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Time dependence of the subexcitation electron distribution generated by high-energy electrons
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The time-dependent behavior of subexcitation electrons is studied by a technique that employs the
continuous slowing-down approximation, combined with the Spencer-Fano equation via a time-dependent
version of the entry spectrum. The method is used first to establish generalities about the time behavior
of subexcitation electrons generated by initially-high-energy electrons and then is employed to follow the
development of subexcitation electron degradation spectra generated by 1-keV electrons in argon.

PACS number(s): 34.80.Gs, 52.20.Fs, 52.25.Fi

I. INTRODUCTION II. FORMULATION AND RESULTS

The interaction of high-energy radiation with matter
gives rise to the liberation of energetic electrons that cas-
cade to lower energies by inelastic collisions. The ensu-
ing electron degradation process involves the generation
of additional electrons and ions by ionizing collisions, as
well as the production of excited states and reactive inter-
mediates by energy transfers, resulting in simple electron-
ic excitation. For energies above the inelastic threshold
of atomic and molecular gases, the behavior of the elec-
tron energy distribution function, or the electron energy
degradation spectrum in pure substances [1—4] and in
mixtures [5—7], has been thoroughly discussed in terms
of both the steady-state and time-dependent Spencer-
Fano equation (SFE). In the final state of degradation in
atomic gases, electrons with energies below the first exci-
tation threshold are moderated by momentum transfer
alone. Because of their long life and relatively low ener-
gies, these electrons are the principal component of innu-
merable reactions, including ion neutralization; electronic
excitation of minor additives; and, in the case of molecu-
lar gases, dissociative and nondissociative electron at-
tachment and rotational and vibrational excitation. The
importance of electrons with energies below the erst elec-
tronic excitation threshold was first recognized by
Platzmann, who termed them subexcitation electrons [8].
The prime motivation for the present work is the appear-
ance over the past several years of experiments that mon-
itor the products of subexcitation electrons after the in-
troduction of a pulse of electrons in a rare gas [9—11]or a
mixture of a rare gas and a minor additive [12—14].

In Sec. II we address the problem from the point of
view of an extension of the original SFE. In the subexci-
tation energy range, the temporal connection is obtained
by generating a time-dependent entry spectrum from the
original numerical solution of the SFE at energies above
the excitation threshold. In Sec. II A, a model calcula-
tion is used to demonstrate certain common features of
subexcitation electron degradation. In Sec. II B, the gen-
eral method is used to follow the moderation of subexci-
tation electrons in argon after the introduction of 1-keV
electrons.

A. The time-dependent Spencer-Fano equation

The degradation of energetic electrons in a rare gas
occurs in two successive energy domains. The first stage
covers the energy range from the initial electron energy
To to the threshold of inelastic scattering E,h. Energy
moderation in this range is governed by the time-
dependent SFE given by [2,7]

UT llKTZ+ u( T, t)i Bz

Bt

where T is the electron energy; t is the time; U~ is the
electron speed; u is the number of source electrons per
unit energy per unit time; n is the gas density; and
the incremental degradation spectrum, z (length
Xenergy 'Xtime='), is given in terms of the electron
density p (energy '), as follows:

z=urp(T, t) .

Because all calculations in the present work are
density scalable, we have used n =2.686 764 X 10'
molecules/cm [at standard temperature and pressure
(STP) which is O'C at 1 atmosphere] as the reference den-
sity. In Eq. (1), the cross-section operator Kz is defined
in terms of an integral operation, as follows:

Krz(T, t)= go, (T+E, )z(T+E„t)

r+I do. , (T+E,E)+g I — z(T+E, t)dE
dE

do'; (T', T+I )+g z(T', t)dT'
a

—cr„,(T)z (T, t)+(Auger terms) .

Here nK~z is the number of electrons reaching energy T
per unit time as a result of all collision processes. In Eq.
(3), do; ( T,E) /dE is the differential ionization cross sec-
tion for the o.th shell at energy transfer E, where the ion-
ization threshold is I, and o., is the cross section for ex-

1050-2947/95/52{2)/1178(8)/$06. 00 1178 Qc1995 The American Physical Society



TIME DEPENDENCE GF THE SUBEXCITATION ELECTRON. . . 1179

citation of the discrete state s with excitation energy E, .
The total ionization cross section from the ath shell is

{&+I ~}/2 do. ; T, E
a

(4)

and the total inelastic cross section is given in terms of
o.;;and the excitation cross sections o.„by

o.„,(T)=ger; (T)+g o, (T) .
BZS

at

aS(T)Z,=n +nR(T, t) .
c)T (10)

A, =2m, /M. In the case of an argon medium gas, M =40
and A. =1.4X10 . Hence, the energy step A, T is small
enough so that the cumulative spectrum Z, for subexcita-
tion electrons can be obtained by solving the time-
dependent continuous slowing-down approximation
(CSDA). In this limit, the continuity equation [19,20] for
electron degradation is

Here the sums are taken over s discrete states and cx sub-
shells. The partial integro-differential, Eq. (3), is an ap-
proximation to the Boltzmann equation known as the
cold-gas approximation (CGA) [15,16]. This approxima-
tion describes the moderation of electrons in the absence
of internal and external fields with energies much above
the thermal background.

Certain quantities result from an integration over time.
These quantities include the cumulative degradation spec-
trum Z ( T, t), defined by

Z(T, t)= f z(T, A, )dA. .
0

Such quantities are important concepts in radiation phys-
ics and chemistry because the time-dependent yield N(t)
for a product induced by electron collisions in a gas of
density Nk and a cross section o.

k is given by

T2
N(t)=Ni, f ot, (T)Z(T, t)dT .

T]

Integrating Eq. (3) over time shows that Z is the solution
of an equation similar to Eq. (1) but with u ( T, t) replaced
by

U(T, t) = f u (T, A)dA, .

From Eq. (1) it is useful to isolate the quantity
r =K&-z —o „,z-(Auger terms). In an operation analogous
to Eqs. (6)—(8), a function R can be defined by

R(T, t)= f r(T, A, )dA, .

The quantity nR (T, oo ) has been discussed in consider-
able detail and is known as the entry spectrum [17,18]. Its
time-dependent generalization nR (T, t) is essential for
understanding the temporal behavior of subexcitation
electron yields.

In Eq. (10), the stopping cross section S is given in terms
of the momentum transfer cross section o. by

S(T)=Ao (T)T .

tt=[S(T)] ' f R(A, , oo )dA, +S(T„)Z(T„,~ )

(12)

where Z ( T„,~ ) is the steady-state solution of Eq. (3) for
Z at the lower bound of the first degradation stage.

It is useful to define a CSD time by

7= dA
(13a)

T nvi S(A, )

and the inverse of Eq. (13a) by

T=g(~) . (13b)

Equation (13a) gives the time r(T) required for an elec-
tron to slow down from T„ to T in a medium gas of den-
sity n with a stopping cross section S(T). We may then
use Eqs. (13a) and (13b) to transform from T to r in Eq.
(10), yielding an equation for the cumulative spectrum
z. :

asz, Bsz,
+nurS(g(r))R(g(~), t} .

Bt
(10')

The solution of Eqs. (10) and (10') can be written as the
sum of the homogeneous solution, Z,I„and a particular
solut1on& Zsp & as

Z, (T, t)=Z,h(T, t)+Z, (T, t), (14a)

At the steady-state limit (BZ, /Bt =0), R =R( T, oo },and
Eq. (10) can be integrated immediately to give

&,(T)=Z, (T, ~)

B. Subexcitation electron domain

The second stage of energy degradation, which was the
subject of a recent review [19],covers the range from the
first electronic threshold at T„=E,h to some arbitrary
lower limit TI. For the present analysis, TI should be
10—20 times the thermal energy, so that energy acquired
from the medium by the subexcitation electron can be ig-
nored (i.e., the CGA). If m, is the mass of the electron
and M is the mass of the background gas, the mean ener-
gy transfer per elastic collision [19] is A, T, where

S(T„)
Z(T„,t —r) for t ~ r

Z,„(T,t)= ' S(T)
0 for t(~.

E.

(14b)

Equation (14b) follows from the solution of
By/Bt = —By/Bx. Here y =F(x —t), and an anticipated
boundary requirement is that Z, (T„,t) =Z( T„,t), which
is the solution of Eq. (1) at the lower bound of the first de-
gradation stage. The analogous steady-state quantity in
the case of Eq. (12) is the second term in the brackets.
The particular solution Z,z of Eq. (10') is then given by
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Z,„(T,t)=[S(T)] 'n f u (, , + )S(g(r—t+y))R(g(r t—+y), y)dy

=[S(T)] 'n f v
( )S(g(y))R(g(y), y r—+t)dy for t ~r,

Z, (T, t)=[S(T)] 'n f u (, , + )S(g(r t+—y))R(g(r —t+y), y)dy

=[S(T)] 'n f u
( )S(g(y))R(g(y), t —r+y)dy for t &r .

0

(14c)

(14d)

Examination of Eqs. (14c) and (14d) shows that Z, (T„,t)=0. As required, the interface condition at T=T„ is then
satisfied by Z,z(T„,t)=Z(T„,t) In .addition, because we will show below that Z(T„,~ ) is never more than a few per-
cent of Z, (T, ~ ), properties of Z, will dominate the behavior of Z, . A characteristic property of the particular solu-
tion is readily discerned if we consider the slope of SZ in the SZ-r plane Taking partial derivatives in Eqs. (14c) and
(14d) gives the slope in the two regions as

n f u
( ))S(g(A))BR(g(A), A,

—r+t)IBrdk+nv (,)S(g(r))R(g(r), t) for t &r,B(SZ), o

Br n f vs(&)S(g(A, ))M(g(A, ), A,
—r+t)IBrdk+nvs(, )S(g(r))R(g(r), t) for t ~r .

(15a)

(15b)

These forms show that SZ is continuous at t =~. In both
cases, the second term is positive and the same in each re-
gion. However, the erst term is negative because
M IBt &0, from Eq. (9). Moreover, because of the in-
creasing interval of integration in Eq. (15a), the contribu-
tion of the first term causes the slope to decrease continu-
ously in the range 0~r(t. In the case of Eq. (15b), for
v. & t, the interval of integration has a constant value t,
while the integration range changes. Hence, from ~=0,
B(SZ,~ )Br decreases until r=t, where the slope undergoes
an alteration in behavior occasioned by the change in the
integration limits, as shown in Eqs. (15a) and (15b).

To clarify the foregoing discussion before we cover a
practical case of subexcitation electron moderation, we
will examine an exactly integrable model that retains

physically realistic properties. We can achieve this in
Eqs. (10)—(14) by specifying a form for R independent of
energy but with a realistic time dependence, such as
nR =[(1—e ') (eV ')]. We have chosen v=1.6X10s, which is the average reciprocal rise time for nR,
computed from the time-dependent entry spectrum em-
ployed in the calculation that follows this example. Then
as in Refs. [7,19,20], assume that S= [bT' (cm eV)). It
follows from Eqs. (11) and (13) that T=g(r)=T„e
r=(na) 'ln(T„/T), with b =2.723 0868X10 ' cm
eV'~ and a/b =1.602 189 25 X 10 ' erg eV '. The
magnitude of b, which determines that of o. , has been
chosen so that results are in rough accordance with those
obtained in the numerical calculation that follows. Car-
rying out the integrations in Eqs. (14c) and (14d) yields

[aT[(na} '(e" ' —1)—(na+~) '(e" ' —e ')] eV '] for t ~r
SZ, (g(r), t)= '

[aT[(na) '(e" '—1)—( an+v) 'e "'(e'" + ' —1)] eV '] for t &r .
(16a)

(16b)

In this case, the steady-state degradation spectrum, Eq. (12), is obtained from Eq. (16b) evaluated at t = oo;
Y'=[T'~ (T„/T 1)/nb eV '].—The Z,~ surface computed from Eqs. (16a) and (16b), displayed in Fig. 1, reveals a
ridge in the SZ(g(r), t) surface at t =r. As Fig. 1 shows, the ridge is equivalent to a maximum in the SZ-r plane for
every t. Note that the slope in the SZ-~ plane for z & t,

B(SZ, )

87
=[—na T[(na) '(e" ' —1)—( +na~) '(e" ' —e ')] eV '] for t ~r,

is always negative, while the initial slope

a(SZ„)
=v (,)S(g(r))R(g(r), t)

07

=[aT(1—e ') eV ')] for r near 0

is positive. Hence, at each time t, SZ attains a maximum
in the SZ-~ plane at some position ~& t. In the case of
Eqs. (16a) and (16b), the maximum is located in the

neighborhood of ~=t. In fact, when the rise time of
nR, ~ ' can be ignored, the rnaxirnum is located at exact-
ly r=t This may b.e seen by letting v~ ~ in Eqs. (16a)
and (16b), so that nR —+[0(t) eV '], where 9(t) is the
step function at t =0. At the limit v~ ~, Eqs. (15a) and
(15b) become

[n 'T(e" ' 1} (eV ')] for t ~—r, (17a)
g ' [n T(e "+ —1) (eV ))] for t &r (17b)
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