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The treatment of adiabatic perturbations within density-functional theory is examined, at arbi-
trary order of the perturbation expansion. Due to the extremal property of the energy functional,
standard variation-perturbation theorems can be used. The different methods (Sternheimer equa-
tion, extremal principle, Green s function, and sum over state) for obtaining the perturbation expan-
sion of the wave functions are presented. The invariance of the Hilbert space of occupied wave func-
tions with respect to a unitary transformation leads to the de6nition of a "parallel-transport-gauge"
and a "diagonal-gauge" perturbation expansion. Then, the general expressions are specialized for
the second, third, and fourth derivative of the energy, with an example of application of the method
up to third order.
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I. INTR.ODUCTION

The density-functional theory (DFT), introduced by
Hohenberg, Kohn, and Sham nearly 30 years ago [1—3], is
a powerful approach to the many-body problem in quan-
tum mechanics. Applications of this formalism range
from atomic [3], molecular [3], condensed matter [3], and
nuclear [4] physics to materials science [5]. In essence, the
theorems proved by Hohenberg and Kohn allow one to
replace the computation for the complicated many-body
ground-state fermionic wave function by th'e search for
the ground-state density, with a tremend. ous red.uction
of the number of degrees of &eedom. The subsequent
Kohn and Sham construction [2], thanks to the use of
a noninteracting kinetic energy functional, restricts our
ignorance of the explicit expression for the energy to a
small part of it, the exchange-correlation energy. The lat-
ter is found to be adequately mimicked by a local density
approximation [3]. In this framework, the bond lengths
between atoms in molecules or in a condensed phase are
found within a few percent of the experimental data.

The total energy and the charge density are basic quan-
tities of DFT, and give access to a wide number of exper-
imental observables. In the present paper, the focus will
be on the quantities obtained as derivatives of the total
energy (or the density) with respect to a small change
of the potential applied to the fermionic system. As an
example, the force exerted on a nucleus is equal to mi-
nus the derivative of the total energy of the system with
respect to the displacement of the atom. More exam-
ples will be given in the next section (force constants,
polariz ability, etc.) .

The calculation of such energy d.erivatives can be done
by 6nite-difFerence methods: the total energy is obtained
for slightly difI'erent values of the applied external Beld,
then the derivative of the total energy curve with respect
to the small disturbance is extracted numerically. Al-
though it is a very convenient method (since virtually no
extra coding eKort is required for speci6cally dealing with

derivatives), the recent practice has shown that pertur-
bation techniques within DFT are more powerful. Such
techniques, in the case of the calculation of the 6rst-order
derivative of wave functions, were discovered or rediscov-
ered independently by many groups, working in atomic,
molecular, or solid-state physics [6—14]. They are based
either on the Sternheimer equation, Green's functions,
sum-over-states techniques, or on the Hylleraas varia-
tional technique (see Sec. II). Applications of these per-
turbation techniques [15] were numerous [16—37].

A generalization to arbitrary order of perturbation,
based on the powerful 2n+1 theorem of perturbation the-
ory [38] and on generalized Sternheimer equations, was
proposed a few years ago [39], and applied recently, up
to third order [40—43]. It is the purpose of the present
paper to build upon these arbitrary order theoretical re-
sults, and to systematically derive new formulas &om a
more general &amework.

At the center of the present approach lies the nari-
ational principle (actually, a minimum principle, see
p. 1050 of Ref. [44]) obeyed by the DFT energy func-
tional. In 1961, Sinanoglu [45] noticed that the pertur-
bative expansion of a variational principle gives an in-
teresting mathematical structure, with a generic 2n + 1
theorem, and variational properties of even derivatives of
the energy.

In Sec. II the basic definitions needed for dealing with
perturbation theory are recalled, as well as some exam-
ple of perturbations and. related. observables. The previ-
ous theoretical works in density-functional perturbation
theory (DFPT) are briefly described. The mathematical
&amework obtained &om the consideration of perturba-
tion theory applied to a variational principle [46,47], fol-
lowing Sinanoglu, is summarized. This section, written
for internal completeness, could be skipped by the reader
seeking new results.

Section III gives the application of perturbation theory
to the Kohn-Sham energy to arbitrary order of pertur-
bation. New explicit expressions for the 2n+ 1 theorem
and the variational principle for the even orders of per-
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turbation in OFT are obtained. The invariance of the en-
ergy with respect to a "gauge" unitary transform within
the occupied valence states is studied in detail. It gives
the connection between the 2n + 1 theorem for OFT as
derived previously [39] and the present approach. The
Hylleraas variational approach [46] to the determination
of wave function derivatives and the Sternheimer equa-
tion [48] approach to them are also linked.

Section IU focuses on the lowest-order results, and
gives detailed analysis of derivatives up to fourth order,
as derived &om the arbitrary order expressions. An ap-
plication of the second- and third-order formulas is given,
and compared with the fi.nite-di6'erence results.

Finally, it is worthwhile to mention that the treatment
of perturbations within the Hartree-Fock approximation
gives a formalism (the coupled-perturbed Hartree-Fock
theory [49]), proposed almost 35 years ago, that exhibits
some similarities to the present one. This formalism has
been implemented by many different groups, and other
quantum chemistry methods have also been adapted to
the treatment of perturbations [49].

AV(r) = — +
/r —(R +A „e„)/ /r —R

f

'

Expanding this equation to first order gives

(3)

(4)

AV(r) =) E r (5)

Higher-order derivatives can easily be derived from
Eq. (3).

An applied external potential or field is another type
of perturbation. Such a perturbation, although restricted
to be static (or adiabatic) in the present study, could be
time dependent, [14,16,19,34,50]. Usually, one thinks of
a homogeneous electric field, but fi.elds that vary at the
atomic length scale can be considered, as well as dipo-
lar or quadrupolar fields. One can also consider vector
potentials (needed for the description of magnetic Gelds).

In the case of a homogeneous electric field, the poten-
tial that aKects an electron can be written as

II. BACKGROVND

A. Definitions

Let us consider one perturbation, associated with a
small parameter A. For a generic observable of the system
X(A), one writes the perturbation series as follows:

x(A) = x( ) + Ax(') + A'x(') + A~x(') +

The expansion coeKcients are not the derivatives of X(A)
with respect to A, but are related to them by a simple
numerical coefFicient:

for which a three-dimensional vector of small parameters
E, defining the direction of the electric field, has to be
specified. Let us choose the electric field (E, O, O), with
the single small parameter E, then

(6)

Note that for this perturbation LV is linear in the small
parameter E, while the potential change due to an atomic
displacement Eq. (3) has nonlinear contributions.

For all these cases, the perturbation treatment com-
petes with a "direct" approach, in which the total energy
change is computed in the unperturbed and perturbed
cases, separately, and then compared.

( ) 1 d X
~'f dPn

A=o
(2) C. Typical perturbations of periodic systems

The applied potential V(r), external to the electronic
system, is supposed known through all orders, while it is
our aim to calculate the perturbation expansion of other
quantities, such as the energy E or the density n(r)

B. Typical perturbations of molecular systems

Two kinds of perturbations have a particular signif-
icance for molecular systems: small displacements of
atoms and applied electromagnetic fields.

The perturbation corresponding to small displace-
ments of atoms, written 7~, is such that the nucleus
labeled r, located in A, with (positive) charge Z, is
displaced by the small amount A „along the direction
p (the unit vector along p is written e„). The change
of potential energy that aKects an electron located at r
(x, y, z) (negative charge —so the potential energy is the
opposite of the electrostatic potential) is a function of

In the crystalline case, changes of microscopic poten-
tials will be either commensurate with the crystalline
periodicity, or incommensurate. For example, phonons
with incommensurate wave vectors can be considered. A
Rnite-difFerence approach is unable to treat such pertur-
bations [51] while perturbation theory easily overcomes
the problem [39]. Homogeneous deformations of the
whole solid are needed to investigate elastic properties
of solids [17]. As a last example, in the framework of the
pseudopotential approximation, the "alchemical pertur-
bation" [23] transmutes the pseudopotential of one ionic
species into the pseudopotential of another ionic species.
This allows a convenient study of alloys or impurities,
vacancies or interstitials.

D. Response functions

Let us now examine the properties associated with
derivatives of the total energy with respect to the "atomic
displacement" and "homogeneous electric field" pertur-
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bations.
Minus the Brst derivative of the total energy with re-

spect to a nuclei displacement is the force exerted on this
nuclei:

derstand their di6'erences, one can apply them to the sim-
pler one-body Schrod. inger equation, at first ord.er. What
follows is a summary of this analysis.

The Schrodinger equation

[H(A) —E (A)]~4 (A)) = 0,

Minus the first derivative of the total energy with respect
to a homogeneous electric Beld. is the dipole moment in
the case of a molecule,

with the normalization condition

(e(X)~e(X)) = 1,

(8) is expanded at Brst order. This gives the Sternheimer
equation [48]

Physical properties connected with second derivatives of
total energy are often referred to as linear-response co-
eFicients. The connection between these two difkrent
views on the same property is not dificult to establish.
As an example, suppose that an electric Beld is applied
to a molecule that has no spontaneous dipole moment.
At the lowest order, the induced dipole moment is

p (E) = ) a pEp+

E )(o)~C(i)) (H E )(i)~c,(o))

and the constraint

(@(0}
~

@(1)) + (@(1)
~

O(0) ) 0

Because of the phase freedom

(14)

The second-rank tensor o. p is the polarizability tensor.
It describes the linear response of the molecule. But the
dipole moment of a molecule is connected to the deriva-
tive of the energy with respect to an electric Beld. , by
Eq. (8), so that

and the polarizabihty tensor is indeed a second-order
derivative of the energy.

The description of the molecular vibrations, in the har-
monic approximation, is based on the knowledge of the
"interatomic force constants, " second derivatives of the
total energy with respect to the change of nuclei posi-
tions, describing the forces that appear when a nucleus
is displaced from its equilibrium position, in the linear
regime.

Going in the nonlinear regime, one has higher-order
derivatives, such as the nonlinear dielectric tensor (es-
pecially interesting for nonlinear optics [52]) and anhar-
monic force constants (allowing one to predict vibrational
properties beyond the harmonic approximation [53]). In
the study of solid-state phase transitions, derivatives up
to the eighth order could be needed [54].

Also of interest are the mixed. derivatives of the total
energy with respect to diferent perturbations, but these
will not be treated in the present paper. They are ad-
dressed in Refs. [10—13,20—39].

E. Sum-over-states approach, Creen's functions,
Sternbeixner eguation,

and. Hylleraas variational principle

Diferent techniques have been proposed to address the
treatment of perturbations within DFT. In order to un-

of Eqs. (11) and (12), one can choose to work with the
stronger constraint [compare with Eq. (14)]

(16)

Thanks to this result (actually, the Hellmann-Feynman
theorem [55]), the right-hand side of the Sternheimer
equation is known, and the only unknown is the first-
order wave function contained in the left-hand side. Thus
the Sternheimer equation is a nonhomogeneous linear dif-
ferential equation that can be solved by diferent algo-
rithms. This is especially easy for atomic problems, the
original domain of application of this technique [6—8,14].

Another method appears if the Green's function in the
subspace perpendicular to ~4~ ~) is explicitly known (this
occurs in one-dimensional geometries [6]). The Green's
function is defined as

G~ (E ) = [Pg (E —H)~ lP~ ] (18)

with P~ being the projector on the subspace orthogonal
to ~4 ). Then, the Sternheimer equation becomes

~c, ( )) G (E )H( ) ~c, ( ))

which can be the starting point of a numerical algorithm.
In an eventual further step, the Green's function can

be expressed as a sum over states as usual in perturbation

The first-order Hamiltonian is supposed to be known,
while our aim is to determine the first-order wave func-
tion and energies.

The premultiplication of the Sternheimer equation (13)
by the wave function (C

~

gives the first-order eigenen-
ergy

E(i) —(C, (o)~H(i)~c (o))
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theory, so that

I@"
&

= ) IC"'& (c"l~"IC"
&

p
(20)

but the summation, over an infinite number of states,
must usually be truncated, in practical problems (note
that if a finite basis set is used, the truncation is naturally
imposed) .

Finally, the Hylleraas variational principle [46], derived
from the perturbation expansion of the Rayleigh-Ritz
variational principle, can as well be used:

Gonze, Allan, and Teter [13] for second-order DFPT, also
with numerous applications [24].

When the (finite) basis set used for the represen-
tation of the wave function depends on the perturba-
tion [58], "incomplete basis set" corrections must be
introduced, in the spirit of "Pulay forces" within the
Hellmann-Feynmann theorem [59]. This problem has
also been addressed by difFerent groups [12,31,32,35,37]
(see Sec. III E).

2. Higher-order r esponses

E(2) / E(2) [C,(o) C,(i)0 — constrained ( O ' O, trial]

= (c,"I„.,III(') Ic,")

+(@o'l~"'IOo ') + (~' 'III" I@o,I„.i) . (»)
Note that the functional E and the value that this func-
tional can take E are distinguished in Eq. (21) as well
as in what follows. Equation (21) is a variational ex-

pression for Eo with respect to 4o g $
under the con-(2) ~ (i)

straint Eq. (14). When the latter is equal to 4o, the
variational expression is minimum. So, minimization al-
gorithms (like the conjugate-gradient algorithm [56]) can
be used in this case in order to find the first-order wave
function. Although the Sternheimer equation, Green's
function method, the sum-over-states approach, and the
Hylleraas variational principle lead to the same Co
their algorithmic implementation can di8'er widely, and,
depending on the system or the basis set, one method
might be preferable to another.

The theory of higher-order derivatives has been stud-
ied by Gonze and Vigneron [39]. They have shown how
the 2n+ 1 theorem of perturbation theory generalizes to
the DFPT. For example, it is possible to calculate eas-
ily the third-order derivative of the total energy by using
the first-order derivative of the wave functions. Succes-
sive orders of perturbation are obtained iteratively, the
solution of one given order allowing one to begin solving
for the next higher order, for which a generalized Stern-
heimer equation is available.

The 2n + 1 theorem and Sternheimer equations were
(implicitly) expressed in that paper in the diagonal gauge
(see Sec. III). The use of the parallel transport gauge is
more convenient, as shown in Sec. III of the present paper
for arbitrary order of perturbation, and independently by
Debernardi and Baroru [41] for the third-order case.

Connected work has been presented recently by Dal
Corso and Mauri [42], who work in a generalization of the
Kohn-Sham functional to nonorthogonal orbitals. As in
the present work, they rely on the variational principle.

F. Development of DFPT
Linear responses

In the atomic physics community, the perturbative cal-
culation of the linear response to homogeneous electric
field perturbations within DFT was introduced [58] by
Zangwill and Soven [7], Stott and Zaremba [6], and Ma-
han [8].

These authors relied on a generalization of the Stern-
heimer equation, or on the Green's function technique.
More information can be found in the book by Mahan
[14]. Another approach, advocated by Ghosh and Deb
[9], relies on the Hylleraas variational principle, and has
also been used extensively [16].

The study of other perturbations was considered in
the solid-state and quantum chemistry community, es-
pecially the response to displacement of atoms. Inde-
pendently, Zein [10] and Baroni, Giannozzi, and Testa
[ll] have developed a Sternheimer equation approach to
the calculation of dift'erent properties of the solid state,
such as phonon &equencies, elastic constants, dielec-
tric tensor, e8'ective charges, and piezoelectric tensors
[17,18,20—23,25—30]. Variations on a similar theme us-
ing sum over states can be found in Refs. [12,31,32] (de-
velopment of the formalism for molecular calculations).
The Hylleraas variational technique has been adapted by

G. Perturbation theory and the variational principle

When perturbation theory is applied to a quantity
for which a variational principle holds, an interesting
mathematical structure is observed: variational princi-
ples for even orders of perturbation, a "2n+ 1 theorem, "
as well as "interchange theorems. " The early review of
Hirschfelder, Byers, Brown, and Epstein [38] mentions
results obtained for unconstrained functionals, while the
extension to constrained functionals can be found in
Refs. [61,47]. The notation of Ref. [47] will be used in
what follows.

Expansion of an ttnconstrained
variational principle

Let Eo(A) be an energy function of A, obtained by min-
imization of the functional E(~) [4t»ai] in the space of
possible wave functions 4t„- ~.

The value of Cq„. ~ at the minimum, for a given value of
A, is written @o(A).
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As a erst interesting result, the knowledge of the ex-
pansion of 40(A) up to order n allows one to determine
the expansion of Eo(A) up to order 2n+ 1. Explicitly

271,+1)
2 +1) E + ~ @(

O
— (A) g O

i=O
(23)

At order 2n, one even finds a variational (miriimum) prin-
ciple:

(2n}

Eo = min E(),) 5 A*@o + A"84'g(.-) . &- . ()
~c, ( . '

)

2. Expansion of a variational princip/e
valid under constr'aints

The theory of Ref. [47] was given for a minimization
problem under a single constraint, and is now trivially
generalized to minimizations under many constraints.
The Lagrange Inultiplier method is central to this ap-
proach, and is recalled in the Appendix. The minimiza-
tion of E(~) [C(t„ i] is performed under a set of K con-
straints,

C~ (),) [C'i»ai] = 0 for n = 1, . . . , N

('4) so that
At the minimum, b4q is equal to @o",and this fact can
be the basis of a method to And Co(, in the spirit of the
Hylleraas variational principle. So, for each even deriva-
tive of the energy, there is a variational principle.

Eo(A) = min (E(),) [4c„. i]) .
~, (A) t trialj—

The 2n+ 1 theorem becomes

(26)

n N

Eo
"+ = E(P) A'Co' — A, o A C (g)

i=O Ck= 1

(an+1)

) AC")
i=O

(27)

and the even-ord. er variational principles become

min s(„) ) x'e(o'(+x"se~ —) x,o(&)(,(&) ).&'e' +&"&ec
( I,84 satisfying E(i. (29) i=0 ex=1 i=0

(28)

n —1 ( )

( (),) ) A*Ceo(' + A"hCi
i=0

=O. (29)

E[c'-] = ):(~'-IT+ I@-) +EH-[ ] .

The "interaction energy" EH„,[n] is the sum of Hartree
and exchange-correlation parts [3],

Again, the knowledge of the expansion of @e(A) up to
order n allows one to know the expansion of Eo(A) up to
order 2n+ 1. More explicit expressions corresponding to
Eqs. (27) and (28) are given in Ref. [47].

To summarize, with or without constraints, a 2n+ 1
theorem is derived, as well as variational principles for
even-order derivatives of the energy. The expressions
that appear in the case with constraints include the func-
tional and. its derivative, but also the Lagrange multiplier
and. its derivative, while, in that case, the variational
principles for even derivatives of the energy are obtained
under constraints.

n(r) = ) C*(r)4 (r) . (32)

The expression Eq. (30) must be minimized with respect
to variations of the wave functions, subject to the follow-
ing orthonormalization constraints [62]:

(C'-I~is) = ~-f3

EH„.[n] = Eff [n] + E„.[n], (31)

that depend on the Kohn-Sham (KS) orbitals IQ )
through the d.ensity

III. PEBTUB.BATIVE TB.EATMENT
OF THE KOHN-SHAM ENEB.CY FUNCTIONAL

A. Variational formulation
of the Kohn-Sham energy functional

First, the basic equations of density-functional formal-
ism are written in a form convenient for application of
perturbation theory. The energy of the electronic system
[61] is given by

valid for all "occupied" orbitals (n and P run from 1 to
N, where N is the number of orbitals, equal to half the
number of electrons if the system is spin degenerate).
Equation (33) easily generalizes to the spin DFT [3].

The Lagrange multiplier method, applied to this mini-
mization problem, allows one to recover the usual Kohn-
Sham equations, modulo a unitary transform within the
space of occupied. orbitals, as follows. One Lagrange
multiplier for each orthonormalization constraint is in-
troduced, such that
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E[C ] = ) (4 IT+ vlC ) + EH„.[n]

—). ~p-[(C'-l@p) —h-p] .

The corresponding Lagrange-Euler equation is

(34)

the Hamiltonian between the two corresponding wave
functlOnS.

Note the important point that the eigenvalues, the La-
grange parameters, and the energy of the system are all
diBerent quantities, while in the similar derivation of the
one-body Schrodinger equation from the Ritz variational
principle all are identical.

HIC. ) = ) Ap lcp),
@=1

B. Derivatives of energy, density,
and wame functions

where the Hamiltonian

0 = + + &Ks = T + U + UH~c (36)

is self-consistently determined: it includes the Hartree
and exchange-correlation potential (a local potential, but
a nonlocal functional of the density)

Now, we proceed to the perturbation expansion of
these basic equations. We do not impose a definite gauge
(this problem will be addressed later), and work with
Lagrange multipliers. The perturbation expansion of
Eqs. (32), (33), (35)—(37), and (42) is as follows.

(1) The density formula Eq. (32) becomes, at order i,

hEH„. [n]
hn(r)

(37)
n(')(. ) = Q QC(') (r)e('-j)(r) . (43)

Equation (35), valid for n = 1, . . . , N, obviously differs
from the Kohn-Sham equation

(2) The orthonormalization conditions Eq. (33) be-
come, at order i,

HIC'-) = s-IC'-) (38)

The difference stems from the invariance of the total en-
ergy and density under a unitary transform among the
occupied wave functions (gauge freedom). Indeed, if U is
an (N x %) unitary matrix:

N N

IU ']-p = [U']-p o»-p = ) U.*,+» = ).U,*-U»

2

) {C(j)l@p' ) =0 for i) 1.
j=O

(3) Equation (35) becomes, at order i,

i N

) H(~}
I
C, (*—g) ) ) ) A(~) IC,

(*—~))

j=OP=O

(44)

(45)

(39)
and if another set of wave functions IC' ) is de6ned as

IC"-) = Q. U-IC' ) (40)
g=l

then both sets of wave functions l@ ) and I4' ) give the
same density, electronic energy, and fulfill the orthonor-
malization constraints Eq. (33). This gauge freedom
[group U(K)) is much wider than the one obtained by
simply changing the phase of each Kohn-Sham orbital.

Now, let us suppose that the set of wave functions I4 )
is the solution of the Kohn-Sham equations (38), and
IO' ) is the solution of Eq. (35). It can be checked that
the unitary matrix U needed in Eq. (40) is the one that
diagonalizes the matrix of Lagrange parameters:

T&'& +,&'& Tq'y +,q'y +,(') (46)

(5) The Hartree and exchange-correlation potential
(37) at order i is given by

(')
(,) hEH„. [n(A)]

hn(r)

bEH„.[n(A) ]

hn(r)

hZ„„, P;, W~n(~)

hn(r)

(47)

(48)

(4) The expression for the Hamiltonian Eq. (36) be-
comes, at order i,

) . [U]-p~p~[U']vn = h-n&- .
P,g=1

(41) (6) The Lagrange multiplier Eq. (42) becomes, at order

The Lagrange parameters are obtained by taking the
scalar product of Eq. (35) with an occupied wave func-
tion, which gives

Ap = {CplHIC ) . (42)

So the Lagrange parameters are the matrix elements of

2 2

P(i) ) ) (c (j) IH(i —j—k) l@(A))

j=O k=-0
(49)

Finally, Eq. (27) or (28), applied to the variational ex-

pression Eq. (40), gives (for m = 2n or m = 2n + 1)
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z-) =) ) QQ~(~-& —a-i)(e(')l(T+. )(")le('))
k=o l=o

I G™
+

~ dp~ H3CC

N n n

) ) ~'e(')*(r) ) ~"e(")(r)
j=o k=o g —O

n N

P ~(~-& —k —i)A,'".'(e~~)le,"))+ ) (5O)
n,P=l j=O k=O l=o

Thanks to Eqs. (43), (44), (46), and (48), this equation can be worked out to give

@(na)

ex=1 j=O k=o k=o L,=On, P=1 j=-0
) ~(~-& —k —i)(e~')lII(")le(')) —) ) Q ) ~(~n-& —~ —l)A,'".)(e~')le,"))

) s(~ —
&

n=l j=O k=rn —n I,=O

1
n

t)(c( )l(T+ „)( )le()) + E ) p ~( ) (51)

As promised, only wave functions up to order n are
needed, and, for m = 2n, this functional is variational
(actually minimal) with respect to the nth-order wave
functions, under the constraints Eq. (44). Although the
expansions of the kinetic and potential operators up to
order m appear in this expression, these are supposed
to be known, while the expa, nsions of the Hamiltonian,
the density, or the exchange-correlation potential that
are not an input of the problem, only appear up to order
m —n —1 (that is, either n —1 or n).

Equations (43) and (46)—(48) were already obtained in
Ref. [39], while Eqs. (44), (45), and (49)—(51) differ from
their counterparts in the same paper. In particular, the
minimal property of Eq. (51) is not shared by Eq. (A3)
of Ref. [39].

At this level, we have an iterative scheme for treat-
ing perturbations at arbitrary order: suppose that the
wave function density and Hamiltonian have been calcu-
lated up to order n —1, then the variational principle
Eq. (51) for order 2n can be used to generate the nth-
order derivative of the wave functions, concurrently with
the nth-order derivative of the Hamiltonian, density, or
exchange-correlation potential.

As an alternative scheme, note that Eq. (45) can be
cast into the form of a generalized Sternheimer equation
[see next section, Eq. (54)], that can also be solved self-
consistently with Eqs. (43), (44), (46), (48), and (49).

What about higher-order wave functions? Let us first
transform Eq. (45) to a modified Sternheimer equation (it
is called [8] "modified" because of the self-consistency),

z

(II(o) e(o)) le(')) ) ~II(i) le(' —i))a e ~ ' a

) A(i) lc, ('
—i))

P~ P )
The projection of this equation on the subspace of unoc-
cupied unperturbed wave functions gives

y7 (~(o) e(o))$7 le(~)) ) / II(i) le(~ —j))
j=l

(55)

) (e( )le(' —
))

(e(') leIi') + (e.') leI~") = & (56)

, 0 fori =1.

where P is the projector on that subspace. The part
of the wave functions that is contained in the subspace
spanned by the occupied (valence) wave functions is to be
determined by the expansion of the orthonormalization
condition Eq. (44) and the choice of gauge. The first one
fixes the symmetric combination

Now, we discuss the choice of the gauge. There is no
reason not to take zero-order wave functions that satisfy
the Kahn-Sham equation (38). This means

Ap
——bp r(o)

The parallel-transport gauge is defined by

so that, in this gauge,

—-'Q(e ' lc
' '

) for i & 1

(53) , 0 fori =1. (59)
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It is the gauge that gives the smallest admixture of unper-
turbed occupied wave functions in higher-order deriva-
tives of wave functions. Equations (56), (58), and (59)
are suKcient for a complete determination of the va-
lence subspace projection of the higher-order wave func-
tions. Note that the first ord-er derivatives of the wave
functions are perpendicular to the ground-state occupied
wave functions, while this is no longer true for higher
orders. Nevertheless, the part of the higher-order wave
functions that belongs to the valence subspace is entirely
fixed by Eq. (58), which proves useful for practical im-
plementation. This result was not obtained in Ref. [39].

Combined with the Sternheimer equation (55) or with
the variational principle Eq. (51), these two equations
determine the higher-order wave functions completely.

As for the case of the one-body Hamiltonian, there are
now four diferent ways of calculating the higher-order
wave functions: either minimize Eq. (51), for m = 2n,
under the constraints Eqs. (56), (58), and (59), or self-
consistently solve the systems of Eqs. (43), (46), (48),
(49), (56), (57), and either the Sternheimer equation
(55), or a Green s function version of it [in the spirit of
Eq. (22)] or a sum-over-states version of it [in the spirit
of Eq. (23)].

When the wave functions are known through order n,
the energy can be calculated up to order 2n + 1 thanks
to Eq. (51).

D. The diagonal gauge

In some cases, one is interested in the derivative of
the Kohn-Sham eigenenergies. In the parallel-transport
gauge, the Lagrange multiplier matrix is not diagonal.
So, the explicit condition on the wave function Eqs. (58)
and (59) of the parallel-transport gauge should be re-
placed by the requirement that the nondiagonal elements
of the Lagrange multiplier matrix be zero at all orders.
Let us call this gauge the "diagonal" gauge. In that
gauge, the diagonal Lagrange multipliers are equal to the
Kohn-Sham eigenenergies.

This condition is more diKcult to implement in practi-
cal calculation than the parallel-transport gauge. More-
over, this requirement is not enough to fix the wave func-
tions: erst, each wave function still has a phase indeter-
minacy, as in the one-body case, second, in the case of de-
generacy, there is still another unitary symmetry present
beyond the "diagonal-gauge" requirement.

In practice, one can consider that the perturbation ex-
pansion has been solved in the parallel-transport gauge
(so the expansion of the Lagrange multiplier matrix is
considered known up to the needed order), and that the
transformation to the diagonal gauge is performed af-
terwards. In order to do this, one needs to build the
perturbation expansion of the unitary matrix connecting
the diff'erent wave functions in Eq. (40). Let us define

lb~~ ) to be the wave functions in the parallel-transport
gauge, and lb~ ) to be the wave functions in the diago-
nal gauge. The unitary matrix U is defined as

or

(61)

The basic. results, Eqs. (39) and (41), for the unitary
matrix were already mentioned. Prom these equations,
one can also derive

(62)

whose perturbation expansion gives

p(&)U(' —~)+ & (~) U(' &)*
p~ gp / g gp (63)

or

(64)

) A")U(*-')* (~) U(j —j)y
nP

. (65)

When P and g are diff'erent, we get

(j)U('-~) +

vP (66)

an equation for the nondiagonal part of the unitary ma-
trix of order i in terms of unitary matrices of order less
than i, and. eigenvalues of order up to i.

Note that there can be some problem with this equa-
tion when the deiiominator vanishes (this happens when
valence eigenenergies are degenerate). Actually, one
could then define the diagonal gauge by making use of d.e-
generate perturbation theory, or use a paraHel-transport
gauge within the space of degenerate wave functions.
Leaving this problem for further studies, we continue the
analysis.

In order to obtain the eigenvalues of order i, P and i)
are taken equal in Eq. (65), as follows:

The zero-order Lagrange multiplier matrix is known [see
Eq. (52)], which gives

(60)
and by Eq. (53),

(&) U (~ &)*
PP (67)



fori)1 (68)

, A&& fore=1.(i) (69)

(7O)

glvlng

fori &1

i 0 fort=1.
(71)
(72)

The imaginary part of the diagonal elements of the uni-
tary matrix is not determined by this equation, as a con-
sequence of the phase freedom of each wave function.
One can use the following gauge:

(i) + (i)

The relationship between perturbation expansion of wave
functions in the parallel-transport gauge and. the diagonal
gauge is worked out from Eq. (61), and one obtains

~@(') ) ) - ) U( )*~@('—')) (74)

It is possible to show that the results of Ref. [39] were
actually obtained in the diagonal gauge, but the corre-
sponding constraints were not made explicit.

E. Incoxnplete basis set corrections

Until now, it has been supposed. that the ground-state
wave function and its perturbation expansion can be de-
termined with in'. nite accuracy. This is, of course, not
the case. In particular, the representation of the wave
function is often d.one in terms of a Gnite set of M basis
functions, with M suKciently large. Within this basis
set, the variational principle Eq. (34) will be used in or-
der to determine the optimal set of coeKcients describing
the wave function:

(75)

The eigenvalues of order i are given in terms of unitary
matrices of order less than i, and Lagrange multipliers of
order up to i. We still need an equation for the diagonal
part of the unitary matrix. It is easily obtained from the
perturbation expansion of the unitary condition Eq. (39),
for o. =P,

Often, the basis functions depend on the perturbation
(the typical case being a basis of Gaussian functions at-
tached to the atomic locations, while the perturbation is
an atomic displacement). Equation (74) implies

@(')(r) Q) c(i)f('—i)(r)
u=&i =0

(76)

So, the change in the approximate wave function, at or-
der i, must be computed by taking into account not only
changes in the coeKcient that multiply the basis func-
tions, but also changes in the basis functions. The latter
are usually known, so that the coeKcients are unknown,
as one could have expected. When the present scheme is
adapted for such an incomplete basis set, the quantities
to be varied are no longer the wave functions, but the
coeKcients describing it within the basis set. In terms of
the expansion of these coefBcients, it will be possible to
And a 2n + 1 theorem, as well as variational principles
for the even-order terms of the energy expansion. The
adaptation of the scheme presented here is not diKcult,
from a technical point of view. See Ref. [35] for the cor-
responding second-order expression.

Also, the representation of other quantities, such as
densities, could depend on basis functions, in which case
similar corrections must be taken into account [12,31,32].
But, when the basis functions do not depend on the per-
turbation (the case of a homogeneous electric field, or
atomic displacements when plane-wave expansions are
used), this complication does not appear. The applica-
tion presented in Sec. IV 3 will make use of this fact.

F. In8uence of the perturbation on the form
of kinetic energy, Hartree functional,
and exchange-correlation functional

In Secs. IIIB—IIID, very general formulas have been
derived for an arbitrary interaction energy or kinetic op-
erator that could depend on the smaller parameter of the
perturbation in an arbitrary way. It is now in order to
discuss cases in which this full dependence is not found,
and the subsequent simplifications that occur.

The kinetic energy operator, and the form of the
Hartree energy are, in most of the cases, insensitive to
the applied perturbation (they are insensitive to the small
parameter of all the perturbation mentioned in Sec. II B).
An exception occurs when an expansion or contraction is
applied to a solid [17]. By contrast, for all the perturba-
tions mentioned in Sees. IIB and IIC, the local part of
the potential will be modified.

The form of the exchange-correlation energy can be
affected by the perturbation in a few cases: when, for
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A=O

(77)

~"....(r) = (~ -[~"](r))"
1 d' ~EH„.[n(')]
i! dA' 6n(r)

A=O

(78)

numerical reasons, the density is Btted by a few functions
that depend on the atomic positions [12,31—33], or when a
nonlinear exchange-correlation core correction is present
[63]; also, when an expansion or contraction is applied to
a solid [17,64].

For the consideration of low-order expansions, pre-
sented in the next section, the following notations are
introduced:

IV. THE LOV7EST OFIDEAS OF PERTURBATION
IN DFPT

The general expressions of the preceding section are
now specialized to the first-, second-, third —,and fourth-
order derivatives of the energy, the most important for
practical applications. The case in which the perturba-
tion does not afFect the kinetic energy and the Hartree
and exchange-correlation energy is treated explicitly, as
well as the case in which the perturbation takes the form
of a simple change of local potential. The latter form
is found when an electric 6.eld is applied to a finite sys-
tem, or when an atomic displacement is treated in an all-
electron &amework, with the Coulombic potential. In a
pseudopotential framework, an atomic displacement will
usually lead to a nonlocal change in the potential, but
the form of the kinetic and interaction energies will not
change, except if a nonlinear core correction is taken into
account.

(,), 1 d' szH„. [n(')]
KH„, 0 r, r'

i!dA' bn(r)bn(r')
A=O

(79)
A. The first-order energy

If the form of the exchange-correlation functional does
not depend on the perturbation, all the quantities
Eqs. (77)—(79) vanish for i difFerent than 0.

Taking now the most used approximation to the
exchange-correlation functional, the local density approx-
imation (LDA), one has

The first-order derivative of the electronic energy is

N
@()) ) (C,(o)l(T+ „)(i)lc,(o)) + E [n(0)]

Exc,LDA [n] = e„.(n(r) )n(r) dr, (80)

~...LD~(r) = p .(n(r)), (81)

where

where e„,(n) is the exchange-correlation energy per parti-
cle in a homogeneous electron gas [3]. Associated deriva-
tives, Eqs. (82) and (83), for i = 0, become

This formula is the translation of the Hellmann-Feynman
theorem to the density-functional formalism [3]. The sec-
ond part will be nonzero only if the interaction func-
tional of the density has an explicit dependence on A.

No knowledge of the perturbed wave functions is needed
in Eq. (86), which is a considerable advantage.

If the kinetic and interaction energies do not depend
explicitly on the perturbation, one has

and

d(ne„, )
dA

(82) N
E(&) ) (C(o)l ())lc(o)) (87)

~xc,LD&(r, r ) = 8(r —r ) .y dpxc
dA

n(r)
(83) and if, moreover, the change in the potential is local, one

has

In the generalized gradient approximation (GGA), v( ) (r)n( ) (r)dr, (88)

@ .

aalu�(al

= f f„.(a(r), g(r)) dr, (84)

g(r) = l&n(r)l

the function f„,depends on the density and its gradient,

a particularly simple formula, in which only the ground-
state density and first-order external potential change
appear. Note that Eq. (87) opens the way to a state-
by-state decomposition of E~ ), since one can de6ne

and can take many difFerent forms [65]. Derivatives can
be found using either the calculus of variation, as in
Refs. [26] or [65], or a more elaborate treatment, follow-
ing Ref. [33]. such that

@(&) —(@(o)lg(&) l@(0))
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N
@(i) —) @(i) (9o)

B. The second-order energy: Variational form

This can prove useful in quantifying (to first order) the
orbital origin of changes in energy.

The following expression is variational (a minimum

principle) with respect to I@ ):(~) .

E"= ) [(C'."I{T+~)"I@.")+ (~."l(H —s-)"IC'.")+ (C'."I{T+~)"l~.")

+(C."I{T+ )"IC.")1+—,

d SZ „.[ (')]
dA 6n(r)

A=O A=o

(0))Hxc[n ] (i) { )
(i ) { I)d

hn{r) bn(r')

1 d2n(') (r) dr + —,EH„.[n(') ]2 dA2 (91)

(i)(r) ) @(o)*(r)@(i)(r)+ @(i)*(r)c(o)(r) (92)

+(g (o) I(7 + „)( ) I@(o)) + @ '
(98)

The functional defined in Eq. (91) is minimal with respect
to the erst-order wave functions, subject to the following
constraints:

It is now easy to see the consequence of the minimum
principle property of Eq. (91): its quadratic part E „d
has a positive-definite kernel. This quadratic part is
made of two terms. The erst,

(4"l~( ') + (~"lc ( ') = 0

In the parallel-transport gauge, one has

(93)
& (C."I(II- .)')Ic"), {99)

The latter requirement means that the projection of the
first-order wave functions on the valence bands vanishes,
in the parallel-transport gauge.

As promised, only zeroth- and first-order wave func-
tions are needed in Eq. (91). The first-order Lagrange
multipliers are not needed.

The terms in Eq. (91) have either quadratic or linear
dependency on the first-order wave functions or are in-
dependent of them. Let us rewrite Eq. (91) using this
information, and the definitions given in Sec. IIIF:

is a sum the index of which runs on all valence band
wave functions: for each o. , the di8'erence between the
expectation values of H~ ) and c is computed. Because
the first-order wave functions entering this expression are
constrained to be orthogonal to the valence Hilbert space
[due to Eq. (94)], the matrix eleznent of the Hamiltonian
will always be larger or equal to the matrix element of
the lowest unoccupied state eigenvalue:

(@(i)I(II, )(o) Ic,(i))

with

E(2)
quad lin ind (95)

so that the kernel of Eq. (99) is obviously positive defi-
nite.

The second part of the quadratic term in Eq. (84) is

KH), o(r, r')n (r)n )(r')drdr',

(96)

z') = ) (c(')I(II —.)(')Ic('))
ex=1

1+—
2

KH„, 0 (r, r') n( ) (r)n( ) (r') dr dr' . (101)

Note that n( ) (r) is a linear functional of the first-
order wave functions, see Eq. (92). Introducing again
the distinction between the Hartree and the exchange-
correlation part, the kernel KH( ), o(r, r') is given by

) (c,(i)l{T+ „+ „ )(i)le, (o))
ca= 1

+ (c,(o)l{T+ + „ )( )IC, ( ))

Ir —r'I bn(r) hn(r') (102)

The Hartree part in this equation is positive definite. In
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order to analyze the exchange-correlation part, we need
an explicit expression. Working in the I DA, we find that
this part is negative definite:

b2E„.[n(o)] dp„.
bn(r) bn(r') dn

b(r —r') (103)

since the derivative of the local exchange-correlation po-
tential with respect to the density is always negative [3].

Although the exchange-correlation part does not have
the same sign as the one-body and Hartree kernels, the
positive-definite character of the quadratic part Eq. (96)
is established through the minimal property of Eq. (91).
This result makes sense, in that the exchange-correlation
part is usually much smaller than either the kinetic or
the Hartree energy.

It is also possible to gain knowledge of the sign of the
diB'erent terms in Eq. (95) after the minimization pro-
cedure. Note that the quadratic part, when considered
alone, is minimal when the first-order wave functions van-
ish (its value is zero). But, the part of Eq. (95) depending
linearly on the first-order wave functions, Eq. (97), can
become negative when the wave functions do not vanish,
and gives a "force," driving the first-order wave functions
away kom zero in the minimization process. In this case,
the sum of these two terms will decrease down to a min-
imum, negative, value. So, at the minimum,

E(2) & @(2)
1XlCi (1o5)

@( ) ) (@(i)~v(1) ~@(o)) +. (@(o)[v(1)]@(i)) (1()6)

) (C,(o)~v(2)] C, (o))

Moreover, if the perturbation affects only the local po-
tential, one gets

( )( ) ( )(r)d (1os)

(2)E- d— v(') (r) n(') (r)dr .

The formulas contained in the present subsection were
applied in Refs. [9,13,16,24].

Finally, if the perturbation does not afFect the explicit
form of the kinetic energy, and Hartree and exchange-
correlation energy, Eqs. (97) and (98) reduce to

0& E „~+E),.„.(2) (2) (1o4) C. The third-order energy

As a consequence, The third-order electronic energy is given by

E(') = p [(4'(') l(T+ v)(') lc, (o)) + (C, (» III(') I@(')) + (4'(') I(T+ v)(') l@(o))

A=O

+(4'."I(T + v)'" I@.")]— ). Ap". (@."IC'p ')
n, P=1

+- "", ' „"() "( ') "( ")d d 'd "
6 bn(r)bn(r')bn(r")

d b'E n(0)Hxc[ ] (i)
( )

(i, ) ( I)d d
2 dA bn(r)bn(r')

1 G

2 dA2 bn r 6 dA3
A 0

(11o)

Again, only zero- and first-order wave functions are needed in Eq. (110).
If the perturbation does not a8'ect the explicit form of the kinetic energy and Hartree and exchange-correlation

energy, one gets [41]

Z(') = ) ((~(') lv(') Ic'(')) + (C'(') la(') IC,(») + (C'(o) lv(') IC'(')) + (C'(o) lv(') IC'(i)))

N

y
- &(i) (@(i)~@(i)) + 1 () „n(') (r)n(') (r') n(') (r")dr dr' dr",

Note that if the Hartree term (a quadratic form of the density) does not depend explicitly on the perturbation, its
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third-order derivative varushes. Consequently, the II subscript in Eq. (111) has been omitted.
Moreover, if the perturbation a8'ects only the local potential part of the energy expression, one gets

( 1V

@(s) ) (4 (i) IH(i) I@(i))
b' E„.[n(')] (,)

bn(r) $n(r') bn(r")

N

) A(') (4 (') Ie")
E- p=

xn~ ~(r')n~ ~(r")dr dr' dr" + f v~ ~(r)n~ ~(r)dr y f v~ ~(r)n~ ~(r)dr .

D. The fourth-order energy: Variational form

The complete fourth-order expression derived Rom Eq. (57) will not be written here [66]. If the kinetic operator
and the form of the exchange-correlation energy do not depend upon the small parameter, and if the change in the
potential is linear in this small parameter, the fourth-order expression simplifies as

&"= ) [(@."1(H —~-)"I4'.")+ (~."IH" I4'.")+ (4'."l~"I4'.")]
N

—) A(')«~('l~"&+(~.')l~"))+-'
2 bn(r) bn(r')

a. ,P=1 A=O

n(') (r)n(') (r') dr dr'

1+—
24

n( )(r)n( )(r')n( (r")n( )(r"')dr dr'dr"dr"',

( )
n( )(r)n( )(r')n( )(r")dr dr'dr"

A=o

bn(r) bn(r') bn(r") bn(r'") (113)

with N

N

n )(r) = ) 4( )*(r)4 (r) + 4~ *(r)4( )(r)
M=1

+4, (2)*(r)@(o)(r) (114)

The functional defined in Eq. (113) is minimal with re-
spect to the first-order wave functions, subject to the
following constraints:

while

KH„, o(r, r')n(~) (r)n(2) (r') dr dr',

(»8)

(@."I~p') + (4'."I4'p') + (4'."I@p') = o .
n(2)(r) = ) 4~ )*(r)4 (r) + 4 *(r)4( )(r) . (119)

In the parallel-transport gauge, one has

(116)

The latter requirement fixes the projection of the first-
order wave functions on the valence bands.

As promised, only zeroth-, first-, and second-order
wave functions are needed in Eq. (113). Note that the
second-order Lagrange multipliers are not needed.

In order to make apparent the variational property of
the fourth-order electronic energy with respect to second-
order wave functions, following Eqs. (95)—(98), one can
write the fourth-order derivative of the total energy,
Eq. (113),as

The other parts of Eq. (117) are easily derived, and will
not be mentioned here for the sake of brevity.

As in the second-order expression Eq. (95), Eq. (117)
is a quadratic form on the second-order wave function.
Note that the kernel of the quadratic part, Eq. (118), is
exactly the same as the kernel of the quadratic part of the
second-order expression, Eq. (96). Hence the analysis of
this kernel that was done in Sec. IVB is also valid for
this fourth-order expression [67].

E. Calculation of the Arst-order @rave functions
and Lagrange multipliers

in the parallel-transport gauge

with

E(4)
quad lin ind (»7)

In Eqs. (110)—(113)and {119),the first-order I agrange
multipliers are needed. These can be obtained by
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A,".' = (e,"'Ia(') le(')) .

The first-order Hamiltonian is given by

~(1) —/(1) + g —T( ) + /( ) + g( )

with

(i) ~ @Hxc[n ] (i) I I
(0)

(12o)

(121)

E"' = ) .(e"."Iv'"Ie'") + (e.'"I "'Ie."')
a=1

N
= ) (e"lv" le"') + (e'"lv" le")

a=1

= ) -'((c"."Iv" le") + (c"'lv" le"))
a=1
+(e(o) l„(2)Ie(o))

(128)

(129)

(130)

+
d g@„.[„( )]

dA hn(r)
(122) while, if the perturbation reduces to a change of local

potential, the result is

KH(„), e(r, r')n( ) (r')dr' + vH„, o(r) . (123)

P.(II —s )(')P.le(')) = PH(') Ie—(')) . (124)

F. The second-order energy: Nonvariational forms

Using Eq. (124), one can find alternate expressions for
the second-order energy. From Eqs. (95), (122), (124),
and their Hermitian conjugates, we derive

If one does not want to directly minimize Eq. (95) (or
simply the combination of its quadratic and linear part)
in order to find the first-order wave functions, one can
use the modified Sternheimer equation, derived &om
Eq. (55):

v() rn ) rdr+ v( rn ) rdr. ]3]

C. The Brst-order eigenenergies:
The gauge freedom

Now, we come to the connection between the parallel-
transport gauge and the diagonal gauge, at first order.

From Eqs. (69) and (120), one gets

( ) —p( ) —(e(o)IH( )le(o)) (132)

From Eqs. (71)—(73), the diagonal part of the unitary
matrix vanishes:

In this remarkably simple expression, only the change in
the density is needed, and the change in wave functions
is not needed. Unfortunately, the associated functional
is not variational.

N
E'" = ) (e"'l(T+ v)'"Ie"')

a=1
N

+ ) (e( ) l(T + v)( ) le(o)) ~ ~(')

N
E(z) ) (e(0) I(T + v)(i) le(i))

a=1

+) (e(o)l(T+„)( )le(o))+E( )

a=1

(125)

(126)

Upp
——0,(1) (133)

p(1)
(1)* PnUp ———() () forggP.

E'
p

—8'g
(134)

Thus the wave functions in the diagonal gauge can be
obtained as [35]

while the nondiagonal part of the unitary matrix is de-
rived from Eq. (66):

or
N (1)

Ie( )
) Ie(i) ) ) - &~ Ie( )) (135)

z(') = -') (e"l(T+ v)(')le( ))
a=1

N

+—) (e(0)lp + v)(i)le i
)

a=1
N

+ ) .(e(o) I(T + „)( ) IC, (o)
) + E( ) (127)

If the perturbation does not acct the explicit form of
the kinetic energy and Hartree and exchange-correlation
energy, these equations reduce to

where the first-order Lagrange multiplier is given by
Eq. (12O).

In the preceding section the problem of degenerate
eigenvalues appearing in the denominator was men-
tioned. At first order, the diagonal gauge can be defined
properly as follows. Because there is an indeterminacy in
the choice of the degenerate wave functions at zero order,
one can choose the zero-order wave functions to diago-
nalize the first order Lagrange subm-atrix related to the
degenerate valence states. Indeed, from Eq. (120), the
first-order Lagrange parameters depend on the zero-order
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wave functions and the erst-order Hamiltonian, but the
latter is invariant under a gauge transformation. So, it
is possible to get, for a and P labeling degenerate states,

Ap ——r bP.(I)

Then, one can check that the contributions causing the
vanishing of the denominator in Eq. (135) can be ignored.

A state-by-state decomposition of the second-
derivative of the total energy, in the spirit of Eq. (89),
must aHow mixing between occupied states due to the
perturbation. As a consequence, the results from the
parallel-transport gauge would be wrong, and the diago-
nal gauge must be used, starting from the nonvariational
Eqs. (125)—(127), where it is considered that the kinetic
operator and the form of the exchange-correlation func-
tional are not affected by the perturbation:

@(2) (c,(') l„(~) lc, (o)) + (@(o)l~(2) l@,(o))

The second-order Lagrange multipliers are obtained by

(4, ( ) lII(2)
l

@(o)) + (@( ) lH() ) l@(o))

+(C,(o) lH(~) lc, (~)) + (C, (') lII(o) l@()))
). (@(&)]@(1))((0) + &(o)) (143)

P (2) ).
l

U. (~)l2
PP aP

wWP

(144)

while the nondiagonal part of the unitary matrix. is de-
rived from Eq. (66):

U-(2) ~ ~ ' p-(I) +p(I) + p(2)
nP (o) (o) nP P~ Pn

Ep —Eg 'i )

From Eqs. (71) and (73), the diagonal part of the unitary
matrix is given by

—s(') V,'p)* —s(') S„~ for g g P . (145)

@(2) Q @(2) Thus the wave functions in the diagonal gauge are ob-
tained, from Eq. (74), as

H. Calculation of the second-order mave functions

In order to avoid the direct minimization of Eq. (117),
the following modified Sternheimer equations can be
used:

l~' ') = lc' ')+ U""IC")+g&"*lc"'}

(146)

where the second-order Harniltonian is given by

T(~) +,(» T(2) + „(2) +,(»

with

(140)

vv„. (v) = vv„. v(v) + f IVv .v(v v')v~ ~(v')dv'

KH( ), o (r, r') n(') (r') dr'

s'z„..[»(')]
hn(r) 8n(r') hn(r")

xn(') (r")dr'dr" . (141)

I. Th e 8ecoIlci-o reer elgexle xler gles
The gauge freedom.

Now, we come to the connection between the parallel-
transport gauge and the diagonal gauge, at second order.

From Eqs. (68) and (134},one gets

(I) 2,(2) A(2)
{o) (o)

=1 E~
(142)

P (~ s )(o)~ l
g, (2))

@ (~(2) lg) (0)
) + H(l) @(1)) ) (139)

In this subscctioIl, an example of calculation of second
and third derivatives of the energy is given [40]. Results
obtained from Rnite difFerences and using the perturba-
tion theory developed in the present paper are compared.
The results are shown to be essentially identical.

Two germanium atoms, with reduced coordinates
(0 0 0) an.d (x 0 0) are placed in a repeated cubic su-
percell of size 10 bohrs. The total energy of this system,
per supercell, is monitored as a function of the parame-
ter T (with 0 ( .r. ( 1), governing the distance between
the two atoms (and their replicas in other cells). The
size of the superceH is such that the system is made of
noninteracting linear chains of germanium atoms. The
evaluation of the DFT total energy is performed in the
local density approximation [3], using either no exchange-
correlation energy (for testing purposes), or the Ceperley-
Alder exchange-correlation energy [68]. A conjugate-
gradient algorithm [44] is used for the minimization of
the energy. The ionic potential is replaced by a simple
local pseudopotential of the Starkloff-Joannopoulos form
[70]. The wave functions are expanded in terms of plane
waves of kinetic energy less than 1.2 hartrees. The Bril-
louin zone is sampled by four points, located in (s 0 0),
(s 0 0}, (

—
s 0 0), and (—~s

0 0) in reduced coordinates.
The total energy curve is shown in Fig. 1, obtained with
the Ceperley-Alder exchange-correlation energy.

The energy is now expanded as a function of x, around
2; = 0.3. For this, two methods have been followed.
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FIG. 1. The energy per unit cell of a model system made
of two germanium atoms in a cubic cell of size 10 bohrs, one
located at (0 0 0) and the other at (x 0 0) in reduced coordi-
nates, as a function of x. The energy derivatives around 0.3
will be evaluated both by finite-difFerence techniques and by
perturbation theory. More details on this system are given in
the text.

First, the total energy is evaluated independently at
the points x = 0.300,0.301,0.302,0.304,0.299,0.298,0.296.
A fit of these values is realized using a sixth-order poly-
nomial. First-, second-, and third-order derivatives of
the total energy are extracted by using numerical finite-
diKerence formulas.

In the second method, the second-order expression
Eq. (95) is minimized using a similar conjugate-gradient
algorithm as for the ground-state calculation [13,70]. The
trial first-order wave functions are refined iteratively, un-
til the accuracy level required is attained. The second-
order derivative of the energy can be evaluated at each
iteration, using the variational expression that is mini-
mized, Eq. (95), or another, nonvariational expression,
Eq. (100). The third-order derivative of the energy can
also be evaluated at each iteration, since it only uses the
first-order wave functions and the first-order Lagrange
multipliers [see Eq. (112)). Figure 2 shows the conver-
gence of the difFerent expressions towards their accu-
rate value. It is clear that the variational expression
for the second-order derivative of the total energy per-
forms much better than the corresponding nonvariational

Iteration Number

FIG. 2. Decimal logarithm of the absolute difference (in
hartrees) between the value obtained after a given number of
iterations of the conjugate-gradient algorithm and the con-
verged value. Filled squares: the second derivative of the
energy evaluated using the variational expression Eq. (95);
empty squares: the second derivative of the energy evaluated
using the nonvariational expression Eq. (100); triangles: the
third derivative of the energy evaluated using Eq. (112). The
energy calculation refers to the model system discussed in the
text and for which the energy curve is shown, Fig. 1.

expression. The third-order expression is unfortunately
nonvariational as well. The results are shown in Table I
and compared with the values obtained previously, by
use of perturbation theory.

The results clearly show that the finite-difFerence and
perturbation approaches are in excellent agreement with
each other. Without the exchange and correlation contri-
bution, there is no difFerence, up to the numerical accu-
racy guaranteed by the Gnite-difFerence formulas. When
the exchange and correlation energy is taken into ac-
count, very small difFerences appear, tentatively ascribed
to the finiteness of the exchange and correlation grid (a
programming error cannot be excluded, of course).

dE/dx
Without xc energy

—8.559 221 877
—8.559 221 877

DFPT
Finite differences

118.029 86
118.029 86

-1346.67
—1346.67

TABLE I. Derivatives of the energy per unit cell with respect to x, where the energy refers to the
model system presented in Sec. IV J, and x to the coordinate of the second atom in this model. The
upper part of the table refers to calculations done without exchange and correlation energy, while

the lower part refers to calculation done with the LDA. In each part, the upper line refers to the
values obtained using DFPT, while the lower line has been obtained by derivation of a polynomial
fitted to a few energies, as explained in the text. All quoted figures are significant.

Calculation d E/dx d R/dx

DFPT
Finite differences

With xc energy
—7.375 153 878
—7.375 153 820

116.534 58
116.534 60

—1377.19
—1376.94
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V. SUMMARY AND PERSPECTIVES

In this paper, I have examined rather thoroughly the
schemes that allow one to calculate the diferent deriva-
tives of the OFT electronic energy with respect to arbi-
trary perturbations.

Prom the wave functions up to order n, it is possible
to construct the derivatives of the energy up to order
2n + 1. The search for wave functions of order n can
be done either by minimization of a functional of order
2n, under constraints, or by resolution of modified. Stern-
heimer equations, by Green's function techniques, or by
sum over states. The invariance of the energy expres-
sion with respect to the unitary transformation of the
wave functions brings specific problems that are solved
by IIixing the gauge. The parallel. -transport gauge is the
most convenient for numerical applications. On the other
hand, the diagonal gauge is sometimes needed, for deriva-
tives of the eigenenergies. The formulas needed for mak-
ing the gauge transformation have been derived.

Equations derived Rom this general formalism have
been considered up to the fourth derivative of the energy,
and up to second-order derivative of the wave function,
density, and eigenenergy. A simple application has shown
the validity of this approach, when compared to finite-
difference estimation of energy derivatives.

Generalizations of the present theory have to be
worked out in the case of time-dependent perturbations
(see Ref. [34] for a second-order example), as well as in
the case of mixed derivatives of the energy (see Ref. [39]
for a third-order example).
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AP PENDIX: LAGRANGE MULTIP LIER
METHOD

The minimization of E(~) [4t»ai] should be performed
under a set of N constraints,

C (~)[4t„ i] = 0 for n = 1, . . . , N (Al)

so that

(A2)

This procedure, in the Lagrange multiplier method, is re-
placed by the minimization without constraint of an aux-
iliary functional P~ [4t„. i] (the A dependence has been
omitted, for reasons of clarity):

N

+A [C'trial] @[@trial] ) Arr+rr [@trial]
ex=1

(A3)

for all possible values of the A, called the Lagrange mul-
tipliers. Afterwards, the "correct" value of A 0 is such
that the corresponding 40 fulfill

I am grateful to J. -C. Charlier, Ph. Ghosez, and.
G.-M. Rignanese for useful discussions, as well as a care- C [eo] = O. (A4)
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