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The electron-sodium system is a prototype of nonrelativistic electron scattering from a quasi-one-
electron atomic target and is tractable both experimentally and theoretically. Recently, this system has
been studied in a series of sophisticated measurements that together approach complete experiments for
elastic (3s — 3s) and inelastic (35 — 3p) scattering. We apply here the theory of orientation and alignment
(OA) in atomic collisions to this system using scattering matrices from coupled channel R-matrix calcu-
lations described in the first paper in this series [W. K. Trail ez al., Phys. Rev. A 49, 3620 (1994)]. To fa-
cilitate the extension of OA theory to other transitions and systems and to clarify its relationship to
canonical scattering theory, we present a reformulation in terms of the state spaces identified by a partic-
ular scattering event. Following the application of this formulation to paradigmatic OA experiments, we
compare our results to those from existing measurements and other theoretical calculations. To contex-
tualize these experiments and aid in identifying promising regions for future measurements, we also
present a comprehensive three-dimensional overview of the calculated differential OA parameters for en-

ergies from threshold to 8.6 eV.

PACS number(s): 34.80.Bm, 34.80.Dp, 34.80.Nz

I. INTRODUCTION

This is the second of a trilogy of papers, the cumulative
goal of which is to provide a comprehensive look at the
dynamics of low-energy electron scattering from a proto-
typical light alkali-metal target, the sodium atom. In the
first paper [1] we described the theory we use to solve the
continuum Schrodinger equation—the close-coupling R-
matrix method—and discussed the approximations in-
herent in its treatment of the continuum. We further
presented integrated and differential elastic and inelastic
cross sections for scattering from the 3 2S ground state at
energies from threshold to 8.6 eV. In addition to making
detailed comparisons to available results from experi-
ments and other theoretical studies, we examined results
throughout this entire energy range, within which several
inelastic channels become open, in order to identify
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trends and structures that distinguish and characterize
this system.

The cross sections considered in Ref. [1] do not fully
describe the physics of e-Na collisions. Until the past
two decades, most scattering experiments measured
“conventional” differential (DCSs) and/or integrated
cross sections (ICSs) that implicitly involve averages over
initial and sums over final spin and orbital magnetic sub-
states. These necessary averages obscure much of the
dynamical information contained in the scattering ampli-
tudes. More recently, however, experiments [2—17] have
become feasible that use a variety of techniques to
prepare the target atoms in an initial nonequilibrium dis-
tribution of magnetic and/or spin substates or to detect
the magnetic and/or spin substates of the results of a
scattering event. Such experiments have dramatically in-
creased our understanding of atomic collisions and pro-
vide data that test theories at a more fundamental level
than was heretofore possible [ 18—-32].

In the present paper, therefore, we extend this inquiry
to a class of experiments that uses initial-state prepara-
tion and/or final-state analysis to look more deeply into
the physics of low-energy e-Na scattering. Rather than
DCS’s, these experiments measure less familiar quantities
such as exchange asymmetries and triplet-singlet phase
angles; the importance of these ‘“‘orientation and align-
ment (OA) parameters” rests in their often subtle physi-
cal interpretation and in their relationship to the scatter-
ing amplitudes for the transitions in question—matters
we shall address in Sec. II. As in Ref. [1], we focus here
on scattering from the ground state, considering the two
transitions for which data are available: elastic scattering
and the dipole transition 3 2§ — 32P. In the final paper of
this series we shall extend this formalism and attendant
calculations to other transitions, including scattering
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from excited initial states.

Historically, the study of orientation and alignment pa-
rameters received a major impetus in 1969 and 1970 from
a series of papers in which Bederson [33-35] explicated
strategies for measuring sufficient independent quantities
to fully describe the complex scattering amplitudes for
elastic and inelastic electron-—-alkali-metal scattering. As
the amplitudes themselves resist direct access, great care
and ingenuity is required to identify observables that are
amenable to practical experiment and physical interpreta-
tion. Recent progress on both experimental and theoreti-
cal fronts towards realizing such ‘“complete” scattering
experiments has been swift and, for elastic scattering at
least, decisive—as adumbrated in several recent reviews
and commentaries. ‘

The present study builds on this earlier work in two
ways. First, we present in Sec. II a variant of the now-
standard density-matrix theory of orientation and align-
ment in electron-atom collisions. This formulation, sum-
marized in Sec. I A, is based on operators in the state
spaces of a particular scattering event. We have found
that it admits very straightforward, algebraically simple
analysis of experiments to measure OA parameters (see
Sec. III), highlights the relationship of these parameters
to the more-familiar amplitudes that appear in the
scattering boundary conditions, and, most importantly, is
easily generalizable to other transitions (e.g., involving
excited initial states) and systems. Second, we present a
comprehensive set of high-precision OA parameters for
the elastic and lowest-lying dipole transitions and in Sec.
V compare those recently calculated values to results
from experiments and the other extant theoretical study
where available. In particular, we compare to results
from coupled-channel optical calculations by Bray and
McCarthy [38,39], which were performed using a com-
pletely different formalism based on solving the momen-
tum space Lippmann-Schwinger equation for the 7 ma-
trix that, unlike the present method, includes continuum
target states. The most rigorous such theory for the cal-
culation of scattering amplitudes, the convergent close-
coupling method of Bray [40,41], allows for systematic
inclusion of the continuum by means of approximate
square-integrable states, as detailed by Bray and Stebo-
vics [42]. Unfortunately, data from such calculations are
available for comparison only at a few energies. So we
precede these comparisons by a comprehensive overview
of trends and features in the elastic and the inelastic OA
parameters for scattering from the ground state, exploit-
ing the ability of the R-matrix method to efficiently gen-
erate scattering quantities at a large number of energies
to survey in detail the entire energy range from threshold
to 8.6 eV. As we showed in Ref. [1], DCSs and ICSs in
this energy range are marked by a rich variety of struc-
tures; in Sec. IV of the present paper we show the effect
of these structures on OA parameters and, through them,
on features of the dynamics not evident in conventional
cross sections. This overview both provides a context for
the comparisons to experiment in Sec. V (most of which
are limited to a single energy at which the results are
somewhat anomalous) and suggest trends in the OA pa-
rameters that we hope will stimulate future measure-

ments.

The most widely used previous calculation of e-Na
scattering amplitudes was published in 1972 by Moores
and Norcross [43]. As detailed in Ref. [1], the present
calculations reach beyond that earlier work in two ways.
The most significant of these is our improved representa-
tion of the target and of the angular-momentum proper-
ties of the projectile. Increases in computational power
since the work of Moores and Norcross have made possi-
ble convergence to high precision of all cross sections and
OA parameters in both of the expansions that define the
close-coupling theory of electron-atom scattering, i.e., in
the set of bound states of the target and in the set of
angular-momentum eigenstates (partial waves) of the
scattering electron. Since we dealt with convergence is-
sues pertaining to DCSs and ICSs in Ref. [1], we address
here only convergence matters relating to the calculation
of OA parameters, which often exhibit greater sensitivity
to convergence than conventional cross sections. The
second difference between the present formulation and
that of Moores and Norcross—the representation of
bound-free exchange and polarization effects in the e-Na
interaction potential—has been discussed in Sec. III of
Ref. [1]. Unless otherwise stated, we use atomic units for
length (ay) and cross sections (a3), where the first Bohr
radius is @, =5.29177 X 10" ' m.

II. THEORY: COLLISIONS INVOLVING
SPIN-POLARIZED ELECTRONS
AND STATE-SELECTED ATOMS

During the past 15 years, an extensive literature on
scattering of spin-polarized electrons by atoms has
developed. Several authors have reviewed recent ad-
vances in this field, including Kessler [24,25], Slevin [20],
Blum and Kleinpoppen [19], Hanne [21,23], and contri-
butors to Ref. [18]. In a recent review [27] Andersen,
Gallagher, and Hertel have attempted to standardize no-
tation for describing alignment and orientation in direct
excitation by electron impact; Bartschat has made further
contributions to this effort [32].

Our primary goals in this section are, first, to establish
language and notation we shall use in discussing results
for electron scattering from ground-state Na in Secs. IV
and V and from excited-state Na in the sequel to the
present paper. Crucial to interpreting the range of
scattering quantities we shall present, which include but
are not limited to energi¢s at which experiments have
been performed, is the interplay between the system wave
function, the density matrices that represent the initial
and final states, and the orientation and alignment pa-
rameters that afford physical insight into the dynamics.
Hence this relationship will receive special attention in
this section.

Sodium is an almost ideal quasi-one-electron atom. Its
neonlike 1522s22p® core is very tightly bound, so its
valence electron is very nearly hydrogenic. Further, its
nuclear charge (Z=11) is small enough that the separa-
tion between adjacent Na atomic terms is much larger
than the separation between fine and hyperfine levels;
hence for scattering events of interest here, spin-orbit in-
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teractions are negligible. Moreover, these e-Na collisions
occur much more rapidly (typical collision times are
=~10"1 sec) than the natural lifetimes of the states in-
volved or the fine or hyperfine precession times (typical
spin precession times are =~10"°-107'2 sec), so we can
invoke an argument derived from the Percival-Seaton hy-
pothesis [28] to the effect that coupling of the spins of the
scattering and valence electrons to form a total spin takes
precedence over coupling of the individual spins to the
corresponding orbital angular momenta [29-31]. We
can further neglect continuum spin-orbit interactions, so
the aforementioned total spin is a constant of the col-
lision. Finally, for low-energy collisions we can neglect
nuclear spin and excitations of the Ne-like core of the
sodium atom and consider the target as an idealized one-
electron system with total spin of 1. In this sense the e-
Na interaction is a prototypical nonrelativistic two-
electron interaction.

Within these approximations we can describe the
bound states of the atom using the LS representation,
where we denote these states using quantum numbers as-
sociated with the (total) target orbital and spin angular
momenta L and S and their projections M; and Mg on
an (arbitrary) axis of quantization. Since the core does
not participate in the excitations we shall consider, the
target electronic configuration I is specified by the prin-
cipal quantum number n of the valence electron. As in
Ref. [1], here we shall denote collectively the quantum
numbers required to specify such a state by
a=(I',L,S,M; ,Mg) and use capital script letters for
quantum numbers of the electron-atom system.

In many of the experiments to be discussed in Sec. III,
the initial and final spin projections of the projectile
and/or the target atoms are detected. In this case we can
identify three types of experiments [33-35]

e(T)+A(1)—e(1)+ 4(1), (1a)
e(T)+4(l)—e(N)+4(1), (1b)
e(1)+A4(l)—e(l)+4(1). (1c)

Other possibilities, such as

e(M+A4(M)—e(l)+40), (1d)

are forbidden because in the absence of spin-orbit cou-

pling, the total spin of the system and its projection are
conserved. Note that the first experiment Eq. (la) iso-
lates scattering in the triplet spin channel. Similarly, the
second experiment Eq. (1b) isolates direct scattering and
the third Eq. (1c) exchange scattering. Thus, by specify-
ing the spin projections of the projectile and target one
can study scattering in these channels dominated by dis-
tinct physical effects arising from the quantum-
mechanical antisymmetrization requirement.

A. Scattering amplitudes
and the description of scattering events

To analyze any of these experiments theoretically we
require the scattering amplitude that connects asymptotic
free states before and after the collision. These states de-

pend on the wave vector of the scattering electron k, its
spin projection mg, and the target quantum numbers a.
The scattering amplitude is defined by the asymptotic
behavior of the e-Na wave function, which depends on
the space and spin coordinates of the bound electrons 7,
and of the projectile (r,o). Using ¢,(7,) for the target
wave functions and zero subscripts to denote the initial
channel, we can write these boundary conditions as
Vi, a{Te50) = b (70 ()"

+2f(kms,a<—k0ms(),a0)

e ikr

’ .

X $ol 7 o, () @
The scattering amplitudes f (kms,a<—komsO,ao), which
contain all physically accessible information about all en-
ergetically allowed scattering events, depend in general
on the electron scattering angles 6 and ¢. For collisions
considered in this paper this amplitude depends only on
the angle between the initial and the final projectile mo-
menta k, and k, i.e., the polar angle 8 of a coordinate sys-
tem whose z axis is aligned with k.

Since in our formulation the total spin of the e-Na sys-
tem is-a constant of the motion, it makes sense to switch
to a description in which the spins of the scattering and
valence electrons have been coupled (via the Clebsch-
Gordan series) to form a total spin with quantum num-
bers & and M. The asymptotic free states are then sim-
ply direct products of spatial and coupled-spin states

Ik,nLML;e?,./’/léa)
=|k,n,L,M; )
® 3 CUSSmMMg)m,)®|SMy) , (3)

ms’MS

where for Na, of course, the atomic spin is S =4 and the
coupled-spin asymptotic free states are zero unless

mg+Mg=Mg . 4)

In the coupled-spin description we label scattering chan-
nels by the spin multiplicity 28+ 1 for £=0 (singlet) and
1 (triplet), and scattering occurs independently in chan-
nels of different multiplicity. [Note, however, that the
spin projection of the scattering electron can change by
exchange as in process (1c).] The absence of a preferred
direction in space means that the scattering amplitudes
do not depend on M g, so we can write

f(k,nLSML;&My—ko,noLOSOMLO;&./M&)
=2&+1fnLSMLFnOLOSOMLO(9) )

[When the particular transition nyLy—>nL is clear from
the context, we shall retain as subscripts only the magnet-
ic quantum numbers M Lo and M;, writing (5) as

2eS°+1fML,MLO(0).]

To determine these amplitudes for the transition of in-
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terest we solve the continuum e-Na Schrodinger equation
using a formalism we have detailed in Ref. [1]. In these
calculations, we take maximum advantage of the con-
stants of the motion of the system by working in a repre-
sentation different from that of Eq. (3), one in which the
orbital angular momenta of the projectile and scattering
electron are further coupled to form the total system or-
bital angular momentum, with quantum number .£. In
the resulting formalism, the constants of the collision .£,
&, and the parity II identify independent scattering func-
tions and transition matrices. Section III of Ref. [1] re-
lates these matrices, the fundamental output of the calcu-
lations, to the scattering amplitudes that are the subject
of the present discussion.

The number of independent amplitudes required to ful-
ly characterize a collision depends on the orbital magnet-
ic quantum numbers of the Na valence electron in the ini-
tial and the final states. Thus an nys — ns transition such
as the elastic 3s—3s process to be considered in Sec. V
allows only M; =M; =0 and is fully described by two
complex scatter{’ng amplitudes £ o(6) and *f,(6). Al-
though the real and the imaginary parts of these ampli-
tudes define four independent quantities, only three are
measurable, because these amplitudes share a global
phase factor. (By contrast, to describe an nys —np tran-
sition, with ML0=O and M;=—1,0,+1 requires six
complex amplitudes.) In general, for a transition
noLo—nL we require two independent sets of
amplitudes—in the coupled-spin representation (5),
singlet and triplet amplitudes. Each set contains
(2L,+1)(2L +1) individual amplitudes (5) identified by
M, and M;. Measurement of all the singlet and the

triplet amplitudes would constitute a
noL,— nL scattering experiment.

The number of independent amplitudes is reduced be-
cause reflection symmetry in the scattering plane (defined
by ki, and k) is preserved, since this reflection operator
commutes with the system Hamiltonian. This symmetry,
for example, shrinks the six independent nys —np ampli-
tudes to four. To demonstrate this we must choose a
coordinate system. Most scattering calculations are car-
ried out in the collision frame shown in Fig. 1(a), which is
defined by 2 ‘=k, and § “=k,Xk. In this frame (2 % ©)
defines the scattering plane; reflection symmetry in the
scattering plane requires that n,s —np scattering ampli-
tudes for M; #0, calculated in the collision frame, be re-
lated by

WHIfE o=—T1f 10 (collision frame) . 6

complete

The theoretical analysis of experiments can also be for-
mulated in the natural frame shown in Fig. 1(b)
[2-3,32], which results in structurally simpler singlet
and triplet transition matrices than does the collision-
frame formulation [6]. The axes of the natural frame,
which are trivially related to those of the collision frame
by the Wj\gner rotation matrices [44,45], are X "=k, and
2 "=k,Xk, with $ " to complete a right-handed coordi-
nate system. Reflection in the scattering plane leaves un-
changed a state with M; = =£1 but changes the sign of one
with M; =0. So for an s—p transition, reflection sym-
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FIG. 1. (a) Schematic e-Na collision in the “collision” frame.
An electron with wave vector k, is incident along the £ ¢ axis.
The outgoing direction and energy are given by k. The wave
vectors k, and k define the scattering plane (the xz plane) in this
frame. (b) Schematic of inelastic and superelastic scattering in
the “natural” frame. In this frame, the electron is incident
along the X " direction and undergoes an inelastic collision. The
outgoing direction determines the xy plane.

metry implies that
28+1 f0,0(6)=0 (natural frame) . D

Note that in the natural frame, the scattering angle does
not coincide with the polar angle of spherical coordi-
nates. We shall continue to use 8 to denote the scattering
angle.

B. Description of experiments using density operators

Here and in the final paper in this series, we shall be
describing theoretically a class of state-selected crossed-
beam experiments in which the intensity and/or polariza-
tion of the scattered electrons is measured as a function
of incident energy and scattering angle. We wish to allow
for several combinations of state preparation and
analysis: e.g., the use of a spin-polarized electron beam,
the initial preparation of the target state in a nonequili-
brium distribution of magnetic sublevels (e.g., by exciting
the atom beam with polarized laser light), and the spin
analysis of the final state of the system (by measuring the
polarization of the scattered electrons or the polarization
of the fluorescence photon emitted by the atom, perhaps
in coincidence with the scattered electron). As several
theorists have elucidated, such descriptions either require
or are more easily formulated using density matrices
[46,47]; for example, Hertel, Kelley, and McClelland [6]
have detailed the implementation of such a description
for superelastic 3p — 3s transitions in e-Na collisions. We
present here a variant of this theory based on operators in
the eleciron-atom state spaces identified by the entrance
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and exit channels of the scattering event
ko,n0L0—>k,nL . (8)

This formulation facilitates application to a variety of ex-
periments, relating the OA parameters to familiar
scattering amplitudes in Egs. (2) and (5) and/or to mea-
sured intensities (through operational definitions), and,
most importantly, generalization to arbitrary transitions
(e.g., from excited initial states) and to other atomic sys-
tems where one or more of the approximations appropri-
ate to the e-Na problem may fail. To illustrate the practi-
cal application of this formalism, we implement it for
each of the classes of experiments whose results we exam-
ine in Sec. V. '

1. State spaces and density and transition operators

The asymptotic states of the transition Eq. (8) are
represented by either kets (if they are pure states) or den-
sity operators (if mixed states) in two finite-dimensional

state spaces: 6'¢4) for the entrance channel and &¢* for
0™~0

the exit channel. Since the electron and the atom are un-
correlated asymptotically, it is useful to decompose the
state spaces for a particular entrance and exit channel as

EGN =698 64 . ©

Since the initial and the final wave vectors are specified
by the scattering event (8), these state spaces are finite di-
mensional. Each is spanned by bases in either the
uncoupled-spin (US) or the coupled-spin (CS) representa-
tions. Thus, for 694, whose dimensionality is 4(2L +1),
we can use either the US basis {|m,,nLM; M)} or the
CS basis {|[nLM,; ;8§Mg)} as convenient.

The density operator of the system for either the initial
or the final state is constructed from density operators for
the electron and atom, either of which may reflect state
preparation or analysis. For the scattering electron with
wave vector k in an arbitrary spin state, the density
operator is

p=3 p' Ikm)(km|. (10)
m_,m’ s

For the atom in state nL the (unnormalized) density
operator is [48]

ANA) (A4)
PaL — 2 2 pMLMS’Mi’Mé
M. Mg M; , Mg

X |nLSM; Mg ){nLSM; M| .
(11)

28+ lfnLSML<_noLos0ML0(9)= ( nLML;&-/”Lﬂ g(k, nL<kg,noL, )]"OLOML0;¢9MJ>

=—Qm)’m (nLMp ;M| TIngLoMy ;8Mg) .

(More detailed examples of construction of the density
matrix for the target appear in Ref. [6].) In accordance
with Eq. (9), the (asymptotic) system density operator for
a state with projectile wave vector k and target state nL
is just the direct product of 5® and p“,,f). We can con-
struct the corresponding density matrix in either the
coupled- or the uncoupled-spin representation; the diago-
nal elements of the resulting matrix are the relative popu-
lations in the various magnetic sublevels of the nL atomic
level, while the off-diagonal elements characterize the
coherence of those sublevels.

In the absence of continuum spin-orbit effects we can
decompose the initial and the final spaces into eigen-
spaces associated with an eigenvalue of the total spin;
e.g., for electron scattering from an alkali metal,

(ed) —1 A 3 A
éaneL - 6)5121, )@ 6(neL ) ’ (12)

where the dimensionality of each of the constituent eigen-
spaces is (28+1)(2L +1). By writing system kets or
density operators in terms of elements of these two spin
eigensubspaces we can exploit the fact that the transition

(8), a mapping between & f,eo‘z)o and &¢, preserves the to-

tal spin quantum number & and leaves unchanged the
distribution of spin eigenstates |&,.#ly) in the initial
state. In analyzing experiments, however, one eventually
must return to the uncoupled spin representation, since
in general preparation of initial and/or analysis of final
states must be described in terms of uncoupled spins, i.e.,
the spins of the projectile and atom separately.

The scattering operator F(k,nL<«Kkgy,nyL,) maps kets

and density operators from 657 to 67" as

k,nL Y =%(k,nL<kp,noLo)kgnoLo) (13a)

Por =Fk,nL<KkgnoL, Wny 1, F (kg noLo<—k,nL)' .

(13b)

(We have reversed the arguments of F' as a reminder
that the scattering operator takes kets from the final to
the initial state space.) The matrix elements of this
operator with respect to US or CS eigenkets in 694’ and
(S”Efo‘{)o are just the scattering amplitudes in the corre-

sponding representations, which in turn are proportional
to the elements of the T matrix we calculate theoretically
[49]:

(14a)

(14b)
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2. Density operators for experiments

To analyze experiments involving preparation of the
initial state and/or analysis of the final state we require
three density operators: for the initial state, for the state
that results from mapping (13), and for detection or
analysis of the final state. The simplest case is one in
which there is no initial-state preparation, e.g., scattering
of unpolarized electrons from atoms in a statistical distri-
bution of magnetic and spin substates. Here the prepara-
tion density operator is proportional to the projection

operator onto & (,,‘;’i)o, the constant of proportionality be-

ing the inverse of the dimensionality of that space, as re-
quired to normalize this operator to unit trace:

A(prep) — 1

PnyL, > > |’10L0ML0;°5°-/’4&)

Lo+ i i,

X (noLoMLO;of./l/léJ

1 ~
=— ] (15)
4(2L,+1) noto
Note that we can also construct the restriction of this

operator to the spin eigenspace 211§ (,,‘;“,‘_)0, which we shall

need in the analysis of experiments in Sec. V, by summing
only over M L, and M and normalizing the result by the
inverse of the that
(28+1)2Ly+1).

The density operator for the final state p,, is con-
structed via Eq. (13b). Since f7(k nL<«kg,noL,) does not
preserve normalization, we must explicitly normalize this
density operator by dividing by its trace, if necessary. In
any case, since the total spin and its projection on the
axis of quantization are constants of the motion, the col-

|

dimensionality  of space

Ik, ko, 0)=4(2L +1 )%Tr[ﬁ‘j‘i‘a”ﬁu

=4(2L +1)——Tr[p 5k nL <« kg noLg )ﬁnpfgp’
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lision density matrix in the CS representation is diagonal
in & and M.

Finally, the analysis density operator describes
mathematically whatever monitoring of the final-state the
experiment entails in addition to monitoring the energy
loss and scattering angle as required for a conventional
DCS measurement. For example, one might use a circu-
larly polarized “dump” laser to select a particular final
magnetic sublevel of the target. Or if, as is often the case,
the detector is insufficiently sensitive to respond to a sin-
gle pure state, then this operator represents the efficiency,
and hence the response, of the measuring device (see Ap-
pendix D of Ref. [46]). The simplest case, of course, is an
experiment with no additional analysis of the final state;
in this case the (normalized) analysis density operator is
just

Alanal) _ 1 T
P = GL ) 16

3. The detected scattering intensity

In most experiments of concern here, the essential
measured quantity is the detected scattering intensity
InoLO_,nL(k,ko,O). This quantity depends on the in-

cident electron energy, the transition being studied, and
the scattering angle (as well as various experimental fac-
tors such as incident beam densities) and is proportional
to the squared modulus of the scattering amplitude. It is,
however, more general than the conventional spin-
averaged DCS, which emerges as a special case if no state
preparation or analysis is performed. With the prepara-
tion and analysis density operators normalized to unit
trace, the detected scattering intensity is [50]

F(kg,noLo<—k,nL)] . (17

To relate this intensity to the conventional spin-averaged DCS for a measurement that does not involve state prepara-
tion or analysis we evaluate the trace in the coupled spin representations, obtaining

—————1 1 2 3 2
+ 18
Tngto—nt (= 0L 1) ke Mz %[I oty ey (O3 fug g, (O] (18)
1 1 ’
- |21
Tt |4 Troto—nt O 1] Tngroons (O) (1)
|

The spin-channel DCSs in (19) are the intensities (17) for ~ 28+1 1 k )2

each spin channel, which we can obtain by inserting the
restrictions of the analysis and preparation density opera-
tors to the appropriate spin eigenspaces:

= 28+1 2]
anoLo—mL(e) 2L()+1 kO %%‘ fML’MLO(
0

(20)
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The general form Eq. (17) clearly separates the details of

the experiment, which are contained in g, prep and pianan),

from the collision dynamics, which are descnbed by
F(k,nL<ky,noLy).

4. Special cases: Experiments involving
either initial-state preparation or final-state analysis

In most experimental studies of this problem to date,
either the initial state is not prepared or the final state is
not analyzed. In the absence of state preparation the
initial-state density operator Eq. (15) represents the
mixed state defined by the appropriate equilibrium sta-

tistical distribution of eigenstates in & ﬁfo‘?o In the case of

these “coincidence experiments” we can usefully define a
collision operator

6nL = g(k,nL<—k0, noLQ )g(ko, n0L0<—k, nL )t 2D

and write the detected intensity (17) as

2L+1
2Ly +1 ko

The second special case allows for initial-state prepara-
tion but not final-state analysis, as in the experiments to
be discussed in Sec. V. Here the analysis density matrix
is given by Eq. (16). If we cyclically permute the remain-
ing operators in the detected scattering intensity we can
define a collision operator analogous to that of Eq. (21),

8 ny1, = HkonoLok,nL)'F(k,nLko,noLo) ,  (23)

InOLO—mL(k’kO’e) [A(anal ] . (22)

and write the detected scattering intensity for these
“pumped-target” experiments as

Tagrg—ni (ks ko’a)*LTr[""”"’ 8uyr,) - 24

We shall analyze experiments of each type in Sec. III and
compare to data from them in Sec. V.

C. Relationship between inelastic
and superelastic scattering experiments

Direct measurement of DCSs or orientation and align-
ment parameters (e.g., by measuring the scattered elec-
tron in coincidence with a fluorescence photon from the
excited atom) is not the only route to information about
inelastic scattering from the ground state. As argued by
MacGillivray and Standage [48,50] and first realized in
the experiments of Hermann, Hertel, and Kelley [4,5]
and of McClelland, Kelley, and Celotta [8,9], the princi-
ple of microreversability [51] relates the scattering ampli-
tudes for direct excitation and the time-reversed experi-
ment, superelastic deexcitation. On the one hand, one
can perform a direct measurement of (unpolarized)
electron-induced 3s-—3p transitions in, say, the coin-
cidence experiment

e(ky)+Na(32S, ,)—e(k,m;)+Na(3?P;,M;) , (25)

with detection of the spin of the outgoing electron and/or
the final state of the atom (e.g., by analyzing the fluores-
cence photon emitted in spontaneous emission from the
32P, state). Alternatively, one can access precisely the
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same information in the time-reversed superelastic exper-
iment

e(_k,ms)+Na(3ZPJ,MJ)——)e(—k0)+Na(32‘S’1/z) ’

(26)
where the incident electron beam is spin polarized and
the incident atomic beam is prepared in an excited state
with a well-defined nonequilibrium distribution among its
magnetic sublevels. If the spins of the superelastically
scattered electrons are detected, then the corresponding
inelastic experiment Eq. (25) would involve spin-
polarized incoming electrons.

Time-reversal invariance relates the scattering informa-
tion from these inelastic and superelastic scattering
events. To clarify this relationship, McClelland, Kelley,
and Celotta define the natural frame, with respect to
which spatial quantization is declared, using the initial-
state wave vectors of the superelastic collision in Eq. (26)
rather than those of the inelastic collision in Eq. (25) as in
Fig. 1(b). If we temporarily denote the incoming and the
outgoing electron wave- vectors in the inelastic process
(25) by k{7 and k* P, then as shown in (26) and illus-
trated in Fig. 1(b), we can write the incoming and the
outgoing wave vectors for the superelastic process as

kg—)S:__k S—p s

o 27)
kP—s=—Kki~P

Then we can rewrite the definition of the z and x axes of
the natural frame in terms of wave vectors appropriate to
the superelastic event as

2"=k5 P Xk P=— (kB XkP™Y),

28)
gnzké—q):_kp—ns . (

In this frame, the inelastic and the superelastic scattering
amplitudes are complex conjugates of one another. So
the density operators for the final states produced in the
two processes are identical. Preparation of the initial
state for the superelastic experiment is represented by a
preparation density operator identical to 53" for the
time-reversed inelastic experiment.

D. Orientation and alignment parameters

Actually performing a complete experiment [33-37],
i.e., determining all accessible information in the ampli-
tudes for a particular scattering event, poses a pragmatic
challenge to the experimentalist: which independent pa-
rameters are most easily measured? As first discussed by
Bederson [33-37], these parameters should be amenable
to easy physical interpretation and should characterize
the dynamics irrespective of the details of state prepara-
tion or analysis. For s<»>s and s<»>p transitions in e-Na
scattering, this question has been addressed by Andersen
and Bartschat [52]. In this section we shall review the
parameter set they proposed as implemented in measure-
ments by McClelland and co-workers [8—15] (see Sec. V)
in light of the above formalism and relate them to the CS
scattering amplitudes.
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1. The triplet-singlet ratio and the exchange asymmetry

Two parameters are common to both the s—s and
s —p transitions: the spin-averaged DCS and the ratio of
DCSs for scattering in the triplet and the singlet spin
channels. The first of these is the most familiar: the ab-
solute spin-averaged DCS &, 1 _.,.(0) of Eq. (19) de-

scribes scattering in the absence of initial-state prepara-
tion or final-state analysis (e.g., of unpolarized electrons
from atoms in a statistical distribution of magnetic sub-
levels). The triplet-to-singlet ratio, which quantifies the
relative strength of scattering into these two spin chan-
nels, is defined as

2 P, (007

r(9)— . (29)
2 I‘fML,ML 02

A parameter that is physically equivalent to the
triplet-to-singlet ratio and offers some experimental ad-
vantages is the exchange asymmetry (alsc known as the
spin asymmetry) A4 M")(G) for scattering into sublevel M,

of the final state [24 25]. Operationally, the exchange
asymmetry is defined in terms of detected intensities for
collisions of spin-polarized electrons from spin-polarized
atoms that leave the atoms in specific magnenc sublevels
M; of the nL final state. In particular, 4 ex’(9) is pro-

portional to the difference between the 1nten51ty I ara(0)

for scattering with parallel electron and atomic spins and
I f}‘L“(O) for antiparallel spins. This difference is normal-

ized by dividing by the sum of these intensities and, if the
polarization of the incident beams is not perfect, by the
initial degrees of polarization of the incident electrons
and/or atoms. If, as in the experiments of McClelland
and co-workers, the degree of polarization of the incident
electrons is P, and that of the atoms is P,, then the ap-
propriate operational definition is

1 antl(e) Iﬁ[a;a(e)
A‘m(e)z (30)
|P 4P| I37%(6)+1f™(6)

In experiments that do not specify the final magnetic sub-
level, the measured quantity is an averaged exchange
asymmetry, which is related to the triplet-singlet ratio by

1—r, 1 —»nL(e)
4 ((9)= 20 . 31)
1+3rn0L0—>nL(6) (

Experimentally, the exchange asymmetry is particularly
attractive because as a ratio of intensities it is insensitive
to absolute intensity calibrations. Its value is delimited
by —1 (pure triplet scattering) and +1 (pure singlet

scattering).

2. The triplet-singlet phase angle

The spin-averaged DCS and triplet-singlet ratio (or,
equivalently, the exchange asymmetry) contain informa-

tion about the magnitudes of the singlet and the triplet
amplitudes. The next parameter complements this with
information about their phases. For a transition from in-
itial state (noLoM ) to final state (LM ), the triplet-

singlet phase angle is defined in terms of the real and the
imaginary parts of the (nonzero) natural-frame ampli-
tudes as

AML,MLO(‘9)E?’J'g[3f1wL,1v1L0(9)]*afg[ 1fML,MLO(9)] .

(32)

For an s —s transition such as elastic scattering, there is
only one such angle, for M, =ML0 =0. A complete

description of a s —s transition, then, is contained in the
three real parameters

{ nosans(e) rn sans(9)7A0,0(9)} . (33)

3. Scattering to a non-s state:
The angular-momentum transfer

If the initial state is an s state and the final state is not
an s state (i.e., if L > 0), then we require more than three
independent real parameters to fully describe a scattering
event. In such collisions orbital angular momentum is
transferred from the projectile to the target [52] and fur-
ther information about scattering is contained in
L.’} —.n(0), the mean angular momentum transferred

to the atom normal to the scattering plane as a conse-
quence of the collision. This parameter is especially ap-
pealing because of its clear physical interpretation. In
the natural frame we can write the expectation value of
the projection of the valence electron’s orbital angular
momentum along an axis normal to the scattering plane
in terms of the density matrix of the final state as

Er(té)LoanL(e)E <Z\z )nL

— Tr[f‘\zﬁnL ]
Tr[p\nL ]

(34)

As the overbar implies, this ex ress1on yields an average
angular-momentum transfer L,, Ly—n L(6).

In each of these (2cS°+1)(2L+1) dimensional eigen-
spaces, we obtain for an arbitrary transition and experi-
ment the spin-channel angular-momentum transfer

UL (0
(28+1)

Tr[2e§°+lﬁn

X 3 M, {nLM;;SM|* 5, InLM ;8M) ,

My

(35)

which is the sum of the projections of the final-state or-
bital angular momentum weighted by the diagonal ele-
ments of the density matrix, the relative populations of
finding the final state in each magnetic sublevel. In the
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special case of experiments in which no initial-state
preparation is performed, we can write this expression in
terms of the spin-channel DCS (20) as

1 k

28+1 — K
L,, L —~n2 (6) 2L, +1 k,

28+1

1
an0L0—>nL(6)

XEM 2 |28+1fML,ML 9)'2

M, My
(36)

For example, for an s —p transition, with one unit of
angular momentum transferred to the target along 2",
the (natural-frame) amplitudes for M; ==1 are nonzero.
If the initial state is not prepared, then Eq. (36) reveals
the angular-momentum transfer to be proportional to the
difference between these amplitudes:

l2e§°+1f+x’0(6)|2_ |2¢9+1f71,0(0)|2

TS O)= S 0O+ 2 F_ 0(0)?
(37a)
kT
ko BFloy L (6)
|2"S°+1f+10(9 2= [25+1r_, (8)]2]
(37b)

In this case, then, the angular-momentum transfer in spin
channel 28+1 is proportional to the difference between
the diagonal density-matrix elements, i.e., the relative
probabilities for finding the atom in a final state in which
the projection of the orbital angular momentum of the
valence electron along 2 " is M. This contrasts striking-
ly with the DCS for spin channel &, Eq. (20), which is
proportional to the sum of these elements.

4. Singlet and triplet alignment angles

The other elements of the final-state density matrix—

the off-diagonal elements—contain information about

the final state of the valence electron, a state that is

“created” by electron scattering at angle 6. In terms of

the scattering améphtude, these elements have the form

2y (0)*> M (6) and depend on the
0

L’ L
phase relationships between amplitudes for different mag-
netic substates; we can use them to define additional OA
parameters, the alignment (or symmetry) angles. For an
s —p transition there is only one unique off-diagonal ele-
ment, and we can define the relative phase angle y be-
tween the amplitudes for M;=—1 and +1 in spin-
channel 28+ 1 in terms of the corresponding amplitudes
as

28+1f_1,0(0)* 2<-S°-G-1f-+1 o (6)

|2¢S°+1f+ (e)| |2e§°+1f 9)|e—21y (38)
where ¥ depends implicitly on the transition and on the
total spin &. Although y, like other OA parameters,
characterizes the final state of the valence electron, it is
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intrinsically a two-electron quantity, ‘“‘controlled” by the
probability amplitudes for electron scattering at angle 6.
The physical meaning of these angles becomes clear if
we relate them to the system wave function
Yy, ,,,SO,GO( 7.,T,0) of Eq. (2), more precisely, to the part of

this wave function that describes the dependence of the
scattered wave on the angular coordinates of the valence
electron 6,,4,. We shall consider a pure final atomic p
state, i.e., a coherent superposition of (natural-frame)
angular-momentum eigenstates |n1M, ) for
M;=-—1,0,+1 with coefficients given for electron
scattering angle 6 by the amplitudes 2517 M, ,0(0).

Since in the natural frame the electron cannot excite
the M; =0 sublevel, the angular dependence of the wave
function #,(r,) of the valence electron (with coordinates
r, in the natural frame) is comprised of the spherical har-
monics Y{!(6,,4,) and Y;'(6,,4,). (Recall that in the
natural frame the scattering angle 6 does not coincide
with the polar angle 8,.) We now reexpress the boundary
conditions (2) in the coupled—spin representation, where
the wave function in a particular spin channel is
2&+1‘I,k0 norLoMy, (1,,1,0), so as to introduce the spin-

channel amplltudes (5). From the scattered-wave term in
the resulting boundary conditions we can separate out a
factor ¥y , 1(6,,4,,6) that describes the dependence of
this wave function (in spin channel 2§+ 1) on the angular
variables of the scattered and valence electrons, viz.,

Yin,£(0,,6,,0)=3 ' fy

My

(0)Y,5(0,,4,) ,
0

(39)

where for the np state the amplitudes for M; =0 are zero.
The squared modulus of this function is proportional to
the probability for finding the valence electron anywhere
along a “ray” defined by the valence angles 6,,¢,; it
therefore reflects the “shape” of the excited state.

In the scattering plane, where 6, =/2, (39) depends
only on the (natural-frame) azimuthal angle ¢, of the
valence electron and, of course, on the projectile (scatter-
ing) angle 6:

¢k,n,L(9u :77/2»4’1;’9
3 172
= 28+1 —i¢,
87 ] [ f-1,0(0)e
+”“fﬂpww+%]. (40)

Using the definition (38) of the alignment angles, we can
write the (unnormalized) probability for simultaneous
detection of the scattering and valence electrons at this
angle as

[V, (6,=7/2,0,,0)|
=[2*1r_ (O +]¥ T (02
+212F1F (O)IPSTIf L (8)|cos[2(d, — )] . (41)

This probability attains its maximum for azimuthal angle
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FIG. 2. Angular variation of the charge distribution of a 3p
Na valence electron for various values of the orientation and
alignment parameters in the scattering plane of the natural
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¢,=7v. Therefore y can be interpreted as an ‘“‘alignment
angle” that relates the symmetry axis of the valence elec-
tron p-state charge cloud to the X " axis of the natural
frame.

For an s—p transition, 2L Y)(9) for M; ==+1 and
the alignment angles 'y and 3y characterize the shape
and orientation of the wave function of the 3p valence
electron in the scattering plane. Table I gives the values
of these real parameters for 3p valence-electron wave
functions whose angular probability densities are shown
in Fig. 2, i.e., for various values of the scattering ampli-
tudes f ML,0(9) that describe the admixture of orbital an-

gular momentum eigenstates |nLM; ) in the final state
[see Eq. (40)].

5. A complete s — p scattering experiment

As we have seen, to fully characterize the four complex
scattering amplitudes 251 f +1,0(0) of an s—p transition
we require seven independent parameters. The first two,
the absolute spin-averaged DCS (19) and the triplet-to-
singlet ratio (29), are physically analogous to those for an
s—s transition. The second two, **T!L{Y) (6) for

28+ 1=1, 3, quantify for each spin channel the difference

frame. The subfigures correspond to entries in Table L. between scattering into the M; = +1 and — 1 substates of

TABLE 1. Orientation and alignment parameters corresponding to the p wave functions in Fig. 2.
The first column associates each row of the table with an entry in the figure. The a M, are the weights of

the M; ==*1 eigensubstates in Eq. (39). The a4, are alternate expansion coefficients of the angular
eigenstates in Eq. (39). Unlike the coefficients f; My =£1,M, =0 which normalize the wave function so it
0

is proportional to the differential cross section, these coefficients normalize the wave function to 1. The
angular-momentum transfer L, and the alignment angle y are defined in Sec. II D and the linear polar-
ization P in Sec. ITI B.

Flg 2 a a_, Ll P'l“; Y
—1 1
- — 0 1 o°
a V2 V2
b —V3+i V3+1 o 1 30°
Ve V'8
¢ sl 1;” 0 1 45°
—1+V3i 1+V73i
_ ESLELALS 0 1 60°
4 e Vs
1 1
L LI 0 1 90°
) 2 V2 2V72
f -2 V'3 3 5 0’
—1+4i 1+i . 2v2 .
= = L Eam 45
g V3 V6 3 3
h Vi V3 4 =2 %0°
. — ‘/5 .
i V'3 Vs 3 3 0
—~ : 1+i V5 .
J Vg(—1+i) VL 2 = 45
— V5
k 3 Vg 2z ~3§— 90°
1 0 1 0 a

aThe M, = *1 eigenstates are circular in the xy plane of the natural frame, so y is undefined.
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the final p state.

The information obtained by measuring these four pa-
rameters is equivalent to that in the magnitude of the
s —p scattering amplitudes. To complete this description
of the collision we require three relative phase angles.
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channel, while the triplet-singlet phase angles A, ,(0) de-
scribe the phase difference between amplitudes with the
same M; for different spin channels. These four angles
are not, however, independent, and we follow Refs.
[52,27,6] in choosing A ¢(0) as the seventh independent

The alignment angles describe the phase difference be-  parameter. The complete set of s—p parameters is
tween the M; =-+1 and —1 amplitudes in each spin  therefore
J
{Esf>p(9) sap 9) IL ilp(g) 3Ls(l4>p(9) 7/S~—>p(9)’3‘}/s—>p(9)’A+1,0(6)} . (42)

III. THEORY: DESCRIPTION
OF PARADIGMATIC EXPERIMENTS

To illustrate application of the formulation described
in the preceding section and to describe the experiments
that produced the results to which we shall compare in
Sec. V, we here briefly consider three paradigmatic kinds
of experiments. The first, which were performed for e-Na
scattering by McClelland, Kelley, and Celotta [8,9], in-
volve preparation of the initial state of the electrons and
atoms but no final-state analysis. The second, which are
conventional coincidence experiments, entail the reverse
special case: no state preparation but final-state analysis
through detection of the polarization of photons emitted
when the atom that was excited by electron impact subse-
quently decays. The third, which have been performed
by Hegemann et al. [17], entail both preparation of the
initial state and analysis of the final state of the electrons.

A. Experiments with initial-state preparation only:
Scattering of spin-polarized electrons
from spin-polarized atoms

In a series of papers [8,9,11,13,15], McClelland and
co-workers have measured spin-dependent cross sections
and OA parameters for elastic (3s—3s) and superelastic
(3p —3s) scattering of beams of spin-polarized electrons
from beams of state-selected Na atoms in order to resolve
scattering in the singlet and the triplet spin channels. Of
particular interest here are experiments that use optical
pumping to spin polarize the initial atoms along the 2"
axis of the natural frame, normal to the scattering plane.
(The electron beam is spin polarized along the same axis.)
No final-state analysis was performed, so these experi-
ments conform to the case of Eq. (16), for which the col-
lision operator and detected intensity are given by Egs.
(23) and (24). By applying time-reversal invariance to the
superelastic (3p —3s) data they obtain the OA parame-
ters for inelastic (35— 3p) scattering to which we com-
pare below. For elastic scattering McClelland and co-
workers have published data for the triplet-to-singlet ra-
tio r(6) and (equivalently) the exchange asymmetry
A§¥(0) at 1.0, 1.6, and 4.1 eV. By combining these data
with results from other elastic experiments, they pub-
lished a nearly complete determination of the scattering
amplitude, lacking only the sign of the triplet-singlet
phase angle A, (,(0).

Description of these experiments in terms of density
operators is especially simple. The electron beam is spin
polarized along 2" with degree of polarization
|Py|=0.32+0.02, so for this (mixed) state the electron

density operator in & (@ jg
pO=1A+P)|+ L+ L+(1—Py)| = 1) (= 1[]
(43)

By inserting P,=+|P,| we can use this operator to de-
scribe either spin-up or spin-down polarization.

The atomic beam is also spin polarized along 2", the
atoms having been prepared via two-step optical pump-
ing using circularly polarized laser light. The resulting
initial state of the target atoms is a pure state, one of the
two M ==xF hyperfine levels of the ground state of Na.
For these particular hyperfine levels, the sign of the
atomic spin projection Mg==1 along 2" (and, for a 3p
initial state, the sign of M, —il) is the same as that of
M. So the appropriate atomic density operator in &4
is

pn L __ln()LOA/IL MS ><n0LOML MS | (44)

We can now construct the preparation density opera-
tor in the UC representation as

p prep)(MSO ML )

=3 (%+mSOP0)
ms
“0
X |mSO,n0L0MLOMSO><mSO’nOL0MLOMSO| (453,)

or, using the Clebsch-Gordan series (3), in the CS repre-
sentation as

ﬁ(prep)(MSO ML )
=3 (%-}-msoPo)

m
‘0

X 3 C(4

8,8
X |n0L0ML0;eS°./I/l&> ( noLoMp ;

18 mg Mg )C(558"; mg Mg )

(45b)
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where we have explicitly noted the projection quantum
numbers specified by initial-state preparation.

For each of the four possible experiments one can per-
form with this setup (P, ==|P,| and Mg==1 with, for a
3p initial state, M; ==1), the construction of the detect-
ed scattering intensity (24) is especially simple since the
collision operator (23) is diagonal with respect to & and
independent of M. The CS matrix elements of the col-
lision operator are

<n0L0MLO;Q?MQ9I6n0LO 'noLoMio ;&mg)
= 28+1 28+1
% Sy, (6) fML,MiO“”* . (46)

The matrix elements of ﬁ(n‘;rfz) are also diagonal in &, M,

and M L, and for a particular M. s,» are nonzero only if
Me=m; +Mg =m,+Mjg . (47)

Using this fact we evaluate the trace in Eq. (24) to obtain
for the detected scattering intensity

InOLO»nL(k’kO’e)
= S 1 S,y (O
k() § LO, I‘O
X3 (%—FmSOPO)[C(%%S;mSOMSO)]Z .
ms

0 (48)

To determine the exchange asymmetry A 1“}2’(6) for ei-

ther the elastic or the superelastic experiments we need
only construct the parallel and antiparallel intensities in
Eq. (30). The two are distinguished by the sign of
M so=:t%, so we can write the intensity Eq. (48) for both

configurations as

Iyp _3r (K, ko, 0)=4[(1—2Ms Po)l'far, ar, (6)°
] 0
+(3+2M3 Po)’fu, 1, (O]
0 0

(49)

For elastic scattering, for which M; =0 only, we must
multiply this result by 2 to construct the measured inten-
sities because there are two parallel and two antiparallel
configurations: e.g., we get antiparallel intensities for
Mg =+ and Py=—|Py| and for Mg =—; and
P,=+|P,|. For the superelastic case, with M, ==1, the
sign of M Sy *1 follows that of M Ly SO there is only one

parallel and one antiparallel configuration for each M; .

For elastic scattering, we can extract the triplet-to-
singlet ratio (or, equivalently, the exchange asymmetry)
from this experiment. The superelastic experiment
allows us to determine the triplet-to-singlet ratio and
the spin-selected angular momentum transfers
23+1L<3;’_,3S(0). Data from this experiment can further
be manipulated to yield the exchange asymmetries
A435(6).

For either transition we can construct this quantity

from the operational definition (30). For elastic scatter-
ing the results involves the spin-averaged DCS (19)

1k Yool®PR=Pfoo(@

A(ex)(g)z AT , (50)
° 4Py ko D)

while for superelastic scattering we obtain
' far, oON—1far, o0

T e S— Lo
Mo T Po [ fay, o043, o)

0 0

(M =+1). (51)

B. Experiments with final-state analysis only:
Coincidence experiments

The most widely used procedure for experimentally
probing the dynamics of electron-atom collisions beyond
the conventional DCS is a coincidence experiment. Us-
ing crossed electron and atomic beams with no initial-
state preparation, such experiments gain insight into the
nature of the final atomic state created by electron-
impact excitation nyL,—nL at fixed scattering angle by
measuring the polarization of the radiation emitted when
the excited atom undergoes the subsequent decay
nL—n;L;. The quantity thus introduced P "(6) is a
measure of the linear polarization in the scattering plane
of light emitted normal to that plane—information that
complements that provided by L\}(8) concerning the de-
gree of circular polarization of the emitted photon. (For
an s—p excitation in which the spin is resolved, these
quantities are not independent.) In practice, PLi"(6) is
determined using a photon detector oriented normal to
the scattering plane (along 2" of the natural frame) that
detects linearly polarized photons whose polarization
vector (in the scattering plane) defines an (azimuthal) an-
gle Bwithx "

Operationally, the linear polarization is defined in
terms of the intensity of this linearly polarized light for
electron scattering angle 6 and polarization angle S,
Ly on,1,(B,0). Specifically, P{li"(9) is the difference be-

tween maximum and minimum values of this intensity,
normalized as usual by the sum of these two values. If,
for example, the decay is from a final 3p to a 3s state,
then we require values at the polarization angles 8 of the
maximum and minimum intensity for a (pure) p state,
which we can express in terms of the alignment angle y
defined in Eq. (38). In the natural frame, such a state ra-
diates like a classical dipole in the scattering plane, so the
radiated intensity attains its minimum at B=y and its
maximum at =y +7/2.

To evaluate the detected scattering intensity (22) for
experiments with final-state analysis but no initial-state
preparation, we require the collision operator (21), which
in this case is just the final-state density operator p,,; , and
the analysis density operator, which is the photon polar-
ization detection operator. We can write matrix elements
of the collision operator in the CS representation, which
is algebraically most convenient, as simple sums of CS
scattering amplitudes over the initial eigenkets in & f,‘;’i’o,
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(nLM;;SM|6 1 InLM];SMg)

)2§+1f 6)* . (52)

— 2 2e§°+1f

M,

We can write the photon detection operator an Lf( p3) for
a decay transition nL—nyL, in terms of the spatial
coordinates r, of the valence electron and the polariza-
tion vector € in the CS basis as
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plamab—p Lf(ﬁ)z D (’e\rv)|nfoMLf;cS°./I/lS)
SMy M,

X(nfoMLf;c?./l/léal(’e\*

(53)

The detected intensity is the sum of singlet and triplet

contributions. For each we evaluate the trace in Eq. (22)

n 257164 and exploit the fact that the analysis density
operator (53) is diagonal with respect to M 4, obtaining

I, ., . Bo=2LtL SQS+D 3 3 (aLMLI@r,)lng LM, ) n LM, |(%5,) LM, )
rer 2Ly +1 | ko | %5 M,
MMy ML
> 2s+1f 9)25+1 i, (0)* . (54)
M 0

Lo

[
We note that the same combinations of CS scattering am- InL_,nf Lf([i’, 0)
plitudes 25 *1f M, M, (0) appear here and in the squared _2L+1 [k

o - E |<k,nL|€'rv|nfoML )]2
modulus of (39) for the dependence of the final state for 2L0+1 kg M, !
!

electron scattering angle 6 on the angular variables of the
valence electron; we shall demonstrate below the connec-
tion this suggests between this intensity and that wave
function. If we reexpress this result in terms of the final
state in ¢ that is created by electron scattering at an-
gle 6,

lk,nL)=3 28+1) 3 211y,

$ M,

0)|nLM,;8Mg) ,

(55)

we regain the familiar expression for the radiation pat-
tern in such a decay

2L +1
2L, +1

2&_’—IInL4>n

B,0)=

ko

X |:|2e§°+1f+1,0(9)|2+ |2o§°+1f_1 0(

This result confirms that the minimum and maximum of
the detected intensity occur at B=y and y + /2, respec-
tively.

Using this result in the aforementioned operational
definition for the linear polarization we obtain for spin
channel &

28+1pliin)( gy =1 P 10O S 0(0)]
nL ey

kO 28+1 ’

(59)
0’354’3P(0)

0)P—22*1f ., ,(0)

(56)

There remains only to evaluate the matrix elements in
(54). At this point we must therefore particularize to a
specific transition. We here choose the dipole 3s—3p
transitions, which are the focus of our comparisons in
Sec. IV and are related via time reversal to the superelas-
tic measurements to which we compare in Sec. V; in the
sequel to this paper we shall consider transitions such as
3p —3p and 3d —3p. For each spin channel, we evaluate
the matrix elements of (€-r,) in the natural frame, where

€1, =r,(cosBsinb,cosg, +sinBsind,sing, ) (57)

and, with R,; (r,) for the radial wave function of the
valence electron, we obtain

% [ S Ry (r PR, (1 ),

[ [2$+1f 1 0(0)|cos2(y —B) (58)

where the DCS for the spin channel § is given by Eq.
(20). Regarding the similarity between Eq. (54) and the
valence-electron wave function (39), we note that this is
the same result we get by subtracting the maximum and
the minimum values of the squared modulus of this
function—and normalizing by the sum of these values
[51]. (Note that the angles of the extrema of this angular
probability differ from those of the intensity function by
w/2; as expected from the dipole radiation pattern, the
minimum and maximum occur at =y +7/2 and ¥y, re-
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spectively.) This result is further explicated and illustrat-
ed in the review by Andersen, Gallagher, and Hertel [27],
where care must be taken to note that their “amplitudes”
ay, are not the spin-channel scattering amplitudes that
appear in the boundary conditions on the wave function
but rather

1/2 2é°+1fM 0(9)
L

[2&4-1 (9)]1/2 :

k.
ko

ay, - (60)

noLy—nL

C. Experiments with both initial-state preparation
and final-state analysis: Scattering of spin-polarized
electrons from unpolarized atoms

In the other major class of experiments to which we
compare, Hegemann et al. [17] determined the change in
polarization of the scattering electrons due to elastic
(35 —3s) and inelastic (3s—3p) e-Na collisions. These
experiments provide a useful counterpart to those of the
preceding subsection, since they involve both preparation
of the initial state and analysis of the final state—of the
electrons only. Moreover, they illustrate the application
of the density operator formalism to measurements of
quantities other than the detected scattering intensity. In
particular, the observable of interest here is the polariza-
tion along Z " of electrons scattered at angle 6,

_ Tr[azﬁnL ]

P, r oan(0)=(8,), =—"", 61
ofont e Trp, ] ey

where &, is the projection of the Pauli spin operator
along the axis of spin polarization £” and the density
operator for the final state p,; must be constructed using
the mapping (13b). Note that in the absence of continu-

um spin-orbit coupling, the spin projection of the projec-
tile, and hence its polarization, can change only via ex-
change effects.

We first require the preparation density operator. As
in the experiments of McClelland and co-workers, the po-
larization measurements of Hegemann et al. use an in-
cident beam of electrons in a mixed state with fraction
|Po| in a spin eigenstate (with m, =3 for Py==%|Py])
and the rest unpolarized. So the electron density opera-
tor is again given by Eq. (43). The atomic beam, howev-

er, is completely unpolarized, in a (mixed) state in & ﬁ,’o‘,{o

represented by the operator [see Eq. (11)]

P = 1
"olo  2(2Ly,+1)
X X |n0L0MLOMSO><n0L0MLOMSO|
MryMs,
1

1, . (62)

The resulting preparation density operator, just the direct
product of these electron and atom density operators,
yields especially simple matrix elements in the US basis.

To express the measured quantity —the ratio of final to
initial electron spin polarization-—in terms of our calcu-
lated scattering amplitudes, we evaluate the traces in the
numerator and the denominator in Eq. (61) in the most
convenient representation. The matrix of the preparation
density operator is fully diagonal in the US representa-
tion (i.e., with respect to M , M , and mSO) and the Pau-
li spin operator &, is diagonal in 6'°. So evaluation of
the numerator is particularly simple if we use the US
basis {|m,,noLoMy Mg )} of 6‘,,2“}‘)0. Inserting the re-
sulting matrix elements of the final-state density operator,
into the US expression for the trace,

Tr[6,6,.1=3 3 2my){mg ,nLM; M|p,, |m,nLM; M) , (63)

ms MS,ML

we obtain the eminently sensible result

_ 1
"~ 2(2Ly+1)

M, M, m_m  M.M
L’ L0 s770sg N SO

S S 3 (%—I—msOPO)lf(kms,nLMLMse—komso,nOLOMLOMSO)IZ. (64)

To introduce the singlet and the triplet amplitudes we use the Clebsch-Gordan series to convert the US amplitudes in

Eq. (64) to the CS representation,
f(kms’nLMLMS(_kOms()?nOLOMLOMSO):2 C(-
$

L
22

18;m, Mg )C(318;m; Mg )+ fML,MLO(") . (65)

Of the six possible combinations of electron and atomic spin projections, only three are physically distinguishable, and

after a little algebra we obtain

_ P
2Ly +1 ME

M
L L0

Tr[azﬁnL ]

[2|3fMLYML0(0)!2+2|'fML,MLO(O)I |3fML,MLO(6)|cosAML,MLO] , (66)

where we have introduced the triplet-singlet phase angle of Eq. (32).
Turning now to the denominator in Eq. (61), we can easily work directly in the CS representation, proceeding as in
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the derivation of Eq. (45b) from Eq. (45a). We shall first write the preparation density operator in terms of projection
operators onto the spin-channel eigensubspaces > 716 (,12’}“)0 and then take the required trace in &6

nL >
Tr(p 1= 3 (nLMp;8Mglp, InLM ;8M) . (67)
M, S, Mg
Evaluating the necessary sums is especially simple because of the diagonal character of the CS matrix of ’\(np'zp), and we
p 0™~0
obtain
1 v 2
Trlp = 3 3 ¥y a (OIS (A4m, P)IC(LLS;m, Mg )T? | . (68)
n 2( 2LO + 1 ) ML’MLO &,m& L LO mSO 2 SO 22 So 0

Note that the quantity in curly brackets also appeared in Eq. (48) for the detected scattering intensity measured by
McClelland and co-workers. But unlike that result, the present final-state polarization combines an average over initial
and sum over final magnetic sublevels with a sum over total spin quantum numbers that accommodates both possible
final atomic spin states. Both are required by the experimental design of Hegemann et al., which does not prepare or
analyze the atomic states with respect to their orbital or spin angular momentum. Finally, we note that by further
evaluating the sums over &, M, and ms , we can reduce Eq. (68) to the spin-averaged DCS of Eq. (19), as

2P,

_ k
PnOLoanL(g)— 2L0‘+’1

ko

1
- S [ Pay o, OF+ 1 oy o, (O g, pa, (0)]coshsg, g, | - (69)

O ngLy—nL MM

This analysis yields the ratio of the final to initial derstanding of this paradigmatic electron-atom collision
electron-spin polarization, the measured quantity in these system.
experiments. Useful relationships for elastic scattering

between this quantity and the triplet-singlet ratio »(6) A. Elastic scattering

and the phase angle Aq, and for 3s—3p scattering be- . . .
tween these quantities and the spin-channel angular At energies below a few eV, the spin-averaged elastic
momentum transfers have been presented by Andersen ~ DCS T3_.3,(6) is dominated by a pronounced structure
and Bartschat [51,52]. near the 3p threshold at 2.1 eV, as illustrated in Fig. 13 of

Ref. [1]. In Fig. 3 we here expand this view of the elastic
DCS to encompass energies up to 8.6 eV, plotting its log-
arithm so as to more clearly show the variation over the
range of the figure. This perspective clarifies the charac-
teristic structural change from comparable forward and

} IV. A BIRD’S-EYE VIEW
OF ELASTIC AND INELASTIC OA PARAMETERS

Several investigators have reported low-energy e-Na
scattering experiments of the kinds described in Sec. III
and we shall compare our result to their data in Sec. V.
But these measurements encompass a necessarily limited
range of scattering angles and, more to the point, very
few energies: indeed, almost all are near 4.0 eV, an energy
that is rich in structure because of the proximity of a
large number of target thresholds but that for this very
reason is anomalous. One advantage of the R-matrix
method used in our study is the comparative ease and
modest computational demands of solving the continuum
Schrodinger equation at a large number of energies, once
a considerable initial investment has been made at a sin-
gle energy. This feature enables us to contextualize the
comparisons in Sec. V by here surveying the behavior of
elastic and inelastic OA parameters over the whole range
of scattering angle from 0° to 180° and energy from
threshold to 8.6 eV. The results, presented in this section
as three-dimensional graphs, both clarify trends evident
in the single-energy ‘“‘snapshots” in Sec. V and suggest en-
ergies where further measurements may provide fruitful FIG. 3. Logarithm of the spin-averaged elastic differential
tests of experiments and contributions to our growing un- cross section ;_, 3,(0).

3s—3s Differential Cross Section

10gy0 G3s3s (bohr*/s)
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3s5—3s Triplet to Singlet Ratio

FIG. 4. Logarithm of the M, -averaged elastic triplet-singlet
ratio r3;_,3,(6).

backward scattering at the low-energy end of this range
to pronounced forward scattering at the high-energy end.

To explore the contributions to elastic scattering from
the triplet and the singlet spin channels we show in Fig. 4
the logarithm of the triplet-to-singlet ratio defined in Eq.
(29). Since the 35— 3s transition admits only M; =0, the
quantity here shown is

3
035—>3s(6)
el (70)

logor(8)=lo
€10 g10 T

[For clarity in this and subsequent three-dimensional
(3D) figures, we have set the orientation differently than
in Fig. 3.] This overview reveals several sharp “peaks”
and ‘“valleys” that are caused by (near) zeros in the
singlet and the triplet DCSs, respectively. Such sharp
structures are particularly likely to appear in the 3s—3s
triplet-to-singlet ratio since the spin-channel DCSs in-
volve only the M, =ML0=O magnetic substate. (The

3s—3s Triplet-Singlet Phase Angle
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FIG. 5. Cosine of the elastic triplet-singlet phase angle
Ap,0(0).
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structures around 6=120° in this figure appear more
jagged than they really are due to the inability of the
plotting program to smoothly depict a sharp ridge that
shifts in both angle and energy.) The enhancement of
scattering in the singlet channel revealed by the valley be-
tween 90° and 60° above 4 eV arises from a minimum in
the triplet cross section.

The final elastic OA parameter is the triplet-singlet
phase angle A ((6), the cosine of which, shown in Fig. 5,
manifests a far more complicated variation with angle
and energy than the spin-averaged DCS and triplet-
singlet ratio, which together determine the magnitudes of
the spin-channel scattering amplitudes. Of particular
note is the variation of this quantity with scattering an-
gle, which over the whole energy range is far richer than
one might infer from the single energy (4.1 eV) at which
it has been studied experimentally. Rapid changes in this
phase angle are correlated with near zeros in the singlet
or the triplet DCS, the peaks and valleys in Fig. 4.

B. Inelastic scattering

For the 3s—3p transition, more and more varied pa-
rameters are amenable to measurement in superelastic
and coincidence experiments as described in Sec. III.
The inelastic spin-averaged DCS in Fig. 6 shows a varia-
tion with angle and energy very much like that of its elas-
tic counterpart in Fig. 3: very little angular variation at
low energies and an increased propensity for forward
scattering with increasing energy. The rapid increase
with energy in the forward peak of this DCS contrasts
markedly with the near independence of energy of the
elastic DCS in the forward direction.

Like all the OA parameters surveyed in this section,
T35_.3,(0) exhibits considerable structure in the energy
range from 4.0 to 4.6 eV, where thresholds reside for the
5s, 4d, 4f, 5p, 6s, 5d, and 6p target states (see Table I of
Ref. [1]). (This region is marked by a rich panoply of
narrow structures; the energy grid in the present calcula-

3s—3p Spin-Averaged Differential Cross Section
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tions indicates characteristic behavior in this region, but
is not sufficiently dense to show all of its structures.)

The 3s—3p triplet-singlet ratio whose logarithm is
shown in Fig. 7 exhibits strong singlet dominance near
the 3p threshold at 2.1 eV, another consequence of the
near-threshold structure in the singlet channel. Note
that the sharp structures of the elastic ratio in Fig. 4 are
missing. In this case, the spin-channel DCS are the sums
of the squares of the two nonzero s—p amplitudes,
which sums wash out this structure.

We note, however, that the dominance of triplet
scattering at higher energies for scattering near 60° and
120° will enhance the spin polarization of inelastically
scattered electrons at these angles, a feature of possible
future usefulness to experiments such as those discussed
in Sec. V. The small-angle behavior of this quantity
shows that except near the 3p threshold, forward scatter-
ing is almost equally probable into the triplet and the
singlet channels. This result reflects the influence at these
angles of elements of the transition matrix that corre-
spond to large orbital angular momenta; because of the
strong centrifugal barriers that control the corresponding
elements of the scattering function, these T-matrix ele-
ments are quite insensitive to exchange, as illustrated in
Fig. 1 of Ref. [1].

The relative phase between the t:riplet and the singlet
scattering amplitudes is graphed for the +1 magnetic
sublevel in Fig. 8. This angle, which varies from —180°
to +180°, is especially interesting in the forward direc-
tion, where the threshold structure at 2.1 eV sends it
sharply negative near this energy. As energy increases
away from this threshold, however, the triplet-singlet
phase angle settles down essentially to zero. The abrupt
change in A ((6) at high energy and large scattering
angle is caused by a minimum in the singlet cross section.

The other relative phase angles for 3s—3p scattering
are the singlet and the triplet alignment angles defined in
Eq. (38). These angles, which reveal the proximity of the
symmetry axis of the final-state wave function of the

3s—-3p Triplet to Singlet Ratio

FIG. 7. Logarithm of the M -averaged 3s — 3p triplet-singlet
ratio r3,_,3,(6).

3s—3p Triplet-Singlet Phase Angle

FIG. 8. 3s—3p triplet-singlet phase angle A, ((8).

valence electron to the incident electron direction (the
axis X " of the natural frame), are defined to lie between
—90° and +90° and so can change abruptly by 180° when
the angle of the 3p-state symmetry axis exceeds 90°, as
happens at several places in Fig. 9. Near the 3p thresh-
old, for example, 37/(0) changes by a total of 360° as the

3s—3p Triplet Alignment Angle
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FIG. 9. 3s—3p (a) triplet and (b) singlet alignment angles
3'}’3S4,3p(9).
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scattering angle varies from 0° to 180°. Both alignment
angles are zero for 6=0° and 6=180°. The final-state
wave function can have no component in the 2 " direction
since 25+! f0,0(60)=0. For straight-line collisions, then,
there is no distinction between 2" and J " directions, so
the symmetry axis of the charge cloud must lie in the X "
direction. For forward scattering, the alignment angles
confirm the result predicted by the first-Born approxima-
tion, that the final-state wave function is oriented along
the momentum-transfer vector k —k,.

Rather more illuminating is the final 3s—3p OA pa-
rameter, the angular-momentum transfer. By exhibiting
the average angular momentum transferred to the atom
normal to the scattering plane, 25*'L{} ; () reveals the
relative importance of the M; = =1 magnetic sublevels in
the final 3p atomic state created by scattering at a partic-
ular angle 6. In Fig. 10 we find considerable similarities
between the angular-momentum transfers in the two spin
channels. Both are zero for 6=0° and 180°, as they must
be since angular momentum cannot be transferred in for-
ward or backward collisions. Both angular-momentum

3s—3p Triplet Angular Momentum Transfer
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triplet and (b)
momentum transfer perpendicular to the scattering plane
3
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3s—3p (a) singlet angular-
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transfers show that in the forward direction, scattering
into the M; = +1 substate dominates; this effect is most
prominent in *L*(0). Above about 90° (for the triplet
channel) and 120° (for the singlet channel), both quanti-
ties exhibit a distinct minimum.

The overview provided by all the three-dimensional
graphs for the 3s — 3p transition reveals several interest-
ing interconnections between the seven OA parameters.
For example, as 6-—0, the triplet-singlet ratio r ap-
proaches unity, and the angular-momentum transfers
L 3§L3p(9) and the three phase angles go to zero. This
means that in the forward direction, all four amplitudes
251 fa, 0(6) for 28+1=1 and 3 and for M, =*1, are

nearly equal; i.e., for this transition forward scattering
does not depend strongly on magnetic or spin-projection
quantum numbers.

Several of these figures reveal sharp structures arising
from abrupt changes in one of the OA parameters. These
structures tend to be associated with minima in the spin-
channel and/or spin-averaged DCSs. For example, the
minimum in 73,_,3,(6) at 120° triggers rapid changes in
other OA parameters. The minimum in the triplet DCS
at energies above 5.0 eV at angles between 155° and 160°
manifests itself at these energies and scattering angles as
a pronounced minimum in the triplet-singlet ratio and
abrupt changes in the triplet-singlet phase angle and the
triplet alignment angle. Just as these overviews may
guide future measurements towards particularly interest-
ing regions of energy and angle, so may such interconnec-
tions guide them away from energy and angle regions
where the scattered electron count rate is likely to be un-
comfortably small.

V. COMPARISON OF THEORETICAL
AND EXPERIMENTAL ORIENTATION
AND ALIGNMENT PARAMETERS

We now turn to several measurements that together
approach the asymptote of complete scattering experi-
ments for low-energy elastic (3s—3s) and inelastic
(3s—3p) e-Na collisions. The OA parameters measured
in these experiments provide a more detailed probe of the
dynamics than do the conventional DCSs. For example,
for low-energy inelastic transitions involving low-Z atoms
such as Na, these parameters yield insight into exchange
effects, which manifest themselves in experiments in
which the initial state is prepared so the electrons (and
possibly the atoms) are spin polarized. The particular pa-
rameters one can measure in such experiments depend on
whether one analyzes the final state.

As described in Sec. II of the first paper of this series
[1], the R-matrix formulation we use to calculate the CS
scattering amplitudes follows from two key expansions of
the e-Na wave function: in bound stationary states of the
target and in angular functions of the projectile (spherical
harmonics); in practice these expansions must be truncat-
ed at some total number of target states and partial
waves. In Sec. IV of that paper we demonstrated the
convergence integral and differential elastic and inelastic
cross sections with respect to both of these expansions.
But the upper limits of the eigenfunction expansions
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thereby determined do not necessarily guarantee conver-
gence of the more sensitive OA parameters to be shown
in the present paper and its sequel. Some of these param-
eters depend on products of spin amplitudes for different
magnetic sublevels, quantities not sampled even by the
DCS. Moreover the conventional DCSs and ICSs involve
averages over initial and sums over final atomic magnetic
sublevels, which decreases their sensitivity to high-lying
target states and large-order partial waves.

A. Elastic scattering

For elastic scattering, the three parameters (33) fully
characterize the collision. For the first of these—the
spin-averaged DCS Tj;_,;,(6)—we have already dis-
cussed convergence properties and compared them to ex-
periment in Figs. 11 and 13-18 of Ref. [1]. For the
second, we choose the exchange asymmetry rather than
the triplet-singlet ratio, because the former is less sensi-
tive to normalization factors. In Fig. 11, we show both
convergence studies and a comparison to measured re-
sults at 1.0, 1.6, and 4.1 eV, the only energies at which
these data have been measured.

In the convergence studies to follow, we have calculat-
ed scattering parameters using a four-state close-coupling
model (4CC), which includes the 3s, 3p, 4s, and 3d target
states, a 7CC model, which adds to these four the 4p, 4d,
and 4f states, and a 10CC model, which further adds the
S5s, 5p, and 5d states. We have also performed two 11CC
calculations; the 11CC(6s), which also includes the 6s
state, and the 11CC(6p), which includes instead the 6p
state. To illustrate the quality of the convergence of the
exchange asymmetry, we compare our 4CC and 10CC re-
sults with those of Bray and McCarthy [39]. At the
higher energy we also show the 7CC and 11CC(6s) and
11CC(6p) results. Clearly, the 10CC results are well con-
verged over the range of scattering angles; the most pro-
nounced differences from the 4CC results occur at the
peaks near 115° at 1.0 eV, 110° at 1.6 eV, and above 90° at
4.1 eV. The 11CC results at the higher energy illustrate
the degree of convergence even in this sensitive angular
region.

A unique feature of the present calculations concerns
the treatment of the neonlike core of the Na target. As
discussed in Sec. III B of Ref. [1], our description of the
electron-Na interaction includes, in addition to the usual
one-electron terms that represent the polarization of the
core due to the valence and projectile electrons, a dielect-
ronic term that allows for the interaction of the dipole
moments resulting from these two one-electron polariza-
tion effects. To explore the importance of this term for
A$¥(0) we here show results [denoted 10CC(ND)] from
calculations in which we omitted the dielectronic polar-
ization term. Comparisons to the 10CC values show sen-
sitivity to this effect to be greatest near the aforemen-
tioned peaks. Somewhat surprisingly, at 1.0 eV the 10CC
results agree better with those from 4CC calculations
than from the 10CC(ND) study; this suggests that at low
energies including dielectronic polarization is more im-
portant than including high-lying target states such as
the six additional states of the 10CC calculations.
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FIG. 11. Comparison of the elastic exchange asymmetry
AF¥(0) at (a) 1.0 eV, (b) 1.6 eV, and (c) 4.1 eV as measured by
Lorentz et al. [15] (solid points with error bars) and as calculat-
ed by Bray and McCarthy [39] (long-dash—short-dashed curve).
Our theoretical curves are from the following calculations (see
text for acronyms): 11CC(6p) (short-dashed curve), 11C(6s)
(long-dashed curve), 10CC(ND) (dot-dashed curve), 10CC
(solid), 7CC (medium-dashed curve), and 4CC (dotted curve).
The dotted horizontal lines indicate maximum and minimum al-
lowed values of this quantity. Note that the 7CC, 11CC(6s),
and 11CC(6p) results appear only in (c). Some of the curves in
this figure overlap throughout the angular range shown; al-
though indistinguishable, these results do confirm convergence.
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At these energies we can compare our results to those
from a quite-differently formulated theoretical study by
Bray and McCarthy [39], which included 15 target states
but not dielectronic polarization. At the lowest energies
in Figs. 11, the difference between the 15CC(ND) results
of Bray and McCarthy and our 10CC(ND) values is as
large or larger than that between our 10CC and 4CC
results—a finding with the surprising implication that
adding five additional states to a calculation that already
includes ten could change the elastic asymmetry by as
much as adding six additional states to a 4CC calcula-
tion. At 4.1 eV, agreement between our converged elastic
exchange asymmetries and those calculated by Bray and
McCarthy using a full optical potential is better, suggest-
ing that at this energy higher-lying target states do not
significantly influence this parameter.

A comparison to measured elastic exchange asym-
metries at 1.0 and 1.6 eV [15] and 4.1 eV [13] essentially
confirms the observations of McClelland and co-workers
of a significant dependence of 4 {*(8) on scattering an-
gle and of the dominance of triplet scattering at 1.0 and
4.1 eV (below 120°) but not at 4.1 eV, where singlet
scattering predominates from about 70°-120°. Agree-
ment between theoretical and experimental elastic asym-
metries is excellent, except in the vicinity of the peak.
These comparisons (and those to the theoretical results of
Bray and McCarthy) essentially benchmark the wide
range of results shown in the 3D graphs of Sec. IV.
These graphs make clearer the context of the trends in
Fig. 11 and suggest other energies and angular regions
where measurement of this parameter may prove fruitful.

Elastic scattering amplitudes

In a remarkable illustration of the power of the experi-
ments discussion in Sec. III to probe collision dynamics,
McClelland et al. [13] combined their measured values of
the elastic triplet-singlet ratio r(8), which is equivalent to
the elastic exchange asymmetry through Eq. (31), and the
spin-averaged elastic DCS as measured by Gehenn and
Reichert [53] to determine the magnitudes of the singlet
and triplet 3s—3s amplitudes. In Fig. 12 we compare
their magnitudes to our converged 10CC amplitudes, ob-
taining good agreement over the angular range of the ex-
periment from 30° to 130°.

Unfortunately, a question has hovered over this deter-
mination because the two measurements were performed
at slightly different energies and the widths are quite
broad: 4.1+0.25 eV for McClelland et al. [13] and
4.0+0.05 eV for Gehenn and Reichert [53]. Because of
our detailed knowledge of the energy variation of both
parameters we are in a position to resolve this question.
We have already compared our 4.0-eV elastic DCSs to
those of Gehenn and Reichert in Fig. 18(b) of Ref. [1] and
found excellent agreement throughout the angular range
from about 25° to 150°. We have calculated a second set
of amplitudes from 10CC triplet-singlet ratios at 4.1 eV
and elastic DCSs at 4.0 eV. As seen in Fig. 12, the effect
of the slight energy mismatch in the two experiments is
entirely negligible—an unsurprising result that nonethe-
less seems important in light of the seminal character of
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FIG. 12. Absolute values of the elastic scattering amplitudes
for the singlet |'fs,_,3,(0)| and triplet |[*fs_,3,(8)| spin chan-
nels. Experimental points (pluses) were generated by combining
the triplet-to-singlet ratio of McClelland, Kelley, and Celotta
[11], which were measured at 4.1 eV, with the differential cross
sections of Gehenn and Reichert, which were measured at 4.0
eV [53]. The theoretical data are from 10CC (solid curve) and
4CC (dotted curve) calculations at 4.1 eV. Also shown is a
simulation of the energy mismatch (medium-dashed curve) con-
structed by combining the 10CC triplet-to-singlet ratio at 4.1 eV
with the 10CC DCS at 4.0 eV.

the determination by McClelland and co-workers [15].
Finally, we note that a poorer representation of the target
(the 4CC study) affects the amplitudes primarily at larger
angles.

Continuing their analysis of the elastic amplitudes,
McClelland and co-workers determined the cosine of the
triplet-singlet phase angle A, 4(8) of Eq. (32) by combin-
ing their 4.1-eV values for »(6) with data from measure-
ments by Hegemann et al. [17] of the final-state electron

3s—3s Electron Polarization Ratio

0.8

0.6

0.4

P/P,

0.2

0.0 +

-0.2

0.4 ——
0 30 60 90 120 150 180

Angle (deg)

FIG. 13. Comparison of theoretical elastic electron polariza-
tion ratio Pj,,;,(6) at 4.0 eV to experimental data of He-
gemann et al. [17] (solid circles with error bars). The theoreti-
cal curves are 10CC at 4.0 eV (solid curve), 7CC at 4.0 eV
(medium-dashed curve), 4CC at 4.0 eV (dotted curve), and final-
ly we include the 10CC calculations at 4.1 eV (dot-dashed curve)
because this experimental data has (here and elsewhere) been
compared to calculations at 4.1 eV.
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3s—3s Triplet-Singlet Phase Angle at 1.0 eV

240

(@)
210 +

150 |

Bop (deg)
8

90 |-
60 |
30 /\
0 1 L il 1 "
0 30 60 90 120 150 180
Angle (deg)
3s—3s Triplet-Singlet Phase Angle at 4.1 eV
0
-45
-90
2
S as3s
=3
S
g
-180
=225
-270
Angle (deg)
35—3s Triplet-Singlet Phase Angle at 4.1 eV
=)
g
8
8
-1.5 - -
0 30 60 90 120

Angle (deg)

FIG. 14. (a) Convergence of the triplet-singlet phase angle
for elastic scattering Aq o(6) at 1.0 eV. (b) Convergence of the
triplet-singlet phase angle at 4.1 eV. (c) Measured and calculat-
ed values of the cosine of the elastic triplet-singlet phase angle
cos[AO,O(G)].‘ The theoretical curves are from Bray (long-
dash—short-dashed curve) and present 10CC(ND) (dot-dashed
curve), 11CC(6p) (short-dashed curve), 11CC(6s) (long-dashed
curve), 10CC (solid curve), 7CC (medium-dashed curve), and
4CC (dotted curve) calculations. Experimental points (solid cir-
cles) in (c) were generated by combining the triplet-to-singlet ra-
tio of McClelland et al. [13], which were measured at 4.1 eV,
with the polarization ratio of Hegemann et al. [17] (solid cir-
cles). (Note that the algebraic relation that gives cos[Ag (6)]
from the exchange asymmetry and the electron polarization ra-
tio does not restrict the result to the range [ —1,+1] (see the
text).) Also shown in (c) is a simulation of the energy mismatch
(triplet-dot—dashed curve) constructed by combining the 10CC
triplet-to-singlet ratio at 4.1 eV with the 10CC polarization ra-
tio at 4.0 eV. '

polarization (69). While the exchange asymmetry,
through its relationship to the triplet-to-singlet ratio, de-
scribes the relative magnitudes of the singlet and triplet
scattering amplitudes, the phase angle A M, MLO(O)

defined in Eq. (32) describes their relative phases. An en-
ergy mismatch again clouded this determination, since
the latter measurements were performed at 4.0 eV.

The comparison in Fig. 13 of results from 4CC, 7CC,
and 10CC calculations at 4.0 eV demonstrates that the
latter is well converged even at large angles. A compar-
ison to the experimental results of Hegemann et al.
shows excellent agreement at small angles but an experi-
mental minimum at the polarization ratio at 90° that is
shallower than in our results. Finally, comparing 10CC
results at 4.0 and 4.1 eV reveals that except at very large
scattering angles, this quantity is insensitive to small
changes in the scattering energy. For the angular range
of the measured data, then, this energy mismatch is
insignificant. ‘

We see in Fig. 14(c) that the effect of the slight energy
mismatch inherent in the determination from experiment
of the cosine of the relative phase angle between the trip-
let and the singlet amplitudes is somewhat more serious
than was the case for their magnitudes in Fig. 12, espe-
cially for scattering angles greater than 60°. But this
mismatch is not, apparently, solely responsible for the
differences between the experimentally and theoretically
determined values of Aj(6) in this angular range. To
further diagnose this difference, we have evaluated this
quantity using the 4.1 eV values for r(6) measured by
McClelland and co-workers and the theoretical electron-
spin polarization ratio from Fig. 13; the results shown in
Fig. 14(c) agree very well with the purely theoretical
phase angles, suggesting that the polarization ratio and
not the triplet-singlet ratio is responsible for the pro-
nounced differences between the theoretical and the ex-
perimentally determined values of cosAg o(8).

The triplet-singlet phase angle itself, which is shown at
1.0 eV in Fig. 14(a) and at 4.1 eV in Fig. 14(b), is extreme-
ly well converged with just four states at 1.0 eV and with
10 states at 4.1 eV, where the variation with scattering
angle is representative of the whole energy range shown
in the 3D figures in Sec. IV. At both energies, our results
concur very well with those of Bray and manifest little
sensitivity to dielectronic polarization effects. It is some-
what surprising, considering the nature of Ag (), that
this quantity is less sensitive to effects due to dielectronic
polarization and high-lying atomic states than is the elas-
tic exchange asymmetry 4 $(0) [54].

B. Inelastic scattering

Of the seven parameters in Eq. (42) required to fully
characterize the 3s —3p transition, four have been mea-
sured, three of them at 4.1 eV only. We showed the
spin-averaged DCS for this transition and compared to
experimental data in Figs. 19 and 20 of Ref. [1].

The overall importance of triplet versus singlet scatter-
ing at 4.1 eV is evident from the triplet-singlet ratio in
Fig. 15, which shows the scattering to be predominantly
singlet in character for most of the angular range. Com-
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3s—3p Triplet to Singlet Ratio at 4.1 eV
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FIG. 15. Inelastic 3s— 3p triplet-to-singlet ratio at 4.1 eV as
measured by McClelland, Kelley, and Celotta [11] (solid cir-
cles), calculated by Bray [40] (long-dash-short-dashed curve),
and generated in the present study from the following calcula-
tions described in the text: 10CC(ND) (dot-dashed curve),
11CC(6p) (short-dashed curve), 11CC(6s) (long-dashed curve),
10CC (solid curve), 7CC (medium-dashed curve), and 4CC (dot-
ted curve).

paring the 4CC, 7CC, and 10CC results reveals the im-
portance of the high-lying n =4 and 5 target states to an
accurate calculation of the inelastic triplet-singlet ratio.
Further comparisons to the two 11CC calculations and
Bray’s results show that these still higher-lying states are
less significant and the 10CC values are converged. Fi-
nally, by comparing the latter to 10CC(ND) results and
to Bray’s values we find that the effects of dielectronic po-
larization are comparable to those of including the n =6
states. Agreement with the experimental data of McClel-
land, Kelley, and Celotta [11] is gratifying, except near
the peak at 65°.

1. Angular-momentum transfer

Other than the triplet-singlet ratio, the most extensive-
ly measured OA parameter for this excitation is the
angular-momentum transfer Eq. (35). The spin average
of this parameter at 4.1 eV shows the propensity of
scattering at all but the largest angles for leaving the
atom in an M; =+ 1 magnetic sublevel. Agreement with
the measured data of McClelland, Kelley, and Celotta
[11] is excellent at angles below 90°, as is concurrence
with the 15CC(ND) theoretical values of Bray at all an-
gles. The contributions to the angular-momentum
transfer from the individual spin channels are shown in
Figs. 16(a) and 16(b). In the triplet channel, our 4CC and
7CC theoretical values show that the pronounced
discrepancy at angles greater than 40° noted by McClel-
land, Kelley, and Celotta between their experimental re-
sults and values from an earlier 4CC calculations of
Moores and Norcross [43] arises from the incomplete
n =4 target manifold in the latter. Further comparisons
to 10CC results show the 7CC values to be well con-
verged at all angles. The discrepancy between theoretical
and experimental values above 90° remains unresolved.

The situation in the singlet channel is less satisfactory.
The theoretical calculations converge quite slowly with
increasing numbers of target states (even at small angles)
and the disagreement between theory and experiment is
more substantial than in the triplet channel. Compar-
isons to our 11CC results and to those of Bray show that
the 10CC values are well converged and that the coin-
cidence of the experimental and 7CC values is clearly an
accident, at least for scattering angles less than 110°. We
note further that our converged results do not agree with
Bray’s values near the peak at 40°. These differences
probably reflect two physical distinctions between our
work and his. First, he includes polarization effects
(“‘coupling to the continuum”) via an optical potential, in
contrast to our semiempirical model potential. Second,
he does not take into account dielectronic
polarization—admittedly a minor effect at these energies.

3s—3p Triplet Angular Momentum Transfer at 4.1 eV
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FIG. 16. (a) Triplet and (b) singlet angular-momentum
transfer L§),,,(6) at 4.1 eV as measured by McClelland, Kel-
ley, and Celotta [11] (solid circles), calculated by Bray [40]
(long-dash—short-dashed curve), and calculated in the present
study using the following models: 10CC(ND) (dot-dashed
curve), 11CC(6p) (short-dashed curve), 11CC(6s) (long-dashed
curve), 10CC (solid curve), 7CC (medium-dashed curve), and
4CC (dotted curve).
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2. Inelastic scattering amplitudes

Measurements of the four parameters T;,_,3,(0),
r3s3,(0), 'Y 3,(0), and °L§) ; () suffice to extract
the magnitudes of the four scattering amplitudes
2S+1fil,0(9). The DCS has been measured at 2.6, 3.1,
and 3.6 eV [55,56] and at 3.7 eV [53]. But measurements
of the remaining three parameters have been reported
only at 4.1 eV. This energy mismatch is too large to al-
low combining these data to construct the magnitudes of
the singlet and triplet amplitudes. We can, however, per-
form this construction by combining theoretical DCSs at
4.1 eV with the measured parameters of McClelland, Kel-
ley, and Celotta [11]. The results appear in Fig. 17 along
with selected other constructs.

In the forward direction, scattering into the M; = +1

3s—3p Triplet Scattering Amplitudes at 4.1 eV
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FIG. 17. Magnitudes of the 3s —3p (a) triplet and (b) singlet
scattering amplitudes |2*'f, 4(6)|. For comparison purposes
we have constructed “experimental” amplitudes by combining
F3s3p(0), LYY 5,(0), and 3L§},;,(6) from measurements at
4.1 eV by McClelland, Kelley, and Celotta [11] with our
theoretical differential cross sections to obtain the magnitudes
of the scattering amplitudes for M; = +1 (solid circles) and for
M; = —1 (open triangles). The purely theoretical results (from
10CC calculations) are also given for M; = —1 (solid curve) and
M; =—1 (dots).
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substate is dominant in both spin channels. The purely
theoretical triplet amplitudes agree very well with those
constructed from experimental values, except at very
large angles and near the deep minimum at 40°. In the
singlet channel, agreement is less satisfying, as we expect
from the disagreement for !L*(9) evident in Fig. 16(b).
A comparison with Fig. 16(b) shows that the disagree-
ment in the singlet angular momentum transfer around
the peak at 30° arises from a discrepancy in the M; = —1
channel.

3. Exchange asymmetries

Another perspective on the information contained in
the spin-channel amplitudes is afforded by the 3s —3p ex-
change asymmetries A fji"(@). These quantities have
been reported by McClelland, Kelley, and Celotta [9] and
we compare their results, determined via time reversal
from data taken in superelastic 3p —3s experiments, to
various theoretical results in Fig. 18. In particular, we
have plotted this quantity versus energy at a scattering

3s—3p Exchange Asymmetries for 6=30°
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FIG. 18. (a) Comparison of 10CC theoretical exchange asym-
metries for M; ==1 for fixed angle as a function of energy to
experimental data taken at 30°. Theoretical data are shown for
scattering angles of 30° (solid curve). (b) Theoretical (10CC) ex-
change asymmetries for M; ==+1 at 4.0 eV (dashed line), 4.1 eV
(solid line), and 4.2 eV (dotted line). In (a) and (b) the experi-
mental data are those of McClelland, Kelley, and Celotta [9].
The dotted horizontal lines indicate maximum and minimum al-
lowed values of this quantity.
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angle of 30° in Fig. 18(a) and versus scattering angle in
Fig. 18(b). The most striking feature in these figures is
the difference between the asymmetries for M; =+1 and
—1. In the former case, scattering is almost equally
probable into the singlet and the triplet spin channels,
while for the latter, the flux into these spin channels
varies with angle.

The measured 3s—3p asymmetries of McClelland,
Kelley, and Celotta [9] for M; =+ 1 agree very well with
our 10CC results, while for M; = —1 we find comparable
agreement except near 30°, where the experiment finds
the peak to be significantly larger than does the theory.
Note that the curves for nearby energies in Fig. 18(b) in-
dicate that this difference is not due to an energy
mismatch. Finally, we note that the energy dependence
in Fig. 18(a) reflects the complex variation with energy of
the 3s —3p ICS reported in Ref. [1].

4. Relative phase angles and the polarization ratio

In addition to the four parameters that determine the
magnitude of the s —p scattering amplitudes, three rela-
tive phase angles are required for a complete description
of the collision. As discussed in Sec. IID and Eq. (42),
we have chosen the singlet-triplet phase angle A ((0)
and the two alignment angles > *1y(8). The convergence
behavior of these quantities at 4.1 eV is shown in Figs. 19
and 20, respectively. Here we see that the triplet-singlet
phase angle A, ,(6) requires a more complete descrip-
tion of the target than the 7CC basis provides; we note
also the excellent agreement between Bray’s values and
our converged 10CC results.

While the triplet alignment angle is well represented in

3s—3p Triplet-Singlet Phase Angle at 4.1
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FIG. 19. Convergence of the 3s— 3p triplet-singlet phase an-
gle A, (0) at 4.1 eV as demonstrated by values calculated
from R matrices based on the following models: 11CC(6s)
(long-dashed curve), 11CC(6p) (short-dashed curve), 10CC(ND)
(dot-dashed curve), 10CC (solid curve), 7CC (medium dashed
curve), and 4CC (dotted curve). Also shown are theoretical data
calculated by Bray and McCarthy [39] (long-dash—short-dashed
curve).
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the 7CC calculation, the singlet angle is problematic,
though less so than the singlet angular-momentum
transfer. The differences between the 4CC, 7CC, and
10CC results are significant and at large angles our re-
sults disagree with values calculated by Bray even though
the 11CC results show our 10CC values to be well con-
verged.

Unfortunately, there are no direct measurements of the
relative phase angles; Hermann [7], however, measured a
spin-averaged alignment angle ¥ at 5.1 eV in experiments
with unpolarized electrons. In addition, the measure-
ment by Hegemann et al. [17] of the inelastic polariza-
tion ratio depends on the two triplet-singlet phase angles
A M, ,00 S well as the triplet-to-singlet ratio and the

angular-momentum  transfer. With  r(6) and
LR (3?_,3,,(0) in hand, one can therefore determine in-

formation about the triplet-singlet phase angle, and An-
dersen and Bartschat [52] have proposed an ingenious
theoretical scheme to extract these angles from measured

3s—3p Triplet Alignment Angle at 4.1 eV
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FIG. 20. Convergence behavior of the 3s—3p (a) triplet and
(b) singlet alignment angles 25*'y(8) at 4.1 eV from calculations
based on the following models: 11CC(6s) (long-dashed curve),
11CC(6p) (short-dashed curve), I0CC(ND) (dot-dashed curve),
10CC (solid curve), 7CC (medium dashed curve), and 4CC (dot-
ted curve). Also shown are theoretical data calculated by Bray
and McCarthy [39] (long-dash—short-dashed curve).
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3s—3p Electron Polarization Ratio

]
2
£
0.4
0 30 60 90 120 150 180
Angle (deg)
FIG. 21. Electron polarization ratio P/P, for inelastic

3s—3p scattering at 4.0 eV. Experimental data points were
measured by Hegemann et al. [17]. Our theoretical data are
shown for the following models and energies: 10CC at 4.1 eV
(solid curve), 10CC at 4.0 eV (long-dash-short-dashed curve),
7CC at 4.0 eV (medium-dashed curve), and 4CC at 4.0 eV (dot-
ted curve).

data.

The inelastic polarization ratio in Fig. 21 exhibits
dramatic exchange effects for all scattering angles except
the forward direction. By contrast to its angle depen-
dence, this ratio is insensitive to small changes in energy.
This supports the validity of using these data and those of
McClelland, Kelley, and Celotta [11], in spite of the ener-
gy mismatch between the measurements, in the pro-
cedure recommended by Andersen and Bartschat [52].

VI. CONCLUSION

The level of concordance seen in Sec. V between
theoretical and measured OA parameters for the 35— 3s
and 3s —3p transitions at experimental energies from 1.0
to 4.1 eV supports the wider-ranging survey of trends and
features in these parameters (and in others not yet mea-
sured) from threshold to 8.6 eV in the three-dimensional
figures of Sec. IV. At energies near the ionization
threshold at 5.14 eV, however, the true values of some of
these parameters may exhibit small-scale but pronounced
structures (akin to those near 4 eV) that do not appear in
the present theoretical results, because even our most ex-
tensive close-coupling calculations include no target
states above 4.6 eV, the threshold of the 6p excited state
of the Na valence electron. This omission should not,
however, affect significantly the overall trends apparent
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in these figures. We hope that the availability of these
overviews of the data will help guide future measure-
ments (e.g., away from energies where these parameters
are especially small).

Apart from these small-scale high-energy considera-
tions and our neglect of bound and continuum spin-orbit
interactions——an approximation that should be excellent
for the e-Na system—the primary aspect of the present
theoretical formulation that might affect the accuracy of
these results is the neglect of virtual excitation of the
valence electron to the continuum. Comparisons to the
theoretical results of Bray indicate that, at least at 4.1 eV,
this approximation also is very good.

The state-space formulation in Sec. II of the theory of
orientation and alignment in electron-atom scattering for
experiments involving initial-state preparation and/or
final-state analysis can easily be extended to other transi-
tions and systems. If, for example, characterization of
the target states requires a coupling scheme other than
the LS representation of Eq. (8), one need only replace
67’ with the appropriate eigenspace as defined by the
scattering event of interest. Of course, additional
modifications would be required if the spin-orbit interac-
tion were significantly stronger than in the e-Na system.

In the final paper in this series, we shall complete thus
study of low-energy e-Na scattering by extending the
present formulation and the calculations here and in Ref.
[1] of DCSs, ICSs, and OA parameters to excitation from
excited initial states of Na.
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