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q analogs of the radial Schrodinger equation in N space dimensions
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Transparent closed forms of the radial SO~(N) Schrodinger equation acting on the noncommutative
quantum Euclidean space are written both for l =0 and lXO. Starting from the s-wave equation leads to
the derivation of an alternative q analog of the radial Schrodinger equation in N space dimensions exhib-
iting a modified symmetry, now in terms of wave functions depending on the radial coordinate only. The
harmonic oscillator and the Coulomb system are treated as concrete examples. These results open the
way to the derivation of q-deformed (1/N)-energy formulas for arbitrary spherically symmetrical poten-
tials. Comparisons with exact SO~(N) results, as well as further interpretations, have also been made.

PACS number(s): 03.65.Ge, 03.65.Fd, 03.65.Ca, 11.15.Pg

I. INTRODUCTION

The q quantization of Lie algebras [1—4] has attracted
much interest (see, e.g., Refs. [5,6]). Euclidean spaces in
which the coordinates x' (i =1,2, . . . , N) are subject to
nontrivial commutation relations have also been con-
sidered [7,8]. Such commutation relations remain invari-
ant under linear coordinate transformations in so far as
the transformation matrices themselves exhibit the sym-
metry structure of a related quantum group. The
differential calculus has also been applied to quantum
groups [9] as well as to functions depending on the non-
commutative coordinates referred to above [10]. This re-
sults in nontrivial difFerentiation rules [11—15], which
lead to corresponding q deformations of Schrodinger and
other wave equations. Considering spherically symmetri-
cal potentials acting in N space dimensions, we then have
to realize that the underlying SO(N) symmetry [16,17]
gets replaced by the SO (N) symmetry, as discussed be-
fore in the case of the Schrodinger equation [11]. Ac-
cordingly, the metric tensor O'1 of the N-dimensional Eu-
clidean quantum space R and the R matrix of the quan-
tum group SO (N) are interrelated. This also means that
the square of the length

r =x x =Cjxgx)

is a central element of the algebra, in the sense that
[r,x']=0. The harmonic oscillator and the Coulomb
system have then been analyzed in N [11,12] and N =3
[18] space dimensions, respectively. The free particle in
polar coordinates has also been discussed [14].

We have to recognize, however, that to date many
questions bearing on q deformations in quantum mechan-
ics are still open for further clarification [19]. Coming
back to spherically symmetrical potentials, one is faced
with the derivation of an explicit q analog of the radial
Schrodinger equation in N space dimensions [20,21],

a+, l(l+N 2)+V(r) g, =& g—, , (2)
X—1 1

r r

where r = lx l, a=azar, and N) 2. In order to simplify

the notation, the same notation for the radial coordinate
has been preserved. Accordingly, we have to look for a
closed and reasonably tractable formula for the radial
constituent of the q Laplace operator 5 =a'a;, where
a'= O'Jaj. Note that in none of the previous papers men-
tioned above does the explicit q analog of Eq. (2) appear.
For this purpose we shall proceed by analyzing the rota-
tional excitations, now without invoking the whole
mathematical machinery of the noncommutative x' coor-
dinates. More exactly, we shall perform a simplified
description of rotational excitations just in terms of r-
dependent states like r 'Po, where $0 stands for the
SOq(N) ground state. We then find that under such
simplified assumptions the original SOq(N) energies de-
rived before [11,12,18] get modified, in a well-defined
manner, by the potential-independent quantum q defect

&, =(q —1)[[i]],[I l+N —2]], (3)

relying on Eqs. (37)—(38), in which the q number reads
[22]

I

[[l11,= (4)

which tends to I as q —+1. Keeping in mind the invariant
form of this defect, we emphasize that the radial descrip-
tion referred to above provides both a useful and trans-
parent method for the derivation of an explicit q analog
to Eq. (2). In this respect, our main emphasis in this pa-
per is on the derivation of an explicit q analog of Eq. (2).
This opens the way to the definition of novel q analogs of
1/N energy formulas for arbitrary spherically symmetri-
cal potentials.

II. THE s-WAVE SOq(N) SCHRODINGER-EQUATION

All that one needs in order to perform a radial descrip-
tion of the Schrodinger equation on Rq is to apply the q-
deformed differentiation rules [23]

aim l [[n]] X urn —2+qnrnai
q+1

and
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()'x, = ~ [[N]] +q~x'8, ,

where )M=)L(,(N)=1+q and (),. =a/()x'. We can then
deal with the spherically symmetrical ground-state wave
function by using the radial derivative

that v= —2 and v=1, respectively. The radial quantum
number has been denoted by n, . We then have to realize
that the above formula sheds some light on the nontrivial
generalization of Eqs. (11) and (12) to higher levels via
N~2d0 (v= —2) and N —1 —+2d0 (v= 1}.

dr"= [[n]] r" '+q "r"(},
q+1

which relies on Eq. (5). For the sake of discrimination,
this derivative has been denoted by B. Under such cir-
cumstances, the s-wave SOq(N) Schrodinger equation
reads

q '3 — [[N —1]] —()+ V(r) P( )=E g((0)
q+1 ~ r q q q

III. THE RADIAL DESCRIPTION
OF ROTATIONAL EXCITATIONS

Our next step is to perform a transparent radial
description of rotational excitations. This differs from
the original SOq(N) approach, in which the manifold of
x coordinates is subject to quite detailed algebraic struc-
tures. To this end let us consider the harmonic-oscillator
wave function

P'"(r) =r'it)' '(r, 2,a), (15)

which reproduces the I =0 form of Eq. (2) in terms of the
q~1 limit, as one might expect. Indeed, accounting for
the ground-state

n

y(o) —y(o)( M }
—y ( ) " q+1

[[Mn]],)

one finds

'[[M 1]],+[[N——1]lq }

ar —
q

+ + V(r) =E, (10)

by virtue of Eq. (8), where a and M are positive parame-
ters. This shows that the only solutions are given by the
harmonic-oscillator potential V( r ) = ra r and the
Coulomb potential V(r)= —Z/r, in which case M=2
and M = 1, respectively. The corresponding ground-state
energies are then given by

EGs pm [[N]],
q+1 N/2

for which n„=0, where a denotes a rescaled coupling
which should be fixed later. We remark that Eq. (15) is
reminiscent of the SO(N) symmetry exhibited by Eq. (2).
We shall then put forward the modified radial version of
the Schrodinger equation on R as

r

—
q '() — [[N —1]] —3q+1+, , [[E]l,[[~+N —2]],(q+1) r

+ V(r) q(l) E(l)y(l) (16)

for reasons which will be made clear in a moment. We
have also to anticipate that proceeding via Eq. (15}may
eventually produce a certain alteration of the original
SOq(N) energy result. Indeed, combining Eqs. (15) and
(16) gives the energy

E"'= ~ ([[2l+N]] +5 ),q+1
(q+1) Z q

[[N —1]]',

which proceed via a=coq and

(12)

1+N/2 (18)

q+1 Z
V [[N —1]1,

' (13)
On the other hand, the original SOq(N) energy formula is
[12]

X —2
10=l+ +(n„+—,

' }&2—v, (14)

which proceeds to first 1/N order via V(r) —1/r, such

respectively. One sees that Eq. (11}reproduces exactly
the ground-state energy of the Schrodinger equation on
R+ with a harmonic oscillator [11], whereas Eq. (12)
agrees with the 1V =3 result obtained for the Coulomb
potential [18].

Further, we have to remember that the principal quan-
tum numbers characterizing the above potentials come
from the expansion parameter of the 1/N method as (see,
e.g., Ref. [24])

[ [2n() +N] ]q
n +an

q 7fp

[[2do]]q ~[[2do]]q+~q (20)

in which 5q is reminiscent of the SOq(N) symmetry. It is
understood that Eq. (20) should work for both n, =0 and
n„%0, as the n„dependence definitely concerns d0. This
latter statement agrees with the energy result which has

where no =0, 1,2, . . .. Making the identification
no I +2n„, one realizes immediately that the appearance
of the quantum q defect proceeds in terms of the substitu-
tion
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been established recently by solving the Schrodinger
equation on R in terms of q polynomials and q exponen-
tial functions [25]. However, the point is that repeating
the same procedure in the case of the Coulomb potential
one finds that Eq. (20) is confirmed, now for v= l. Ac-
cordingly, the q-deformed energy is

(q+1) Z q

C
' ([[2do]],+&, )' (21)

1 (+N —3
2 2

N —11+
2

+ V(r) q) =E)q)

which generalizes Eq. (4.20) in Ref. [18] to N space di-
mensions as soon as one puts 5» =0. Thus both Eqs. (17)
and (21) can be traced back to the original SO»(N) results
just by removing 5». This shows that Eq. (20) proceeds
isomorphically, as one might expect. Such symmetry at-
tributes are then able to support the relevance of Eq. (16)
as a valuable candidate for the q analog of Eq. (2).

It is also of interest to establish the conditions under
which a q analog of the reduced radial equation

In addition, one has also the modified substitution rule
—d0

dodd() = ~ ([[2d()]] +5 ),
2(q +1) (28)

(»"=V(r())+ V'(r()), (29)

in which ro has the meaning of a q analog of the
minimum location of the efFective potential do/r + V(r)
emphasized usually. This amounts to the resolution of
the algebraic equation

which corresponds to Eq. (16). We then have to realize
that Eqs. (25) and (28) serve as symmetry-endowing rela-
tionships which enable us to incorporate the inhuence of
q deformations into the 1/N description. On the other
hand, do can be established, at least within reasonable de-
grees of accuracy, for arbitrary spherically symmetrical
potentials. This opens the way to performing energy de-
formations for such potentials by combining Eq. (25) with
the 1/N energy formulas presented before [24]. The q-
deformed 1/N energy is then given by

,(,(l)(r )
—r(1 N)/2 (l)(r)—~(i r r (23)

(22)

is able to be implied by Eq. (16), too. Using the usual in-
terconnection

2d() =r()V'(r()),

in which do is given by
1/2

p, N —2, V (ro)
do= I+ +(n„+ 2 ) 3+ro

2q 2 " ' V'(ro)
q

(30)

and inserting Eq. (23) into Eq. (16), one finds, surprisingly
enough, that the first derivative 3q)(»" is eliminated if
N =3 only. One would then obtain the equation

r

—8'+ ' [[t]],[[I+1]],+ V(r) q("=E("q'"

for N =3, in which case p(3)=(1+q)/q.
general radial equation can be readily

g» (r)=r qr'» (r) instead of Eq.
q'=)((, /(q + 1). Then a = —1 for
a —+( I N)/2 as q ~1—.

(24)

However, the
derived using
(23), where
N=3 and

IV. THE IMPACT ON THE 1/N ENERGY FORMULAS

—d0

do do= +1 [[2do]]» (25)

Removing 5 and comparing Eqs. (19) and (21) with
the exact energies E=2 ado(and E= —Z /4do of the
harmonic oscillator (v= —2) and the Couloinb system
(v= 1), one realizes that the energy deformation implied
by the original SO»(N) description amounts to consider-
ing the "minimal" substitution rule

(31)

to first 1/N order. In general, all that we did above can
also be repeated by considering Eq. (28) instead of Eq.
(25). In consequence, the q deformations of the energy
cease to be restricted only to a small number of exactly
solvable potentials, which may be useful in practice. We
have also to mention that Eq. (31) differs from a rather
special q deformation of do which has been established
before [26] by interpolating between selected SU (2) en-

ergy results characterizing the harmonic oscillator [27]
and the Coulomb system [28]. The main point is, howev-
er, the fact that, having the opportunity to choose be-
tween several q deformation schemes, one is favored
when dealing with physical applications.

V. CONCLUSIONS AND FURTHER INTERPRETATIONS

Resorting to a radial description of rotational excita-
tions [see Eq. (15)], we have succeeded in establishing ex-
plicit q analogs of the usual radial Schrodinger equations
(2) and (22), as given by Eqs. (16) and (24). One starts
from Eq. (8), which relies on the radial reduction

which can be rewritten equivalently as b»f(r)= q '() + [[N —1]] —() f(r), (32)

where

Z, = " [d,],
2q

0 do

]
q

(26)

(27)

of the q Laplacian by an analytic function, which is pro-
duced by Eqs. (5) and (6). In contradistinction to the usu-
al SO(N) description, we found that Eq. (23) works for
N=3 only. It has also been shown that, under the
infiuence of the radial wave function given by Eq. (15),
the q-deformed energy becomes subject to a certain
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modification with respect to the previous SO~(N) re-
sults [11,12,18,25]. This amounts to the insertion of a
potential-independent q defect via Eq. (20). The question
of whether other solvable potentials lead, in accord with
Eq. (20), to the same q defect deserves further attention.
It is also clear that we can deal with the radial derivative
3 in Eq. (16) by means of the rule

Bf(r) =
2 [f(qr) f(r—)],

r(q —1)
(33)

+V(r) f(r)=E,f(r), (34)

which looks like an s-wave equation, but now with a typi-
cal 21 +N dependence concerning the coeKcients in front
of the radial derivatives. However, proceeding further
and putting f(r)=r 'g(r), it can easily be verified that
Eq. (34) can be rewritten equivalently as

r

—q"-'8' — " ([[N —1]],—q-'S, )—'a

which comes from Eq. (7). This indicates that Eq. (16)
gets transformed into a q difference equation, which may
result in more efBcient calculations. Taking into account
the rescalings needed, one realizes immediately that Eqs.
(32) and (33) agree with Eqs. (2.29) and (2.32) in the re-
cent Ref. [25], respectively. Further, the SO~ (N)
Schrodinger equation derived in this latter reference [see
Eq. (2.33)] exhibits the rather unusual barrierless radial
form

2l+N g2 — ~ [[2I+N —1]] —31—
q+1 T

2

[ [1]] [ [I +N —2 ] ](q+1) q

However, one also has the identity

[[I)1,= —q'[[ —~l),

(37)

(38)

which shows, in accord with Eq. (35), that the alternative
choice

Relevant scalar products for the q oscillator wave func-
tions have been analyzed in both one [29] and N
[12,14,30] space dimensions. We have to recognize, how-
ever, that to date the estimation of matrix elements is still
a quite involved task. Moreover, the concrete form of the
related q spherical functions (see, for instance, Ref. [14]),
remains open for further studies.

Performing comparisons with related SU~(2) energy
results [27,28], one realizes immediately that the noncom-
mutative geometry leads specifically to a rescaling of the
ground-state energy. This proceeds by virtue of the fac-
tor p/(q+1) exhibited by Eqs. (5)—(7). A somewhat
drastic simplification is to postulate Eq. (16) as a q analog
of Eq. (2), but now by identifying r with the radial coordi-
nate of the usual Euclidean space. Strictly speaking, this
alternative leads to some consistency problems, because
the usual coordinate is generated by the noncommutative
one via q —+1. Nevertheless, such a reinterpretation is in-
teresting as it brings out the effect of changing the metric.

Comparisons concerning the q-deformed centrifugal
barrier exhibited by Eq. (16) are in order. First, Eq. (16)
leads us to say, by virtue of a direct analogy, that the q
analog of the eigenvalue l (l +N —2) of the second
SO(N) Casimir operator is

2 —I
+ ", , [[Il),[[I+N —2)],

2 2

[[—I]] [[I+N —2]],(q+1) q
(39)

+ V(r) g(r) =E~g(r), (35)

which represents properly the SO (N) solution to the q
deformation of Eq. (2), thereby explaining the onset of
the q defect 5 . Notwithstanding, Eq. (16) remains a
valuable candidate for the general description of the (not
at all unique) q deformation of Eq. (2), which amounts to
modifying reasonably the original SO (N) invariance in
conjunction with Eq. (15). In addition, one finds that Eq.
(34) yields the reduced radial equation

(
—I N/2+ 1+ I+N/2 —1)2g2-

(q+1)

which is invariant under q —+q ' up to the factor q
should also be considered. Comparing these candidates
with the eigenvalue Qi of the SO~(N) Casimir operator
discussed before [14],one sees immediately that

2

n =X'=q'-'X,
( +1)2 I I I (40)

which shows that A,z =A,z, but, in general, g&A, &'Ag&A,
Moreover, replacing q by q, one realizes that a similar
agreement remains valid with respect to Eq. (6.15) in Ref.
[30].

There is still an interconnection which seems to have
been ignored so far. Indeed, Eq. (6) shows that the num-
ber of space dimensions is itself subject to the deforma-
tion

[[—21 N+1]] [[2l+N——3]](q+1) q N~Nq = [[N]]q (41)

+V(r) u(r)=E u(r), (36)

via f(r)=r'u(r), provided that q'=(q ' + +1)/
(q+1). Such a reduction proceeds, as before,
irrespective of N but with a q-dependent power exponent
a, such that a ~(1—N)/2 —I for q ~1, as one might ex-
pect.

which competes with Eq. (25). Then an appealing idea is
to parametrize certain modifications and/or uncertainties
in the number of space dimensions with the help of Eq.
(41). The q parameter established in this manner is then
able to serve as an input for Eq. (25) or Eq. (28).

Applying the q-deformed 1/N energy formulas
(29)—(31), we have also the opportunity to check energy
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corrections for arbitrary spherically symmetrical poten-
tials. Of course, the accuracy of I/X formulas can be
enhanced either by resorting to higher orders [24,31,32]
or by performing suitable modifications [33—35]. So far,
such spectroscopic applications are able to be supported,
e.g. , by the successful SU~(2) description of vibrational
spectra of diatomic molecules [36,37], by the rotational
nuclear spectra of deformed nuclei [38,39], or by the U(3)
symmetry of the nuclear shell model [40]. The applica-
tion of Eq. (16) to the spectroscopy of the q-deformed
Klein-Gordon Coulomb system has also been made [41].
Either way, one has by now classes of physical systems
which are parametrized by the q number, which may be
of interest in the description of further interconnections
between certain near but nonidentical results.

The invariance of the q Casimir eigenvalue A, l* under
the substitution q —+q indicates the existence of an ad-
ditional symmetry, which otherwise would be obscured
by the particular q =1 choice. We can then say that the
virtue of the q&1 approach is the actual possibility to in-
corporate from the very beginning unexpected nonlinear
[42] and squeezing [43—46] effects, for which the underly-
ing interactions are automatically produced by the q de-
formations. Further generalizations can also be generat-
ed by the symmetries characterizing exactly solvable
models in statistical mechanics [47] and especially
Bethe-ansatz solutions to spin chains [48], factorized S
matrices [49], the Hubbard [50] and Perk-Schultz [51]

q
—

q
2/n 2/tt [—Q q

—
q

(42)

whert: 0=2—v for power-law potentials. This result
agrees, up to a do-independent factor, with Eq. (26) estab-
lished above.
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models, or exact solutions to q-boson-hopping models
[52]. Tentative descriptions of collective excitations in
terms of q bosons should also be mentioned [53,54].
Coming back to the present quantum-mechanical q defor-
mations, it should be stressed that the meaning of the q
parameter can also be analyzed with the help of WKB
[55] and/or I /N [56] equivalent potentials. Relevant per-
turbations can then be produced systematically by per-
tinent E expansions (q =expe).

An alternative to the interpolation formula (14) in Ref.
[26] can also be done by using q instead of q in the
SU (2) deformation of the Coulomb system (v= 1). Ac-
cordingly, Eq. (14) in Ref. [26] remains valid as it stands,
provided that co=A ' is replaced by su=2/Q. Then
the q-deformed counterpart of do is
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