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correction in order a (Zo.) beyond these replacement
rules will be treated in this paper. These corrections
have previously been studied by Bhatt and Grotch in a
series of papers [5,6]. We present a simplified method and
obtain a result which, however, is in disagreement with
the earlier works. Our method is based on evaluation of
the matrix element of the proton kinetic energy operator

I. INTB.QI3U CTION

The hydrogen atom is the simplest stable two-body
system. Precise knowledge of its energy levels allows
for inany QED tests and also for the determination of
physical constants such as the Rydberg constant or a nu-
clear radius. Since the electron-proton mass ratio is only
1/1836, in a first approximation for the energy levels one
treats the proton as a static source of the Coulomb Geld.
In this external field approximation one solves tbe Dirac
equation and then calculates all the radiative corrections
[1]. Remaining corrections are due to the movement of
the nucleus. Each photon exchange between the electron
and the proton is associated. with a change of the proton
kinetic energy. In the nonrelativistic limit, the proton
mass dependence is accounted for by the reduced mass of
the two-body system. The relativistic treatment is much
more complicated, and in general it is not even possible
to write a two-body Hamiltonian. So, as a starting point
one considers the approximated efFective Hamiltoiuan [2],
which is

~s=(g. ~",' ' y.), (3)

on an electron state in a Coulomb Geld centered at the
position B of the proton. In a former paper [4] we have
derived &om (3) the exact (in Zn) expression for pure
recoil corrections. These formulas have been derived pre-
viously by Shabaev in [7] using the Bethe-Salpeter ap-
proach. In slightly rewritten form they are the Coulomb
contribution
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where n are the Dirac matrices and n~ is the compo-
nent perpendicular to p —p', and m and M are the elec-
tron and the nuclear mass, respectively. The higher order
terms uot accounted for by (1) and (2) require a sepa-
rate treatment and have been calculated in order (Zn)
in [3] and in order (Z ci) in [4]. The second class of recoil
corrections is related to the finite nuclear mass efI'ects in
the electron self-energy and the vacuum polarization. In
order a (Z a) these corrections can be obtained by a sim-
ple rescaling of the wave function at the origin by a factor
(p/m)s for all the terms except for the spin-orbit term
for which the factor is (p/m, ), and by changing the ar-
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FIG. 1. Diagrams representing pure recoil corrections to
the Lamb shift. Double lines denote electron propagator in
the Coulomb field; wave and dashed lines denote the trans-
verse and Coulomb photon, respectively.*Electronic address: krpozeus. ipp-garching. mpg. de
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A simpli6ed calculation of the radiative recoil correction to hydrogenic energy levels in
m /M[n(Zn) /n ] order is presented. The method is based on evaluation of the proton kinetic
energy term in the electron state. The result obtained is in disagreement with a previous calculation
of Bhatt and Crotch [Ann. Phys. (N.Y.) 178, 1 (1987)]. We also analyze the nuclear self-energy
contribution and the corresponding definition of the nuclear mean square charge radius.
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FIG. 2. Diagrams representing vacuum polarization-recoil
corrections to the Lamb shift. A continuous line denotes the
electron propagator.

where

V —eA
r

r T

(8)

where 8&~ ——b'~ —"&,", and the seagull (double trans-
verse) contribution The radiative recoil correction is obtained &om the elec-

tron self-energy with the modi6ed electron propagator
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These expressions could be represented by three Feyn-
man diagrams with modi6ed rules for the Coulomb ver-
tew, as shown in Fig. 1. The pole contribution &om the
above integral gives the expectation value of the proton
kinetic energy and of the Breit interaction. The radiative
recoil correction corresponds to drawing a photon loop
in all the combinations on the electron line, or adding
a fermion loop to the photon propagator. To obtain the
corrections in order (Zn) beyond the reduced mass scal-
ing of the wave function at the origin, we put the exter-
nal electron legs on mass shell and calculate the diagrams
presented in Figs. 2 and 3.

This paper is organized as follows. In the next sec-
tion the rederivation of the known mass dependence of
the n(Zn) correction is presented. In the third sec-
tion the vacuum polarization-recoil correction is calcu-
lated. In the fourth section we calculate the so-called
pole contribution, in the 6fth we knish the calculation of
the remaining Coulomb and seagull corrections. In the
sixth section we analyze the nuclear self-energy and the
definition of its charge radius.

II. THE LEADING OR.DER CONTRIBUTION

cL k gp~

(2vr) 4i k2

jI.x —(hm).—e —m—
(10)

The pole contribution of Eqs. (4) and (5) with a radiative
photon incorporated on the electron line is equal to the
first term of (10) in the m/M expansion. For the evalua-
tion of (10) we use the method we developed in [8j, which
in this case is very similar to the original calculation of
the leading self-energy contribution. The contour of the
~ integration is deformed, as depicted in Fig. 4, and di-
vided into two parts. On the low-energy part we can
use nonrelativistic and dipole approximation. The mass
dependence in the kinetic energy part of the Hamiltonian

= p' p'II= + +V ——p A
2m 2M m

can be hidden in the reduced mass of the electron-nucleus
system )(J, = m M/(m + M),

= p' e'H= —+V ——p. A,
2p p

where e' = e ~. This Hamiltonian has the same form
as the standard one, thus we can write immediately the
correction to the energy that comes &om the low-energy
part,

The recoil corrections to first order in m/M have been
given in Eqs. (4)—(6). For the leading order contribution
in order n (Z o.)4 it is, however, necessary to derive the
full mass dependence. We start with the Crotch- Yennie
equation [2], which incorporates the nuclear kinetic en-
ergy and the Breit interaction,

CL. CH

Re(m)

FIG. 3. Diagrams representing double Coulomb recoil cor-
rections to the Lamb shift. The diagrams for the double trans-
verse (seagull) correction are similar. The wave line denotes
here a complete photon propagator.

FIG. 4. Contour of integration used in the reevaluation of
the leading radiative recoil correction. e is an artificial pa-
rameter that divides the contour into two parts Cl. and C~.



52 RADIATIVE RECOIL CORRECTION TO THE LAMB SHIFT 1081

1 e 1~d~ 4p~ E p46 p p H —E —cu

p, o. (Z~) 4 ( 2e l 4
m2 vr ns 3 (p, (za)2) 3

(14)

( aq2 m 11 1
ppA~ m pp 1+ ln —+ ———

3 srm2 2e 24 5

crt q" A~(q),2m 2' (15)

where Ae and A are given by Eqs. (8) and (9). The
correction to the energy is given by the expectation value
of pA on the electron state, for which (7) holds,

where k(n, 1) is the Bethe logarithm. On the C~ con-
tour we have the high-energy part. It is calculated using
the fact that in the first approximation the radiative cor-
rections are equivalent to the modification of the vertex
function (i.e. , the interaction of the electron with the ex-
ternal field)

The sum of the low-energy part EL, and the high-energy
part E~ does not depend on the artificial cutofF e and is

a (Zn)4 t4 m 10 4)= m- —in + ———~~p
&3 &(Z~)2

--k(n, &),+,", (1 —&io)

(21)

This expression of order n (Z n) is valid for the arbitrary
mass ratio.

III. RECOIL WITH VACUUM POLARIZATION
CORRECTION

This correction is described by the diagrams presented
in Fig. 2. The leading order term is already included in
Eq. (21). The part of this correction in order M n (Z n) s

is incorporated by the reduced mass scaling of the known
correction in order n (Z a) 5,

m 11 1
ln —+ ——— AAe(r)
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Since AAo(r) = Ze hs(r), the first terin is given by the
wave function at the origin,

where the term 5/192 comes from the vacuum polariza-
tion. For the evaluation of remaining vacuum polariza-
tion terms we assume that the photon has some mass p
which is next integrated with the weight obtained &om
the imaginary part of the photon self-energy diagram,

1 ——,l1+ —,
I E(p) (23)
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The second term is
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where

Ze Ze—V(k) = -+
+ p

(24)

Where it does not lead to confusion, we set electron mass
m = 1. Our formulas (4)—(6) have been derived for a
massless photon in the Coulomb gauge. The extension
to massive photons is obtained by introducing mass to
the photon propagator

C,g=&

The third term is

for j=l+—
forg =l ——1 . 1

l 2'
(19)

~2 —k2

k' k~ 5 1
k2 ) u)2 —k2 —p2

k' k~

k2+ p2~
(25)
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mM vr ns 2 (2l + 1)
(20)

The correction in order a (Z n) beyond the reduced mass
scaling is obtained by putting the electron wave functions
on mass shell in (4)—(6) and replacing S~ by a free elec-
tron propagator. . The relevant formulas are the following:

M (2')2i (((u —i e)2 ((u+i e)2) k2 g—Ii —m k2+ p2 4
(26)
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where u = k and t = (m, 0, 0, 0). The integration was
done first in u, then in k. Since E~ contributes also to
the lower order the 1/k divergence appears in (26), which
is eliminated by a simple subtraction of the divergent
term. After these integrations the sum of E; is

g2 ~4 4

X
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The correction to the energy as given in (23), after p
integration, is
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IV. RADIATIVE RECOIL CORRECTION
FROM THE POLE

The correction &om the pole at u = 0 (see Fig. 5) in
order n (Z u) comes only &om the Coulomb term and is
given by

2 1
f(p') = — d(q'), , f"(q') (35)

and A, F, Z are double-vertex, single-vertex, and self-

energy functions, respectively, with t on mass shell t =
(m, 0, 0, 0). The single transverse term does not con-
tribute in order n (Z o.) . The function f (p ) in the above
behaves for small p like 1/p . We subtract this divergent
term since it gives a contribution in the known lower
order. The integral (32) expressed in terms of the f
function (the imaginary part of f on the branch cut)

takes the form

Z( ) 4 d fA( 2)
A o

(36)

CE
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The function f can be calculated using the standard
Feynman parameter technique or the Cutkosky rules [9].
The result is

t 1 8 6) 1 8 26f"(q') = J"!-- —+ —!+ +
2 q q) 2 q 3q

5+ +
2 (1 + q2)' 2 (1 + q')

4 f 1 2 5 1

q g 2 q 2q 2 (q —4))
FIG. 5. Contours of integration. The pole contribution

denoted by the circle C~ has a counterclockwise direction.
The contour C~ was used for the numerical integration. where

x O(q —2),
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The 6nal q integration gives a result
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I
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transverse contribution vanishes. Since the tensor

T""(q) + T'"(—q)

ful6lls the continuity condition

q„T.""(q) = 0, (43)

V. DOUBLE COULOMB AND
SEAGULL CONTRIBUTION

The correction in n (Z a) 5 order is obtained by adding
a one photon loop on the electron line according to graphs
shown in Fig. 3. The expressions derived for the Coulomb
and seagull contributions are

Z 8 2 d g 00 1 1

2

I
T,* = —I' T,"„+—T,

l ~') ' &'" ~' ') (45)

Since the integral in Eq. (41) is symmetric in q, we could
make the replacement in (41)

all its components

T.""= t" t fi + q" q" f~ + (t"q" + q" t„)fs + y"" f4

(44)

can be expressed in terms of T, and T~, for example,
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where T"" is defined in (33). The corresponding single

T 0 and T„" are, according to (33), the one-loop correc
tions to the electron factor. We have calculated them an-
alytically using the Feynman parameter approach. The
result is
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and

yi = po —lpl

u2 = po+ lpga,

(52)

(53)

is not the best, because the radiative correction to G~ is
infrared divergent. We propose thus a different definition
using the forward scattering amplitude described by T"",

T""(z—x') = i (t~—Tj"(x) j"(x') ~t),

q2 4l
4 ) (54)

and 12 is a dilogarithmic function. The remaining in-
tegration in respect to q is done numerically. We 6rst
subtract a common prefactor

where t = (M, 0, 0, 0). For our purpose we consider a
deep nonrelativistic limit q q around p —M2

(t + q) —M 0 of the dominant To component. For
a pointlike particle without radiative corrections T is

1 o (Po+ I) 2M

m n(zn) 1 dq 1 1
&&c =— . Al—

M vr vms vr 4vri q~ (qo+ ie)2'

(55)

With a finite size particle

~pv
p" —+ I'" = p" El + i q„F2, (66)

where
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(58)

T acquires a correction

2g
oo 2M 2 2 2M 2(r )b„

p2 M2 + p2 M2

(67)
2

where G~ ——El + 4~~, E2. The radiative corrections for
a pointlike particle from Eq. (47) are

perform a Wick rotation, and Anally numerically inte-
grate in two dimensions using the Gaussian method. Our
results are

~ '

—+-'"M~M p' —M2 q 9 3 M' —p2y

m' n Zn'
(—1) 2.629 46(1),

) O.24523(1).M vr ~n3

(59)

(6o)

We define (r ) by the following equation that describes
the low-energy behavior of the correction to the forward
scattering amplitude:

p2 —M2 q37rM2 M2 —p2 3

(6o)
VI. PROTON SELF-ENERCY

AND FINITE SIZE CORRECTIONS

There is an additional radiative recoil correction that
has been neglected so far. It is due to the proton self-
energy. If we assume a pointlike proton the contribution
of this term to the Lamb shift is [1]

nsps (10 4 M & 4
7rnsM2 g 9 3 pn2) 3

(61)

For a true proton there is a 6nite size correction,

aZ =, n'V, '(r') b,o. (62)

The problem is that the proton self-energy is modified by
finite size effects, so some corrections are counted twice in
the above. To incorporate the correction (61) unambigu-
ously we must precisely specify the nuclear mean square
charge radius. Its definition through the Sachs form fac-
tor

We expect that for any nucleus the logarithmic term
above will be the same, since it is only related to the fact
that the nucleus has a charge, and does not depend on
other details such as the spin. There is an arbitrariness
in the choice of the constant factor, i.e., what belongs to
charge radius, arid what to the nuclear self-energy. The
proposed de6nition separates only the logarithmic term
Rom the charge radius. Another class of radiative cor-
rections is related to vacuum polarization from heavier
particles like the muon. Since any reasonable experiment
will not distinguish that effect from the intrinsic charge
distribution, we incorporate all these terms in the charge
1Bdlus def1nltloIl.

The associated correction to the energy for the S states
has the form

2AE = (Zn) IJ, (r )

4(Z2n) (Zn)4 ps ( M+
E&(zn)2~

ln —ko n

(r2) BG~(q2)
6 0(q') (63)

(7o)

The small second term in the above equation gives 4.6
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klz for the 1S state in hydrogen, which is significant for
the hydrogen-deuterium isotope shift [10].

E = &Evp+ &Ex + &Ec+ &Es
m2 (Zn)'

n (—1) 1.364 49 .

VII. SUMMAHY

We have recalculated all the recoil corrections of order

M n (Z n) s to the Lamb shift. They consist of the known
term that comes &om scaling of the wave function at the
origin,

--l ()~i (7)m2 ~ ~ns ql28 192 2 ) '

the vacuum polarization correction

m' a (Zcr)' ( 70 2
&Evp = —,——+ —~2 (72)

the pole contribution

m' n (Za)', l' 79
M ~ ~n' i, 32 (73)

&Ec = — (—1) 2.62946(1),
m2 n (Z n)'
M 7t. ~n~ (74)

and the seagull correction

AEs = ——' 0.245 23(l) .
M 7r ~ns (75)

the double Coulomb correction beyond the pole approx-
imation,

This result is not in agreement with the previous calcu-
lation of Bhatt and Crotch in [5,6]. First, the vacuum
polarization term has been neglected there, which indeed
is sxnall. Second, their value for the pole contribution
is 4 ln2 —sso, which difFers from our result (73). To
check it we have calculated f in three independent ways,
and the final integration in q was also done numerically.
Their result for the Coulomb term —2.62(4) is in agree-
ment with ours, but not that for the seagull correction
—1.48(1). In our calculation of T", we have checked the
imaginary part by an independent calculation using the
Cutkosky rules [9]. Any additional term that does not
contribute to the imaginary part would give a divergence
in integrals (55), (56). The overall shift AE is —14 kHz
for the 1S state, whereas Bhatt and Grotch obtained a
value of —20 kHz. This correction vanishes for all the
states with / g 0. We also analyzed the proton self-
energy correction and the corresponding definition of the
nuclear radius. The additional correction (76) beyond fi-
nite size e8ect is 4.6 kHz for the 1S state. In this way
we clarified what radius is measured in atomic spectro-
scopic measurements. This is important in view of the
discrepancy between the deuteron radius obtained &om
the isotope-shift measurement [10]and that from electron
scattering experiments. Since a new precise measurement
of the Lamb shift in muonic hydrogen is in preparation
at Paul Sherrer Institute [ll], a reanalysis of the proton
structure corrections is necessary for a reliable determi-
nation of its charge radius.

We also list the proton self-energy correction beyond the
terms included in charge radius, ACKNOVTLEDC MENTS

n' ps 4 fM)'
ln o n

)
(76)

All the corrections AE; beyond the mass scaling of the
wave function at the origin sum to
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