a constant value ¢,
while the integration range changes. Hence, from 7=0,
9(SZ,, )d7 decreases until 7=t¢, where the slope undergoes
an alteration in behavior occasioned by the change in the
integration limits, as shown in Egs. (15a) and (15b).

To clarify the foregoing discussion before we cover a
practical case of subexcitation electron moderation, we
will examine an exactly integrable model that retains

{aT[(na) Ye"™—1)—(na+k) (e"—
{ T[(na)—l(enar_l)_(na+K) 1 —Kt(e(na+K)‘r_1)] e\[-—1

SZ,,(g(r),t)=

In this case, the steady-state degradation spectrum, Eq. (12), is obtained from Egq.

Y=[T"XT,/T—1)/nb eV~']. The Z,,

nforvg(k)S(g(k))aR(g(?»),?L——T-Ft)/87'd7»+nvg(7)S(g(T))R(g(T),t) for t>1,
WS(E(ANBR (g(A),A—r+1) /3T dA~+nvy,,S(g(r)

(15a)

JR(g(7),t) for t=7. (15b)

[

physically realistic properties. We can achieve this in
Egs. (10)-(14) by specifying a form for R independent of
energy but with a realistic time dependence, such as
nR=[(1—e"") (eV™1)]. We have chosen k=1.6X10"8
s~!, which is the average reciprocal rise time for nR,
computed from the time-dependent entry spectrum em-
ployed in the calculation that follows this example. Then
as in Refs. [7,19,20], assume that S=[bT!/? (cm? eV)]. It
follows from Egs. (11) and (13) that T=g(7)=T,e "%,
r=(na) In(T,/T), with b=2.7230868X10 %' cm?
eV!’2 and a/b=1.60218925X107 12 ergeV~!. The
magnitude of b, which determines that of o,,, has been
chosen so that results are in rough accordance with those
obtained in the numerical calculation that follows. Car-
rying out the integrations in Eqgs. (14c) and (14d) yields

e )] eVl} fort=<r

} fore>r.

(16a)
(16b)

(16b) evaluated at t= o0;

surface computed from Egs. (16a) and (16b), displayed in Fig. 1, reveals a

ridge in the SZ(g(7),t) surface at t =7. As Fig. 1 shows, the ridge is equivalent to a maximum in the SZ-7 plane for

every t. Note that the slope in the SZ-7 plane for 7> ¢,
a(SZ,)
or

is always negative, while the initial slope

aSZ,,)

3 =0 S(g(7))R(g(7),1)

=[aT(l1—e ) eV™!)] for 7 near 0
is positive. Hence, at each time ¢, SZ attains a maximum
in the SZ-7 plane at some position 7<¢. In the case of

Eqgs. (16a) and (16b), the maximum is located in the

={—na’T[(na) (e""—1)—(na+k) e —

e )] evVvl} fort<r,

neighborhood of r=¢. In fact, when the rise time of
nR,k ! can be ignored, the maximum is located at exact-
ly 7=t¢. This may be seen by letting k— o in Eqgs. (16a)
and (16b), so that nR —[6(t) eV '], where 6(z) is the
step function at # =0. At the limit k— oo, Egs. (15a) and
(15b) become

[l’l —IT(enat_
[nAlT(ena-r_

1) (ev™!
1) (ev™!

)] for t <7, (17a)

SZ,,(g(7),t)= )] for ¢ >1 . (17b)
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FIG. 1. Cumulative degradation spectral surface for subexci-
tation electrons between energies of 0.5 and 12 eV in a model
gas at STP. The stopping cross section S(7) of the medium gas
is of the form bT'/? and nR =[(1—e ") eV~!]. The maximum
in SZ,(g(7),t) traces a curve in the 7-¢ plane equivalent to 7=1.

The surface described by Egs. (17a) and (17b) is almost in-
distinguishable from the plot displayed in Fig. 1, which
depicts the SZ(g(7),t) surface generated by Egs. (16a)
and (16b). Moreover, the slope in the SZ-r plane,
a(Spr)/afr, from Eq. (17a) is negative, while the same
quantity for Eq. (17b) is always positive. Hence, the max-
imum in the SZ, surface traces a curve in the 7-f plane
that is equivalent to 7=¢. Furthermore, because Z,;, in
Eq. (14) is expected to supply only a minor contribution
to the overall Z;, the global appearance of Z, in Fig. 1
can be taken as a paradigm for the general behavior of
the cumulative yield of subexcitation electrons. In sum-
mary, we expect the cumulative yield for subexcitation
electrons to possess a maximum in the Z,(g(7),¢)-7 plane
at 7=t for all ¢t and a corresponding maximum in the
Z (T,t)-T plane at T=~g(t).

C. Subexcitation electron degradation in argon

As a test gas we have chosen argon. We use the cross
sections complied by Eggarter [21] and the time-
dependent cumulative yield calculated by Kowari, Inoku-
ti, and Kimura [5]. We combine the two data sources to
form the time-dependent entry spectrum,

nR(T,0)=n S o (T +E,)Z(T+E,,1)

r+1,do,; (T +E,E)

+n§f1a JE

Z(T+E,t)}dE

T, da'ia(Tl,T—"'Ia)
+n§f2T+1a dE

=nRp(T,t)+nR(T,t)+nR(T,1) , (18)

Z(T',t)dT’

according to Egs. (3), (6), and (7), where the source terms
nRp, nR;,, and nRy, refer, respectively, to electrons pro-
duced by energy lost during excitation of discrete and
continuum states and by electron ejection during ionizing
collisions.

Figure 2 shows previously calculated [5] values of Z for
an electron with 1-keV initial kinetic energy in argon at
STP as a function of electron energy and time. Clearly

~shown in the spectral surface is an Auger spike at

T=200 eV. Reference to Eq. (18) shows that the
influence of these electrons in the subexcitation range is
exerted only through Z. The entry spectral surface com-
puted from Eq. (18) is displayed in Fig. 3(d), with indivi-
dual contributions from nRp, nR;;, and nR;, shown in
Figs. 3(a)-3(c). We note that the ejected-electron com-
ponent, nR,,, contributes about 75% of nR. This obser-
vation is expected because ejected electrons in the subex-
citation range emanate from ionizing collisions
throughout the first stage of degradation, whereas the
first two terms in Eq. (18) produce electrons only from in-
itial electrons within a single energy loss of the subexcita-
tion energy range. The sum of the three entry surfaces
displayed in Fig. 3(d) reveals a sloped structure with a
broad plateau in the neighborhood of 2 eV, caused by the
superposition of maxima from nR and nRy,.

Before we apply the results of Fig. 3 to the solution of
Egs. (14c) and (14d), we need to compute the homogene-
ous solution, Eq. (14b), by using the terminal values
Z(T,,t) of the original degradation calculation in stage
1, together with the stopping cross section S shown in
Fig. 4. The o,, values used in Eq. (11) to derive S(T)
were obtained by a spline interpolation of a compilation
by Hayashi [22], and the quantity Z(T,,t) used in calcu-
lating Eq. (12) was extracted from the Z surface shown in
Fig. 2. The subsequent homogeneous Z  surface is

FIG. 2. Cumulative degradation spectral surface of electrons
generated in argon at a constant integrated rate of 1 eVl by
1000-eV electrons at STP. The cross sections used in the origi-
nal calculation were those of Eggarter [21].
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anz(T,t)
N
(=)

FIG. 3. Integrated rate (in eV ') of subexcitation electron production or time-dependent entry spectrum by 1000-eV electrons in
argon at STP. The subexcitation energy range is 0.5—-12 eV. The individual integrated rate contributions, defined in Eq. (16), are
plotted (a)-(c). A summation of all three contributions is given in (d).

0.1

0.01
1 FIG. 4. Stopping cross section for argon ac-
4 cording to Eq. (11), plotted as a function of
electron energy over a range of energies that
includes the subexcitation regime.

S (10'® cm? eV)

0.001F

1 Il i 1 1 1 1

0 2 4 6 8 10 12 14 16
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0.03]

Zp(Tot)

FIG. 5. Two views of the cumulative degradation spectral surface for subexcitation electrons generated, between energies of 0.5
and 12 eV, by the boundary term Z(7,,?) in argon at STP. Note that the condition in Eq. (14b) implies that this discontinuous max-
imum in Z (7,?) traces a curve in the 7-¢ plane equivalent to T=g (¢).

shown in two views in Figs. 5(a) and 5(b). [We recognize
from Eq. (14b) that Z;, =0 for ¢ <r.] Figure 5 shows that
Z, experiences a sharp increase to a maximum at lower
electron energies. At long times, the maximum prevails
at the lowest energy. This behavior is attributable pri-
marily to the presence of S(T) in the denominator of Eq.
(14b).

We begin the calculation of Z; in argon by first com-
puting the corresponding steady-state yield Y,. In the
present case, Y is simply given by Eq. (12), which is plot-
ted on a logarithmic scale in Fig. 6. The two quantities,
S(T,) and Z(T,,»)=0.0043492 cm/eV, used in
evaluating Eq. (12) are the ones employed in generating
Z, by Eq. (14b). The time limits and scale for the evalu-

104 . T T T T T
1000 E
100 E

10 ¢ E

S

Y (cm eV

0.001 L L L 2 L
0 2 4 6 8 10 12 14

Electron Energy (eV)

FIG. 6. Y (T), as defined by Eq. (12), which is the steady-
state solution of Eq. (10) for subexcitation electrons generated at
a constant integrated rate of 1 eV~ ! by 1000-eV electrons in ar-
gon at STP.

ation of Eq. (14b) were determined by first computing the
slowing down time 7 and its reciprocal g, according to
Egs. (13a) and (13b). The same two functions are also re-
quired for evaluation of Eqgs. (14c) and (14d). The slow-
ing down time 7 for any gas at STP with a stopping cross
section S, as plotted in Fig. 4, is displayed in Fig. 7. The
energy interval chosen, 0.5 eV (about 20 times thermal
energy) to 12 eV, is approximately the onset of electronic
excitation in argon. As Fig. 7 shows, the slowing-down
interval from 12 to 0.5 eV is approximately 350 ns. More-
over, the behavior of 7(T) is dominated by the dramatic
variation of S over the same energy interval.

Once the numerical integrations are carried out in Egs.
(14c) and (14d) Z; is obtained by superposition according

350 T T T T T T
300 F g
250 F ]

200 1

T (ns)

50 - 1

L 1 L 1 L 1

0 2 4 6 8 10 12 14
Electron Energy (eV)

FIG. 7. Equation (13), slowing-down time, from 12 to 0.5 eV
for subexcitation electrons generated at a constant integrated
rate of 1 eV ™! by 1000-eV electrons in argon at STP, with the
stopping power of Fig. 4.
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(b)

FIG. 8. Two views of the cumulative degradation spectral surface, Eq. (14a), for subexcitation electrons generated at a constant in-
tegrated rate of 1 eV~ ! by 1000-eV electrons. The degradation range is electron energies of 0.5-12 eV in argon at STP. The stopping
cross section S(T) of the medium gas is the one displayed in Fig. 4. Note that the maximum in S(T)Z(T,?) traces a curve in the T-¢

plane that is equivalent to T'=g(t).

to Eq. (14a) (although Z;, makes a minor contribution to
the overall Z;). This surface is displayed from two per-
spectives in Fig. 8. The near view, Fig. 8(a), shows how
the maximum in Z_ evolves from higher subexcitation en-
ergies. Both Figs. 8(a) and 8(b) show that the maximum
experiences a sharp excursion to longer times at lower en-
ergies. This maximum mirrors the behavior of 7(T), as
depicted in Fig. 7. As mentioned in the discussion of Eq.
(14), a trace of the maximum in the quantity
S(T)Zsp(T,t) follows g (¢) in the T-¢ plane, a fact that is
qualitatively illustrated by the behavior exhibited in Fig.
8.

III. CONCLUSION

We have outlined a method for deriving the time-
dependent degradation spectrum for subexcitation elec-
trons from the degradation spectrum computed for high-
energy electrons. We have also demonstrated the utility
of this method in the case of an exactly calculable model,
as well as in the real case of electrons slowing down in ar-
gon. The dominant characteristic of the cumulative de-
gradation spectrum is the existence of a maximum in the
SZ-r plane at 7=t or in the Z -T plane at T=~g(¢).

Hence, the projection of the maximum onto the 7-¢ plane
traces a curve corresponding approximately to the energy
dependence of the CSDA time displayed in Fig. 7. The
present method permits the use of existing data to ana-
lyze the results of experiments that monitor the products
of subexcitation electrons generated by ionizing radia-
tion. This application was amply demonstrated by the
use of experimentally determined argon inelastic and
momentum transfer cross sections and a previously calcu-
lated Z surface to construct nR of Eq. (18). This source
function, in turn, was used to characterize the cumulative
subexcitation electron yield via Eq. (10). If Z; is per-
turbed by a small amount of an additive that scavenges
subexcitation electrons from the system, Eq. (10) can be
modified by the addition of a homogeneous term, as in
Ref. [20].
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