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Perturbation expansion of variational principles at arbitrary order
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When perturbation theory is applied to a quantity for which a variational principle holds (eigenen-
ergies of Hamiltonians, Hartree-Fock or density-functional-theory energy, etc.), diferent variational-
perturbation theorems can be derived. A general demonstration of the existence of variational prin-
ciples for an even order of perturbation, when constraints are present, is provided here. Explicit
formulas for these variational principles for even orders of perturbation, as well as for the "2n+1 the-
orem, " to any order of perturbation, with or without constraints, are also exhibited. This approach
is applied to the case of eigenenergies of quantum-mechanical Hamiltonians, studied previously by
other methods.

PACS number(s): 31.15.—p, 02.30.Mv, 02.70.—c, 71.10.+x

I. INTKODUCTIC)N

In aa. early study of the two-electron atomic systems,
published in 1930, Hylleraas [1] observed that the knowl-
edge of an eigenfunction and its erst-order derivative
with respect to some perturbation allows one to build
easily not only the erst derivative of its eigenenergy
with respect to the same perturbation, but also its sec-
ond and even third derivative. This result is one in-
stance of a "2n+1 theorem, " stated in this seminal paper:
the (2n+1)-order derivative of the eigenenergies of some
Hamiltonian can be calculated from the knowledge of the
eigenfunction and its derivatives up to order n (see also
Wagner [2]). In the same paper, Hylleraas also noticed
that an expression for the second-order derivative of the
eigenergy was variational (minimal) with respect to de-
viation of the erst-order derivative of the wave function
from its exact value.

Since that time, theoretical studies of physical systems
submitted. to small perturbations have been numerous. A
large spectrum of perturbations such as small atomic dis-
placements, electric fields, magnetic fields, small length
scale changes, "transmutation" of elements, etc. , eventu-
ally time dependent, have been considered, in the frame-
work of widely used ab initio approaches such as the
density-functional theory [3—7] (DFT), Hartree-Fock for-
malism [8—14], X approximation [15], multiconfigura-
tion self-consistent field formalism (MCSCF) [9,14,16,17],
configuration interaction technique [9,14,17], coupled-
cluster [9,14 expansion, and also Moeller-Plesset expan-
sion [9,13,14 .

It is noticeable that a variational principle lies at the
heart of most of these approaches. In that case, a nice
interplay between a variational principle (or an extremal
principle) and perturbation theory, found by Sinanoglu
[18,19], allows one to find generalization of the Hylleraas
results.

In order to situate the present work in the proper con-
text, the second. section will give a brief overview of arbi-
trary order perturbation expansion of variational princi-

ples. The interesting results obtained previously will be
recalled. While the 2n+1 has been demonstrated in the
case of a variational principle under constraints, by Ep-
stein [20], the existence of even-order variational princi-
ples in such a case has not been demonstrated. Also, the
theorems have not been worked out up to the point where
they give general, explicit expressions, in both cases with
or without constraints.

In the third section, such explicit expressions will be
provided for even-order variational principles, as well as
for the 2n+1 theorem, dealing with constraints through
the I agrange multiplier technique [20].

In a fourth section, these general expressions are ap-
plied to a quantum mechanical Hamiltonian, and results
previously obtained from a mathematical approach, re-
stricted to that case, are recovered.

II. BACKCB.QUND

In 1956, Dalgarno and Stewart [21] proposed an iter-
ative procedure for building the 2n+1 derivative of the
eigenenergy of a quantum-mechanical Hamiltonian &om
only the knowledge of the derivatives of the eigenfunc-
tion up to order n, in the case of a change of a quantum
mechanical Hamiltonian linear in the small perturbation
parameter. This result was generalized. later by Dupont-
Bourdelet, Tillieu, and Guy [22] to Hamiltonians with a
general dependence upon the small parameter. The lat-
ter authors gave expticit formulas for the 2n+1 energy
derivatives.

Taking a more general approach, Sinanoglu noticed
that the very combination of any variational (or ex-
tremal) principle with perturbation theory will induce
even-order variational (or extremal) principles [18]. Thus
these results are not a characteristic feature of quantum
mechanics, but could also appear in a classical context, or
for any system in which a variational principle appears.
The same approach leads also to the existence of a 2n+1
theorem. As a consequence of this general interconnec-

1050-2947/95/52(2)/1086(10)/$06. 00 1995 The American Physical Society



PERTURBATION EXPANSION OF VARIATIONAL PRINCIPLES. . . 1087

tion, the formal structure of all perturbation-based meth-
ods of numerical calculation can be rather similar, as soon
as they are derived &om an extremal principle for the un-
perturbed quantity, whether it is the variational principle
governing neutron diffusion [23], or the variational prin-
ciple for normal modes (in classical mechanics) [24], the
expectation value of a Hamiltonian, the Hartree-Fock en-
ergy obtained within a set of Slater determinants, Hohen-
berg and Kohn expression for the ground-state energy of
a system within density-functional theory, difFerent con-
figuration interaction (CI) expressions of energy, etc.

Although the existence of the variation-perturbation
theorems is easily proved, for a straight variational prin-
ciple, by the rather elementary mathematical technique
presented by Sinanoglu [18], this approach was never
used to derive general, explicit, expressions. King and
Komornicki [25] have built explicit expressions for the
2n+1 theorem up to n=2, but did not pay attention
to the variational property of even-order terms. Ex-
plicit expressions for the 2n+1 theorem to any order have
been derived by other, less powerful, mathematical tech-
niques, on a case-by-case basis: for generic quantum me-
chanical Hamiltonians by Dupont-Bourdelet, Tillieu, and
Guy [22,26], as mentioned before, but also for coupled-
perturbed Hartree-Fock theory by Rebane [10,27], and
for density-functional perturbation theory by Gonze and
Vigneron [5,28]. Moreover, these techniques do not al-
ways generate even-order extremal principles.

In search of a general demonstration, Epstein noticed
that the variational principle of the self-consistent field
Hartree-Fock theory involved constraints, and that the
Sinanoglu approach must be modified using a Lagrange
multiplier technique [20]. He proved the 2n+1 theorem
for that case, but did not pay attention to the variational
property of even-order expressions, and did not derive
explicit formulas &om his approach.

So, it seems that nothing has been done to prove even-
order variational principles in the case of a constrained
functional. Of course, it is formally possible to first map
a variational principle under constraints to another varia-
tional principle without constraints, and IITom that other
starting point, derive variational principles for even or-
ders. But the explicit expressions derived Rom the trans-
formed starting point could be much more involved, and
likely useless (see Sec. IV, for an example). It is thus de-
sirable to prove directly the even-order variational prin-
ciples by using the Lagrange multiplier technique.

x(A) = x(') + Ax~') + A'x~') + A'x(') + .

Note that the expansion coefficients are not the deriva-
tives of X(A) with respect to A, but are related to them
by a simple numerical coefBcient:

() 1dX
n! dA" (2)

VC, 0 ( E[C] —E[eo] ( Kyrie —eoii'

The subscript 0 indicates quantities found when the func-
tional is at its extremal value.

The demonstrations that follow will apply, mutatis mu-
tandi, for a "maximal principle" and also for a "station-
ary principle" (in which no extremal condition is met
although the error on the functional is still quadratic
a saddle point —in the error on the wave function, see
Appendix A).

For notational accuracy, I will distinguish between the
functional E and the value that this functional can take,
E.

B. Variational principle and perturbation theory:
The case without constraint

Consider now that the functional E depends also on
a parameter A. The wave function that minimizes the
functional will of course also depend on the parameter.
It is possible, for A in the neighborhood of zero, to define
a fixed number K such that

I consider now a general variational principle for E, a
functional of C, and will call these quantities "energy"
and "wave function, " even if their actual area of ap-
plication is completely unrelated to quantum mechanics
[18,25].

In what follows, I will examine the consequences of a
"variational principle" in the sense of a "lower variational
bound" or "minimal principle": the difFerence between
the value of the functional for a wave function slightly
diferent than the "correct" one is higher than the value
Eo of the functional for that "correct" wave function Co.

For a lower variational bound, under suKcient con-
ditions of differentiability (always met in practice), the
error in the functional is quadratic in the difFerence be-
tween wave functions, and is always positive: there exists
some K such that

III. A VARIATIOÃAL APPROACH
TO PERTURBATION THEORY

A. De6nitions: Perturbation expansion,
variat ional principle

Let us consider one perturbation, with one small pa-
rameter A. Quantities such as the external potential, or
the ground-state total energy of the system, are written
as a perturbation series, as follows [for a generic quantity
x(A)]:

V4, 0 ( E(g) [4] —Eo(A) ( K~~4 —@0(A) ~~

with

Ep(A) = E(i)[40(A)) .

After some manipulation [18,19,28,29] one finds (see Ap-
pendix B)

(2n+1)
Z(2"+' = E & W' C"'

o — (&) / o
i=o
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and [18,19]

Eo —min $ E(p)
{2n)

he,

—

) (2n) t

) A*a,"+A"SC, ~,t . (7)
„i=O

Equation (6) is the 2n+1 theorem (the knowledge of the
wave function up to order n gives the energy at order
2n+1), while Eq. (7) describes the variational (extremal)
property of even-order terms in the perturbation expan-

I

sion: at the minimum, b4'i (the trial nth-order wave func-

tion) is equal to 4o
At this stage, it is possible to go further and obtain

more explicit formulas from Eqs. (6) and (7). For this
purpose, the domain of definition of the wave function
is considered explicitly, so that one writes 4(x), with x
being a point in a many-dimensional space. Using m in
place of either 2n or 2n+1, one G.nds, after a few algebraic
manipulations that involve Taylor series, as well as the
definition Eq. (2),

(m)

O
— (&) g O

i=0
(m)

E~p) 4& +) A @o
(O) - ' (i)

i=1
m —1m —k=).):
k=O j=1

1 gj+k E

xC " (xi) C ' (x, )dxi. dx, +

where the derivatives of the functional E are evaluated at A=O and at the unperturbed wave function. Equation (8)
gives a general exp/ieit expression of the 2n+1 theorem and the even-order variational principles, in the unconstrained
case, when combined with Eqs. (6) and (7). This expression allows for further manipulations.

E&'or example, it will simplify considerably if the number of derivatives of the functional E with respect to the wave
functions that do not vanish is small. The index j in Eq. (8) will only run up to the largest value that gives nonzero
derivatives. If the energy is a second-order polynomial in the wave function, j will only take the values of 1 or 2, and
one is left with

E(m, ) 1 gk+2E
C l")(»)e!")(»)d»d»

k~2 BA "04 xi BC x2=1

e(") x, dx, +k! )-- ("+" ) (aA)&me(»)
(*')"*'+m! (aA)-

This case is the simplest possible one, since at least a quadratic dependency on the wave function is needed in order
to have a variational principle.

Another simplification of Eq. (8) arises when the functional E is linear in the small parameter A. Second- and
higher-order derivatives of E with respect to A will vanish, and one is left with

E(m) ) ) aAOC(, ) ae(, ))... i'cj —1

m

x4!'&)(x~)dxi dx~ + )
j=l

aE)xo~")(xi) C!")(x~)dxi . . dx~ + ~6(m)E + 8(m —1) ')

C. The case mith constraints P~[C,] = E[e,]
—AC[C,],

In order to minimize E[4i] under constraint, one de-
fines (I agrange multiplier method)

where C[4q] is the functional that places a constraint on
the domain of variation of 4q.
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c[e,] =o. (12)

30 such that VC

In Eq. (11), A is a Lagrange multiplier, chosen by the re-
quirement that, after minimization, the solution Cz sat-
isfies the constraint Eq. (12). This value of the Lagrange
parameter is denoted by Ao. Note that for a wave func-
tion 4z that belongs to the allowed domain defined by
Eq. (12), the values of the I" and E functionals are iden-
tical.

In general, more than one constraint will be present
simultaneously, but the line of thought presented here
easily translates to this case, with only minor modifica-
tions (the number of Lagrange multipliers will be equal to
the number of constraints). For ease of the presentation,
only one constraint will be taken into account here.

In order to translate the method of demonstration of
the variation-perturbation theorems that was used for
the case without constraint to the case with constraints,
one needs a variational principle within the Lagrange
method, in replacement of Eq. (3). It can be found in
Ref. [31]:

equal to the exact one up to order n. The calculations
leading to the variation-perturbation theorems are de-
tailed in Appendix C. Modifications to the straight ap-
plication of the unconstrained technique follow.

(1) One has to deal with the perturbation expansion
of the constraint. It is shown in Appendix C that the
expansion of the wave function up to order n fulfills the
constraint also up to order n:

= 0 for n' & n .

(2) Knowing the wave function up to order n, it is
possible to calculate the perturbation expansion of the
Lagrange multiplier Ao(A) up to order n. Indeed, the
functional I"~[ei] must be a minimum, so its diBerential
form must vanish, and the following condition is derived:

VAe„bE(), ) [Ae, ]]~ („)

—Ao(A)bc(~) [hei]]~.(,)
= O (18)

«& .[e] —+.[e ]+~(c[el)' & ~lie —c"(&)II'.

One can use Eq. (11) in order to rewrite Eq. (13) as
follows:

The knowledge of the wave function up to order n will
allow one to know the differentials bE and bC in Eq. (18)
up to order n. As a consequence, Ao(A) will be known
up to order n also.

The expression for the 2n+1 theorems under constraint
1S

30 such that VC,

0 & E[C] —AOC[e] + O(C[e]) —Eo & K[(e —eo(&))[

(i4)

E(2n+1)
p

—
(A)

E() )

) ~*e(*'
i=p

) a'e(*'
i=p

Actually, it is similar to Eq. (3), but modified to include
a constraint, considered up to second order.

The I agrange method is now applied to the perturba-
tion expansion of the constrained functional.

Equation (14) is valid for every A. Note that the con-
straint could depend on A. For the sake of generality,
the possibility of this dependence is taken into account.
Thus

30 such that VC,

0 & E(g) [e] —Ao (A)Cp) [e] + O(C(p) [e']) —Ep (A)

& Itlle —eo(&)ll'. (i5)

Now, one follows the same path as for the unconstrained
variational principle (Appendix B), and uses the trial
function

e=) ~'e")+~"+'be,
i=0

(2n+1)
—Ap(A)C(g) ) A'eo*

i=p

n —1 (n)

C(„) ) A*eo(*) + A"be,
i=0

(2o)

Namely, the trial order n wave function should fulfill the
constraint up to order n. The variational bound is writ-
ten as

n —1 (2n)

0 & r„XC') + a"SC —E"n'
i=p

I~ ice,
(") —bc, ii'

which generalizes Eq. (6), and is a little more explicit
than the expression found by Epstein [20].

One can also obtain the equivalent of the variational
bound Eq. (7), but there is a supplementary constraint
upon bei [expected from Eq. (17)]:

and one gets a new variational principle, under con-
straint,
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(22)

As in the unconstrained case, at the minimum,

ae, = e,(").
Thus the 2n+1 theorem expressions include the La-

grange multiplier and its derivatives, as well as the con-
straint and its derivative, and the variational principles
for even order are obtained under constraints.

Explicit expressions for Eqs. (19) and (20) are found
from the following development (m stands for 2n or
2n+I):

x ) h(k+i,

(m) m —(n+1) (m —l )—1 (m —l) —k

~

~ ~ ~

~ ~

) ~ ) ~ ~fQflf
l=O k=O j=1

dfAo 6&+k C'

(dA)f (BA)"f94(xi) . c)4(x.)

xe(") x, . C(") ~- dx, d~-
m —(n+1) l ( l)-

.l. (d~) (,9

where the first part of this expression was obtained in Eq. (8).
Equation (23) will become simpler if the constraint does not dep'end on the small parameter of the perturbation

expansion, which is the case for most applications:

1

~ III ) b(i, +. +i —m+ l)2

) ~ ~ ~ )2j 1

O'AO 0 C
x „, 4 " (xi) 4 ' (x, )dxi dx~ (24)

Finally, if the constraint is moreover a second-order polynomial in the wave functions, one gets

(m) m —(n+1)
E(~) E ) - Pi@(~) )

i=0 l=O

m —(n+1)
x e(")(»)C (")(»)d»d» — )

l!2 ) - ' '
(dA)' o)C (xi)c)4(z2)

1 . dAo BC (i )
l! ) - fi(ii ™+l)

(dA)' OC(, )
I " (~i)dzi .

i1 ——1
(25)

In this section, the existence of even-order variational
principles under constraints has been proven to all orders,
Eq. (22), and expressions more explicit than the pub-
lished ones have been derived, Eqs. (8)—(10) and (23)—
(25).

IV. AP PLICATION
TO A QUANTUM-MECHANICAL

HAMILTONIAN

The quantum-mechanical variational principle (Ritz
principle)

'fr'Cf Iiormalized, EQ ( (etlaleg) = E[eg] (26)

does not involve a "simple" quadratic functional of the
wave functions, since the wave functions are constrained
to be normalized. The normalization requirement is
not mandatory in quantum mechanics, but if an uncon-
strained formulation is used,

(c'~ IHI@~) E[c, ] (27)

the simplicity of the functional form is lost, and the ex-
pressions become much more involved (see Sec. IV C)
[»l.

The expression for the 2n+1 theorem in the case of the
quantum mechanical Hamiltonian, that was obtained in
Ref. [5] by elementary means, will now be derived di-
rectly &om the general formula of Sec. III, with the vari-
ational principle Eq. (26). Then I will compare this result
with the lowest-order formulas obtained from the uncon-
strained formulation, Eq. (27), in order to show clearly
the kind of simpli6cations that a constrained formula-
tion allows. Other explicit expressions for the 2n+1 the-
orem in the case of the quantum-mechanical Hamiltonian
[21,22] used another normalization for the perturbation
expansion of the wave function. The relation between
the diferent normalizations is not diKcult to establish,
but will not be exposed here.
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A. Variational principle
for normalized wave functions

E[C'~] = (C'~IHI@~) (28)

is to be minimized under the constraint

o = C[@~] = (C'~IC'~) —1.
Together, they make the Lagrange functional

F~[C.g] = (C glHI@g) —A[(@gl@g) —1] .

(29)

(30)

The miniinum condition on Eq. (30) leads to

VAC'~, 0 = ((AC'~IHIC'o) —A(AC'~l@o)) + (H.c.) (31)

[(H.c.) means Hermitian conjugate] or also

Before examining the perturbation expansion, one
must apply the Lagrange method to the quantum me-
chanics variational principle.

In order to find the ground. state, the energy functional

VACUA,

0 = 2 Re((A@q IHI@o) —A(AC'il@o)), (32)

which means

0 = HICo) —Albo) . (33)

Introducing the constraint Eq. (29), one finds an eigen-
value problem. The final premultiplication of Eq. (33) by
(Co I and the use of Eqs. (28) and (29) lead to the identi-
fication of the Lagrange parameter with the eigenenergy
E. Thus Eq. (33) is the Schrodinger equation (see Ap-
pendix A).

B. Perturbation expansion
of the constrained variational principle

Because the energy Eq. (28) and constraint Eq. (29)
are both second-order polynomials in the wave functions,
and, moreover, because the constraint does not depend
on the small parameters that afFect the Hamiltonian, one
can use the simplified expressions Eqs. (9) and (25) in-
stead of Eqs. (8) and (23). This gives

m —1 n
) —) ) b(k+ zi+i2 —m)(C'(")IH(")Ie(")) + ) ) &(k+ ii —m)

k=O i1,ig ——1 k=O i1——1

~((c"'IH'")I@")+ (@'*'IH'"'I@"))+ (c"'IH' 'lc"')
m —(n+1)

) ) h(ii + ig —m+ l)Ao (4(*')I4("))
E=O i1 ii2 ——1

m —(n+1)

) S(' —m+ t)A("((C(')I~("))+ (C(")IC( ))) .
E=O

(34)

And, after gathering the terms adequately

E' ' = ) ) b(k+ + —m)(C(")IH("'Ie("))
k=O i1,ig ——0

m —(n+1) n

) ) h(i +i, —m+l)
E=O i1,i2 ——0

XA
' (C(")IC(*'')) . (35)

Because of the identification between the Lagrange multi-
plier and the energy, demonstrated in the preceding sub-
section, this result is equivalent to Eq. (A1) of Ref. [5].
The variational property of this equation for even orders
of perturbation was unnoticed there.

Thus, starting from the general formulas Eqs. (8) and
(23), it was shown how to derive the expressions for
2n+1 and variational principles for a generic Hamilto-
nian that were obtained earlier by completely difFerent
means [21,22, 5]. Of course, the technique that starts
kom general principles can be applied to a much wider
set of problems (including Hartree-Fock and density-
functional-theory variational principles) than these pre-
vious approaches.

C. Lowest-order formulas derived
from the constrained

and unconstrained variational principles

At the Grst and second order of perturbation, the con-
strained functional Eq. (26) gives the Hellmann-Feynman
theorem [33]

@(i) —(@(o)IH(i) I@(o))

and the Hylleraas variational principle [1] for the first-
order wave function,

E(&) ( E(2) I.@(O) @(1)
constrained L O & O, trial

+(4," IH(')Ie," ) + (c,")IH(')lc,'„,),
valid under the condition

(38)
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(39)

The first-order expression for the unconstrained func-
tional Eq. (27), for m=1, n=0, derived from Eq. (8) gives

(c,(o) ~H(i) ~c, (o))

(C, (o)ic,(o))

which is reasonably simple, and reduces to Eq. (36),when
normalized wave functions are considered.

By contrast, the second-order expression from Eqs. (8)
and (27), for m=2, n=l, takes the form

@(2) ( @(2) ] @(0) @(1)
0 — unconstrained & & & 0,trial

(,)
((@o"IH"'

I

C'o', t„.i) + (@o',t„.& IH"
I

c'o', ~„-.&)
(4'o'

I

~"l@o')

+(C. ;.~~"' ~@o' ')) —
(,), ((@'"~~"~c.',,'„.) + (@

~(i)

where

~(o) (C, (o) ~c,(o)) (41)

I

turbation expansion of arbitrary variational or extremal
principles, in fields unrelated to quantum mechanics.
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APPENDIX A: VAR.IATIONAL PH, INCIPLE
AND THE SCHRODINGER EQUATION:

MINIMUM OR SADDLE POINTS

V. CONCLUSION AND PERSPECTIVES

In this paper, I have provided a general demonstration
of the even-order variational (or extremal) principle in
the constrained case (Sec. III). As a consequence, even-
order variational principles for Hartree-Fock and DFT
methods (among others) can be obtained in a constrained
formulation, to all orders of perturbation. Explicit ex-
pressions for the variation-perturbation results are also
given, both in the constrained and unconstrained cases.
This approach is illustrated for the Ritz variational prin-
ciple.

The approach presented here has already led to appli-
cations, in the form of a variational formulation of the
density-functional perturbation theory, up to the third
derivative of the energy [7,30]. For this density-functional
perturbation theory, many constraints are present, since
all the occupied Kohn-Sham wave functions have to be
orthonormalized with respect to each other. Thus one
obtains a set of Lagrange parameters. The generality of
the present approach allows one to apply it to the per-

is the error in the trial wave function of an excited state,
then, for sufficiently small g,

VC'q normalized, ~E[@q] —E~~ & Kq (A2)

where K is a fixed number, independent of g.
This is to be contrasted with the variational bound

(minimal principle) for the ground-state wave functions
(~=0):

Ve'q normalized, 0 & E[4q] —Eo & Kr) (A3)

In both cases, there will exist a 2n+1 theorem, but the

The Schrodinger equation (fulfilled by all the eigen-
states) is not equivalent to the determination of a global
minimum of the Ritz principle. Only the ground state
fulfills a minimum principle. By contrast, the eigenener-
gies that do not correspond to the ground state are ac-
tually saddle points of the functional Eq. (30). For them
there exists a stationarity requirement, but no extremal
principle. So, if
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variational principle for even-order derivatives will either
be a minimum principle (for the ground state) or only a
stationary principle (for the excited states).

APPENDIX 8: PERTURBATION EXPANSION
OF AN UNCONSTRAINED
VARIATIONAL PRINCIPLE

In order to investigate the connection between pertur-
bation theory and the variational principle, one considers
first the expansion of the exact wave function

e, (A) =) A*e,",
i=O

then the trial wave function

e, =) A'c"'+A"+'se,
i=O

ao

= c (A) —A"+' ) A'-"-'e"' —~e
i=n+1

The latter is the exact one up to order n. Introducing
Eq. (82) into Eq. (4), and taking advantage of Eq. (81),
one gets

0 & Ep) ) A ep +A + Beg —Ep(A)
i=O

in —1 (2n)

0 & E(p) ) A'ep* + A"he~
i=O

z ][e,(") —~e, [~' .

E(2n)

a result derived by Sinanoglu [18], although here written
in a diferent form.

Thus the knowledge of the perturbation series of ep(A)
up to (including) order n gives an error in the evaluation
of the exact eigenenergy that is on the order of A

Continuing to work on Eq. (84), when only terms up
to order 2n+1 are considered, the quantity between the
two inequality signs is zero. So, this expression simplifies
to Eq. (6): the (2n+l)st term of the expansion of the
energy in powers of A is equal to the (2n+l)st term of the
expansion of E(~)[P,. pA'ep' ], a quantity that includes
derivatives of the wave function up to order n only.

Now, one considers again Eq. (83), but at order A + .
Because it is known that the expansion of the term be-
tween brackets, up to order 2n+1, vanishes, one is left
with

(2n+2)

)+~ +1 E(2n+2)

i=O

& z ice,("+' —~e, ii' .

This is a variational bound for the (2n+2)-order deriva-
tive of the energy when the wave function is already
known up to order n. Actually, because n is a dummy
argument, one can shift n to n 1and wr—ite [18]

i=n+ 1

a'-"-'e") —se,0 This expression can also be worked in a more compact
form, to give Eq. (7).

an equation that is valid for all bC&. If bCq is chosen to
be zero in Eq. (83), one obtains

o & E(x) ) A'ep(*) —Ep(A)
i=O

APPENDIX C: DEMONSTRATION OF
Egs. (&9)—(2x)

& ~~2n+2 y - ~,@(.+n+1)
0 (84) Starting from Eq. (15), one gets the following inequal-

ities:

n n
30 such that Vbe~, 0 & E(~) ) A*e(') + A"+~pe, A (A)C ) Aie(*) + An+ice
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+0 & ), ) A*ep(*)
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Forcing 8@i to vanish in Eq. (Cl) gives

n n

0 ( E(l, ) ) A'4 p' —Ap(A)C(), ) p A*@p

one d.erives

n

C(p) P A'4'p = C(p) 4p(A) —A

X 0
P2 —n —i C (~)

~$2n+2 pi —n —lc, c,&)
0 (C2)

C(g) [C'p(A)] = 0

The constraint has to be expand. ed in a perturbation se-
ries. Because

and a Taylor expansion of Eq. (C4), complemented by
Eq. (C3), shows that the wave function up to order n
fulfills the constraint also up to orRer n, as mentioneR in
Eq. (17).

Tllc lllcqllalltlcs 111 Eq. (C2) al'c expanded lip to ol'-
der 2n+1. The square of the constraint is zero up to
that or6er, as vrell as the right member of the inequality,
which gives Eqs. (19). In order to obtain Eq. (21) from
Eq. (Cl), the shift from n to n+1 is performed first, then
thc coils'tl'alllt Eq. (20) ls imposed.
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