Excited electronic potential-energy surfaces and transition moments for the \mathbf{H}_{3} system

Zhengwei Peng, ${ }^{*}$ Sandor Kristyan, ${ }^{\dagger}$ and Aron Kuppermann
Arthur Amos Noyes Laboratory of Chemical Physics, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
James S. Wright
Ottawa-Carleton Chemistry Institute, Carleton University, Ottawa, Canada K1S 5B6

(Received 30 January 1995)

Abstract

Four electronic states of H_{3} have been studied using a multiple-reference double-excitation configuration-interaction method with an extensive basis set of 75 Gaussian-type atomic orbitals. A total of 1340 ab initio points were calculated over a wide range of H_{3} molecular geometries. These four states include the ground state and the Rydberg $2 s^{2} A_{1}^{\prime}$ and $2 p_{z}{ }^{2} A_{2}^{\prime \prime}$ states, as well as the state that in equilateral triangular geometry is related to the ground state by a conical intersection. Electric-dipole transition moments were also obtained between these states. The results show that the atomic and diatomic energetic asymptotes are accurately described. The barriers, wells, and energy differences also show good agreement compared to literature values, where available. The potential energies of the ground state and the $2 p_{z}{ }^{2} A_{2}^{\prime \prime}$ Rydberg state display smooth and regular behavior and were fitted over the whole molecular geometries using a rotated Morse curve-cubic spline approach. The other two potential-energy surfaces reveal more complicated behaviors, such as avoided crossings, and will require a different fitting procedure to obtain global fitting. Finally, dynamical implications of these potential surfaces and electric-dipole transition moments are discussed.

PACS number(s): 31.10. +z

I. INTRODUCTION

The first step toward understanding not only the structure but also the dynamics of a molecular system is to generate the potential-energy surfaces of its electronic states. Furthermore, if physical or chemical processes involving multiple electronic states are of interest, the electronically nonadiabatic coupling matrix elements and the radiation-assisted coupling elements (such as the electric-dipole transition moment) between electronic states are also needed.

The potential-energy surface of the ground electronic state of H_{3} has been calculated since the beginning of quantum chemistry [1-12]. The high-quality ground electronic state potential energies obtained by Liu [6] and by Siegbahn and Liu [7] (hereafter SL) were fitted by Truhlar and Horowitz [13] to give the SLTH surface, which incorporated some scaling to produce accurate diatomic limits and for many years provided a standard of accuracy for the field. The more recent double manybody expansion (DMBE) surface of Varandas et al. [14] provides another fit to the SL energy data. Although it has a larger rms error than that of the SLTH surface, the DMBE surface is believed to be more accurate at higher energies [13,14]. The quality of the SLTH surface has

[^0]been reconfirmed and extended by two more recent studies [11,12]. These potential-energy surfaces offer a good starting point for the quantum scattering calculation [15-49] of the $\mathrm{H}+\mathrm{H}_{2}$ (and also its isotopes) reaction, which is the prototypical gas-phase atom-diatom chemical reaction $A+B C \rightarrow A B+C$.

For excited states of the \mathbf{H}_{3} system, the number of available $a b$ initio calculations is sparse and of small scale, although these excited states are of considerable current interest [50-77]. A review of all work on excited state surfaces of H_{3} up to 1976 is given in Truhlar and Wyatt's [78] work. Reviews on the Rydberg excited states of \mathbf{H}_{3} have been given in the recent publications of Herzberg [79], Watson [80], and Gellene and Porter [81]. Important early theoretical work on the excited states of H_{3} includes the studies of Rydberg spectra of H_{3} by King and Morokuma [82], Jungen [83], Martin [84], Kulander and Guest [85], Nager and Jungen [86], and Raynor and Herschbach [87], and the series on transition state spectroscopy by Polanyi and co-workers [88-90]. A thorough study of excited electronic potential-energy surfaces of H_{3} was done by Roach and Kuntz using the semiempirical diatom-in-a-molecule (DIM) method [91]. More recent work on H_{3} was done by Petsalakis, Theodorakopoulos, and Wright [92] (hereafter PTW) and also by Diercksen, Duch, and Karwowski [93]. In a recent Letter, the current authors have also reported a calculation of the lowest four electronic states with fixed bond angles of 60° [94]. It must be mentioned that the work of Porter, Stevens, and Karplus [5] is not only on the ground state H_{3} but is also a classic early paper on the excited state.

The full potential-energy surface of the first excited state of H_{3} (not a Rydberg state) has been obtained using a functional extrapolation scheme of the DMBE method, along with the major terms of the electronically nonadiabatic coupling elements near the equilateral triangular configuration between this state and the ground state [14]. There have not been any direct calculations of the nonadiabatic coupling terms between any pair of H_{3} potential-energy surfaces. Because the DMBE functional extrapolation is valid only in the close vicinity of the conical intersection (the equilateral triangular H_{3} configuration), the potential-energy surface of the first excited state in regions far away from the conical intersection is believed not to be accurate [14]. So far, most of the quantum scattering calculations of the $\mathrm{H}+\mathrm{H}_{2}$ system have been carried out on the single ground electronic potential-energy surface [15-49]. The geometric phase [95-100] induced by the conical intersection between the ground and the first excited states of \mathbf{H}_{3} has been demonstrated to have a profound effect on the rovibrational eigenenergies supported by the upper state [101,102]. It is also found to be important for the reactive scattering on the ground state at energies above $2.2 \mathrm{eV}[103,104]$. Even in these studies [103,104] only one potential-energy surface (the ground state) is considered explicitly. But when the total energy approaches 2.75 eV [with respect to $\mathbf{H}(1 s)+\mathrm{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$], which is the lowest value of the first excited potential-energy surface [14], it is necessary to include both potential-energy surfaces explicitly in the scattering calculations. Therefore it is our first objective to calculate, using $a b$ initio methods, potential energies of the first excited H_{3} electronic state over a wide region of molecular geometries. The result will allow us to address the inaccuracy in the upper sheet of the DMBE surface and pave the way for future high-energy H_{3} scattering calculations. It is worth noting that semiclassical trajectory surface hopping calculations [105] were carried out for H_{3} employing the DMBE excited surface.

The $2 p_{z}{ }^{2} A_{2}^{\prime \prime}$ excited state is very special among the low-lying H_{3} Rydberg states [79-81]. The electronic energy levels and correlation diagram of H_{3} in an equilateral triangular molecular configuration with an internuclear distance of 1.64 bohrs is shown in Fig. 1. Since the molecular point group for an equilateral triangle is $D_{3 h}$, all electronic states are labeled according to the symmetry representation of this point group, along with the labels of the united-atom limits [57,58]. From symmetry arguments, Herzberg and co-workers $[57,58]$ have pointed out its decay mechanism as the rovibronic predissociation [106] into the ground repulsive state and the electric-dipole radiation [107] into the lower $2 s^{2} A_{1}^{\prime}$ Rydberg state. The lifetime this electric-dipole transition between $2 p_{z}{ }^{2} A_{2}^{\prime \prime}$ and $2 s^{2} A_{1}^{\prime}$ has been estimated to be about $90 \mu \mathrm{sec}[62,92,94]$. More recent experiments have found that spin-orbital couplings also contribute to the decay of the $2 p_{z}^{2} A_{2}^{\prime \prime}$ excited state $[76,77]$. In order to understand the decay lifetime of the $2 p_{z}{ }^{2} A_{2}^{\prime \prime}$ state, the full potentialenergy surfaces of those four low-lying electronic states and some electric-dipole transition moments are needed (see Fig. 1). Previous theoretical studies on the excited

FIG. 1. Electronic energy level and correlation diagram of \mathbf{H}_{3}. The spacing of the H_{3} energy levels was calculated for an equilateral triangular configuration [82] with an internuclear distance of 1.64 bohrs and referred to the energy of dissociated products by the results of a separated calculation [85].
H_{3} Rydberg states were more or less aimed at explaining the most obvious features of the experimental Rydberg spectroscopic results. The restricted molecular geometries in these studies for which $a b$ initio calculations have been done prevented the construction of full potential-energy surfaces. In this sense, the theoretical study of the accurate rotational and vibrational structures of the H_{3} Rydberg states is not possible for lack of full potential-energy surfaces, even though there is a great deal of experimental data available on this subject [57-61,66-77]. Therefore it is our second objective to calculate, using $a b$ initio methods, potential energies of the H_{3} excited $2 p_{z}{ }^{2} A_{2}^{\prime \prime}$ and $2 s^{2} A_{1}^{\prime}$ electronic states and the electric-dipole moment between each other over a wide region of molecular geometries.

Furthermore, transition-state spectroscopy [88-90, 108-116] and laser-assisted chemical reaction (laser catalysis) [117,118] have attracted a lot of attention recently. Both chemical processes involve at least two potential energy surfaces. For the H_{3} system, the continuum radiation absorption spectrum between the ground electronic state and the third excited state (in $D_{3 h}$ nuclear geometry this corresponds to the $2 p_{z}^{2} A_{2}^{\prime \prime}$ state) has been studied theoretically and the results have shown many phenomena that reveal rich and complex dynamics between these two potential-energy surfaces [112-116]. In these calculations, the SLTH surface is commonly used as the ground-state potential-energy surface and the semiempirical DIM surface developed by Mayne and co-workers as the $2 p_{z}^{2} A_{2}^{\prime \prime}$ potential-energy surface [90]. The electricdipole transition moment between the ground electronic state and the $2 p_{z}{ }^{2} \boldsymbol{A}_{2}^{\prime \prime}$ excited state has been approximat-
ed by either a constant or a guessed switching function [88-90, 115-118]. PTW [92] have compared their ab initio multiple-reference single- or double-excitation (MRSD) configuration-interaction (CI) results on H_{3} with the extensive semiempirical DIM work by Roach and Kuntz [91] and found that the DIM calculations reproduced the gross features of the ground and excited potential surfaces but with some quantitative discrepancies [92]. We expect similar discrepancies to exist in the DIM potential surface of the $2 p_{z}{ }^{2} \boldsymbol{A}_{2}^{\prime \prime}$ excited state by Mayne and co-workers [90]. Any improvement in the quality of the $2 p_{z}^{2} A_{2}^{\prime \prime}$ excited potential-energy surface and its electric-dipole transition moment to the ground state will lead to a more realistic description of the chemical process involved and improve the comparison between theoretical and experimental results. Hence it is our third objective to calculate, using ab initio methods, potential energies of the $2 p_{z}^{2} A_{2}^{\prime \prime}$ excited state and its electric-dipole transition moment to the ground state.

In this study, potential energies of the lowest four electronic states of $\mathrm{H}_{3}\left(2 p_{x y}{ }^{2} E^{\prime}, 2 s^{2} A_{1}^{\prime}\right.$, and $2 p_{z}{ }^{2} A_{2}^{\prime \prime}$; see Fig. 1) have been calculated using an $a b$ initio MRSD-CI method over a wide range of molecular geometries. Electric-dipole transition moments are also calculated between these states. Numerical details are presented in Sec. II. Results in some selected molecular geometries are tabulated and discussed in Sec. III. In Sec. IV we present the full three-dimensional fittings of the potential-energy surfaces for the ground state and the $2 p_{z}{ }^{2} A_{2}^{\prime \prime}$ excited states. A summary is given in Sec. V.

II. METHOD OF CALCULATION

The method of calculation and numerical details have been given in our previous publication [94]. The important points are reviewed here. There are two regions of \mathbf{H}_{3} molecular geometry of interest in our study: the Rydberg region, where three protons are fairly close to each other, and the atom-diatom region, where one H atom is far away from the diatomic molecule H_{2}. The lowest five states in the asymptotic region of $\mathrm{H}+\mathrm{H}_{2}$ correlate with the states [91]

$$
\begin{align*}
& \mathrm{H}_{2}\left(X^{1} \Sigma_{g}^{+}\right)+\mathrm{H}(1 s), \tag{1}\\
& \mathrm{H}_{2}\left(X^{1} \Sigma_{g}^{+}\right)+\mathrm{H}\left(2 s, 2 p_{x}, 2 p_{y}, 2 p_{z}\right), \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbf{H}_{2}\left(b^{3} \boldsymbol{\Sigma}_{u}^{+}\right)+\mathbf{H}(1 s) \rightarrow 3 \mathbf{H}(1 s) . \tag{3}
\end{equation*}
$$

It is clear that our basis set should be able to describe the atomic $\mathbf{H}(n=1,2)$ states [see Eqs. (1)-(3) and Fig. 1] and the lowest two diatomic states $\mathrm{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$and $\mathbf{H}_{2}\left(b^{3} \Sigma_{u}{ }^{+}\right)$. So the choice of our basis set is determined by the necessity of obtaining the following: (i) accurate atomic excitation energies for $\mathbf{H}(1 s) \rightarrow \mathbf{H}(2 s)$ and $\mathbf{H}(1 s) \rightarrow \mathbf{H}(2 p)$ transitions, (ii) accurate values for the \mathbf{H}_{2} energy in its ground electronic state $\mathbf{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$and excited state $\mathbf{H}_{2}\left(b^{3} \Sigma_{u}{ }^{+}\right)$, (iii) a ground-state surface for \mathbf{H}_{3} of accuracy comparable to that of the SLTH and DMBE
surfaces [13,14], and (iv) reasonably good agreement with the observed Rydberg spectrum of H_{3} and the recent calculations by PTW [92] and Diercksen [93].

After some experimentation, the basis sets used by Siegbahn and Liu [7] (for the ground state of H_{3}) and by Talbi and Saxon [119] (for the Rydberg spectrum of $\mathrm{H}_{3}{ }^{+}$) were adapted for the present purpose. The valence ($9 s / 4 s$) contracted Gaussian-type orbital (GTO) basis functions are taken from LS [7], with an outer exponent 0.066 18. Three more Rydberg s-type GTO functions are added, with an approximately even-tempered ratio of 2.4 , giving exponents $0.02758,0.01149$, and 0.004 20. The polarization and Rydberg p-type basis functions are taken from Talbi and Saxon [119], with exponents 1.6, 0.4, 0.09, and 0.025 . Finally, the six-component d-type function with exponent 1.0 was taken from LS [7]. The final atomic basis set, denoted $12 s 4 p 1 d / 7 s 4 p 1 d$, therefore has 25 contracted atomic orbitals (AOs), of which three s-type and two p-type functions are essentially Rydberg in nature. The parameters of the $12 s 4 p 1 d / 7 s 4 p 1 d$ basis set are listed in Table I. In order to cover a wide range of molecular geometries and allow the proper dissociation, it was found necessary to place the full AO set on each atomic center, for a total basis set size of 75 AOs. Even with such a diffuse basis set, no linear dependence problems [119] were encountered as we used the HONDO routine [120] to evaluate necessary integrals.

The molecule was located in the $x y$ plane with its geometry described by two bond lengths R_{1} and R_{2} and one bond angle γ (see Fig. 2). All calculations were carried out using the point group C_{s}, even though at some molecular geometries the symmetry of the molecule could be higher ($C_{2 v}, D_{3 h}$, etc.). In terms of the C_{s} point group, A^{\prime}-type functions are symmetric with respect to the $x y$ plane whereas $A^{\prime \prime}$-type functions are antisymmetric.
The self-consistent-field (SCF) molecular orbitals (MOs) were constructed using the occupation $\left(1 a^{\prime}\right)^{2}\left(1 a^{\prime \prime}\right)^{1}$, which is the dominant MO configuration

TABLE I. $12 s 4 p 1 d / 7 s 4 p 1 d$ Gaussian-type basis set.

	RABLE	ξ_{i} (a.u.)	C_{i} (a.u.)
Orbital	i	837.22	0.000112
$1 s$	1	123.524	0.000895
	2	27.7042	0.004737
	3	7.82599	0.019518
	4	2.6504	0.065862
	5	0.938258	0.178008
$2 s$	6	0.372145	1.00000
$3 s$	1	0.155838	1.00000
$4 s$	1	0.066180	1.00000
$5 s$	1	0.027580	1.00000
$6 s$	1	0.011490	1.00000
$7 s$	1	0.004200	1.00000
$1 p$	1	1.6	1.00000
$2 p$	1	0.40	1.00000
$3 p$	1	0.09	1.00000
$4 p$	1	0.025	1.00000
$1 d$	1	1.0	1.00000

FIG. 2. Coordinate system used in the MRD-CI program. P_{i} is the i th proton of H_{3}. The three protons are all in the $x y$ plane. The bond distance R_{1} between P_{1} and P_{3}, R_{2} between P_{1} and P_{2}, and the bond angle γ between them are used as the variables describing the shape of the triangle.
for the $2 p_{z}{ }^{2} A_{2}^{\prime \prime}$ electronic state when the molecule is near the equilateral triangular configuration and also for the $\mathbf{H}\left(2 p_{z}\right)+\mathbf{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$state when the molecular geometry approaches the atom-diatom region. This choice of electron configuration will lead to SCF MOs that offer a very good description of the $2 p_{z}{ }^{2} A_{2}^{\prime \prime}$ state and also a more even-handed description of the two degenerate $2 p_{x y}{ }^{2} E^{\prime}$ (the ground and first excited) electronic states near equilateral triangular configurations. The configurationinteraction energy is obtained using the MRD-CI method of Buenker and co-workers [121-127], with all 75 MOs kept in the calculation. The CI reference configuration space of A^{\prime} symmetry was constructed using 45-49 reference configurations and the nature of these reference configurations depends on the molecular geometry. A configuration selection threshold energy of 2.0μ hartrees was chosen, which results in the generation of 50000-60000 configuration functions from which 4000-7000 were selected for the final CI calculation. For the lowest $A_{2}^{\prime \prime}$-type eigenvalue calculations, about 19-32 reference configurations were used. A threshold energy of 1.0μ hartrees results in $20000-40000$ generated configurations, from which 600-3000 were selected. Extrapolation of the energy to zero threshold in the usual way gave the MRD-CI energy [$121-125$], which provided the raw data for constructing the potential-energy surfaces.

There are four electronic states of interest, whose energies we label as E_{1}, E_{2}, E_{3}, and E_{4}, where the first three are of A^{\prime} symmetry and the last $A^{\prime \prime}$ symmetry. Using the symmetry notation appropriate for the equilateral triangular ($D_{3 h}$) geometry, E_{1} corresponds to the ground state ${ }^{2} E^{\prime}\left(1 a^{\prime 2} 1 e^{\prime}\right), E_{2}$ to the state degenerate with the ground one in the equilateral triangular geometry, E_{3} to the $2 s^{2} A_{1}^{\prime}\left(1 a^{\prime 2} 2 s\right)$ state, and E_{4} to the
$2 p_{z}^{2} A_{2}^{\prime \prime}\left(1 a^{\prime 2} 2 p_{z}\right)$ state. Although E_{1} and E_{2} are degenerate in the equilateral triangular geometry, such a degeneracy is lifted as soon as the triangle is distorted and this is what generates the conical intersection between the potential-energy surfaces of the E_{1} and E_{2} states $[2,14]$. We call the reader's attention to the notational difficulties: The notation E_{i} comes from the first letter of the word energy and is not an indication of state labels (since some of them have E symmetry only). We have chosen this notation again since it is compatible with our group's conventional notation used in other publications.
Electric-dipole transition moments between these states are also calculated at most molecular geometries. We label the moment between any two electronic states E_{i} and E_{j} as $\mathbf{T}_{i j}$. The C_{s} symmetry used in the calculation ensures that the electric-dipole transition moments between the antisymmetric E_{4} state and the symmetric E_{1}, E_{2}, and E_{3} states have only a z component and the transition moments among the symmetric states have no z component at all. Since the electron wave functions have been determined by the variational calculation to within a phase factor (real electronic wave functions can have a phase factor of +1 or -1 only), all electric-dipole transition moments are subject to an arbitrary sign change.

Selection of the geometries at which the ab initio calculations were done is guided by the rotated Morse curve spline (RMCS) potential-energy fitting method [128-130]. First, a bond angle γ is chosen and held fixed for the next series of calculations. A swing angle θ is defined as the angle by which the Morse curves are rotated with respect to the swing point P_{s} located at ($R_{1}^{s}=10$ bohrs, $R_{2}^{s}=10$ bohrs) in R_{1} and R_{2} Cartesian coordinates (see Fig. 3). The molecular geometry of a point

FIG. 3. Internal coordinate system used in the RMCS surface fitting scheme. In the R_{1}, R_{2} Cartesian coordinates, P_{s} is the swing point with $R_{1}^{s}=R_{2}^{s}=10$ bohrs. A point P can be described by the swing angle θ and the swing distance l with respect to the swing point P_{s}.
along a ray with fixed (γ, θ) can be uniquely defined by its R_{1} value. $\theta=0^{\circ}$ corresponds to the ray with fixed $R_{2}=10$ bohrs and variable R_{1} (atom-diatom region) and $\theta=45^{\circ}$ corresponds to the symmetric $R_{2}=R_{1}$ configuration. Data points are taken at increments of $0.1-0.2$ bohr from 1.0 to 3.0 bohrs in R_{1}. Typically 7-13 data points are calculated per ray (with a fixed γ and θ pair), while more points are added when necessary. A similar treatment was used by Mayne et al. [90], who interpolated DIM data using a rotated Morse curve approach.

Potential-energy data at each (γ, θ) ray were then fitted using a five-parameter generalized Morse function (GMF5) [131,132]

$$
\begin{align*}
& V=D_{e}\left\{\left(1.0-e^{\beta x}\right)^{2}-1.0\right\} \tag{4}\\
& \beta=\beta_{0}\left(1+\lambda_{1} x+\lambda_{2} x^{2}\right) \tag{5}\\
& x=l-l_{e} \tag{6}
\end{align*}
$$

with D_{e} the well depth relative to the swing point, l_{e} the distance of the minimum of the GMF5 function from the swing point, β_{0} the curvature parameter, and λ_{1} and λ_{2} the linear and quadratic corrections to β_{0}, respectively. All five parameters are functions of γ and θ.
$A b$ initio calculations were performed for $\gamma=55^{\circ}, 60^{\circ}, 65^{\circ}, 75^{\circ}, 85^{\circ}, 90^{\circ}, 100^{\circ}, 110^{\circ}, 120^{\circ}, 150^{\circ}, 180^{\circ}$ and $\theta=0^{\circ}, 20^{\circ}, 30^{\circ}, 35^{\circ}, 40^{\circ}, 41^{\circ}, 42^{\circ}, 43^{\circ}, 44^{\circ}, 45^{\circ}$. The choice of γ comes from the fact that the permutation symmetry of H_{3} allows us to use the largest bond angle ($\gamma_{\max } \geq 60^{\circ}$) and the two bond lengths that form this γ angle to describe the H_{3} molecular geometry. The permutation symmetry also allows us to reflect the calculated data with respect to $\theta=45^{\circ}\left(R_{1} \leftrightarrow R_{2}\right)$ and therefore cover the full range of θ from 0° to 90° (see Fig. 3).

The major portion of the calculation has been done on the CRAY Y-MP machines of the NSF-San Diego Supercomputing Center and of the NAS program of the NASA-Ames Research Center and on the CRAY X-MP and Y-MP machines of the Jet Propulsion Laboratory. The CPU time on the CRAY Y-MP machines for a complete calculation at a single nuclear geometry took about $4-5 \mathrm{~min}$ for the symmetric potential energies (E_{1}, E_{2}, E_{3}) an additional 4-5 min for the antisymmetric potential energy $\left(E_{4}\right)$, and about 1 min for the transition moments ($\mathrm{T}_{i j}, 1 \leq i, j \leq 4$) reported. The intermediate files generated during a calculation can be as large as 38 megawords.

III. RESULTS AND DISCUSSION

A. Basis-set calibration

The quality of the AO basis set has been addressed in our previous paper [94]. Results for atomic and molecular hydrogen are given in Table II. The $\mathbf{H}(1 s) \rightarrow \mathbf{H}(2 s)$ transition energy is very accurate (10.2045 eV , which is within 0.0001 eV of the exact value), whereas the $\mathbf{H}(1 s) \rightarrow \mathbf{H}(2 p)$ transition energy is less accurate (10.2118 eV , an error of 0.0074 eV) due to fewer p-type Rydberg basis functions, but still quite good.

The energy of ground state $\mathbf{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$at internuclear distance of $R=1.4$ bohrs is close to that of Liu [6] and

TABLE II. Selected results for the CI energy for H and H_{2}, using the $12 s 4 p 1 d / 7 s 4 p 1 d$ basis set. Atomic energies are SCF orbital energies; molecular energies are full single- and doubleexcitation CI energies. R is the internuclear distance for H_{2}.

Species	R (bohrs)	Energy (hartrees)	Reference
$\mathbf{H}(1 s)$		-0.499998	this work
$\mathbf{H}(1 s)$		-0.500000	exact
$\mathbf{H}(2 s)$		-0.124992	this work
$\mathbf{H}(2 s)$		-0.125000	exact
$\mathbf{H}(2 p)$	-0.124723	this work	
$\mathbf{H}(2 p)$	-0.125000	exact	
		-1.173652	this work
$\mathbf{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$	1.40	-1.173704	Liu [6]
		-1.1733	SL [7]
		-1.174474	KW [133]
		-0.783904	this work
$\mathbf{H}_{2}\left(b^{3} \Sigma_{u}{ }^{+}\right)$	1.40	-0.784150	KW [133]

better than that of SL [7]. Combining the atomic and molecular energies, the computed energy well depth D_{e} is 4.7255 eV whereas the exact value is 4.7477 eV [133], an error of 0.02 eV . The excited state $\mathrm{H}_{2}\left(b^{3} \Sigma_{u}{ }^{+}\right)$is calculated to be 10.605 eV above the ground state, compared to the $10.623-\mathrm{eV}$ value of Kolos and Wolniewicz [133]. So this important valence-shell transition is also accurately reproduced within 0.02 eV .

Tables III, IV, and V show the MRD-CI energies of the lowest four electronic states of H_{3}, for the equilateral triangular $\left(\gamma=60^{\circ}, \theta=45^{\circ}\right)$, symmetric collinear ($\gamma=180^{\circ}, \theta=45^{\circ}$), and nonsymmetric collinear ($\gamma=180^{\circ}, \theta=0^{\circ}$) molecular configurations, respectively.

The lowest-energy conical intersection for the E_{1} state occurs at $R_{1}=R_{2}=R_{3}=1.9732$ bohrs, at an energy of -1.572088 hartrees (GMF5 fit). The reference energy at the swing point P_{s} (Fig. 3) was chosen to be -1.499994 hartrees, which is three times the calculated energy of an isolated $\mathbf{H}(1 s)$ atom with our present basis set (see Table II). The reason for this choice instead of the theoretical value of -1.500000 hartrees is for self-consistency. When fitting the E_{3} surface, the reference energy at the swing point is chosen to be the SCF value of -1.124988 hartrees (instead of -1.125 hartrees) for the separated $\mathbf{H}(2 s)+\mathbf{H}(1 s)+\mathbf{H}(1 s)$ configuration. For E_{4}, the reference value at the swing point is chosen to be -1.124718 hartrees for the separated $\mathbf{H}\left(2 p_{z}\right)+\mathbf{H}(1 s)+\mathbf{H}(1 s)$ configuration.

The minimum energy of E_{1} with $\gamma=180^{\circ}$ and $R_{2}=10$ bohrs occurs at $R_{1}=1.403$ bohrs, at an energy of $=-1.673022$ hartrees (GMF5 fit). If we use this point to represent the $\mathrm{H}(1 s)+\mathrm{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$asymptotic state, then the lowest conical intersection point is 0.100935 hartrees $(2.747 \mathrm{eV})$ above the separated $\mathbf{H}(1 s)+\mathbf{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$. For comparison, the corresponding energy for the SLTH surface [13] is 2.756 eV and occurs

TABLE III. Electronic potential energies (in hartrees) for equilateral triangular geometries. The origin of energy is that of the three electrons and the three protons at infinite separation. The energy of three separated $\mathbf{H}(1 s)$ atoms is -1.500000 hartrees with respect to this origin. $R_{1}=R_{2}=R_{3}=R$. The state E_{4} is antisymmetric with respect to the $x y$ plane.

R (bohrs)	E_{1}	E_{2}	E_{3}	E_{4}
1.0	-1.286448	-1.286430	-1.280663	-1.258265
1.2	-1.441703	-1.441650	-1.415028	-1.398848
1.4	-1.518046	-1.518017	-1.468988	-1.458043
1.6	-1.554349	-1.554268	-1.482113	-1.475586
1.633	-1.557748	-1.557719	-1.481972	-1.475958
1.64	-1.558556	-1.558507	-1.481895	-1.475980
1.8	-1.569022	-1.568989	-1.474258	-1.471001
2.0	-1.571945	-1.571928	-1.455205	-1.454669
2.2	-1.568548	-1.568561	-1.430550	-1.432079
2.4	-1.561349	-1.561420	-1.403023	-1.406783
2.6	-1.552813	-1.552907	-1.375206	-1.380527
2.8	-1.544312	-1.544450	-1.347990	-1.354630
3.0	-1.536907	-1.536859	-1.322044	-1.329407

at $R_{1}=R_{2}=R_{3}=1.981$ bohrs. For the DMBE surface [14] the corresponding values are 2.749 eV and 1.973 bohrs. These results are listed in Table VI.

The saddle point in the collinear molecular configuration for the E_{1} surface occurs at $R_{1}=R_{2}=\left(\frac{1}{2}\right) R_{3}=1.758$ bohrs $\left(\gamma=180^{\circ}, \theta=45^{\circ}\right)$ and at an energy of 0.440 eV (or $10.1 \mathrm{kcal} /$ mole) (GMF5 fit) with respect to the energy of the separated $\mathrm{H}+\mathrm{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$(at $R_{1}=1.403$ bohrs, $R_{2}=10$ bohrs and $R_{3}=R_{1}+R_{2}=11.403$ bohrs, or the GMF5 fitted minimum point of E_{1} along the cut $\gamma=180^{\circ}$ and $\left.\theta=0^{\circ}\right)$. We use this energy difference as the collinear barrier height of the $\mathrm{H}+\mathrm{H}_{2}$ reaction [7,13,14]. For comparison,
the corresponding values for the SLTH surface [13] are 0.425 eV (or $9.80 \mathrm{kcal} / \mathrm{mole}$) and 1.757 bohrs and for the DMBE surface [14] 0.418 eV (or $9.65 \mathrm{kcal} / \mathrm{mole}$) and 1.755 bohrs. These results are listed in Table VII. As a result, the lowest-energy conical intersection and the corresponding geometry are in good agreement with accurate published values. For the saddle point in the collinear configuration, our calculated barrier height (which has not been scaled) and its location also agree well with the corresponding values of SLTH and DMBE surfaces.

The $E_{1} \rightarrow E_{4}$ transition energy for equilateral triangular configurations, corresponding to $e^{\prime} \rightarrow 2 p_{z}$, has been computed by Diercksen, Duch, and Karwowski [93] as

TABLE IV. Electronic potential energies (in hartrees) for symmetric linear geometries. The origin of energy is that of the six particles (three electrons and three protons) at infinite separation. The energy of three separated $\mathrm{H}(1 s)$ atoms is -1.500000 hartrees with respect to this origin. $R_{1}=R_{2}=\frac{1}{2} R_{3}=R$. The state E_{4} is antisymmetric with respect to the $x y$ plane.

R	E_{1}	E_{2}	E_{3}	E_{4}
(bohrs)	-1.434609	-1.301948	-1.283374	-1.283540
1.0	-1.510762	-1.353007	-1.336663	-1.336849
1.1	-1.564466	-1.384957	-1.370293	-1.370514
1.2	-1.601646	-1.403383	-1.390318	-1.390462
1.3	-1.626915	-1.412905	-1.400325	-1.400933
1.4	-1.643011	-1.416094	-1.403978	-1.404503
1.5	-1.652252	-1.415210	-1.402812	-1.403312
1.6	-1.653734	-1.415034	-1.401517	-1.402225
1.63	-1.654444	-1.414504	-1.400590	-1.401300
1.65	-1.655162	-1.414108	-1.399519	-1.400290
1.67	-1.656114	-1.413906	-1.398229	-1.398664
1.7	-1.656513	-1.413952	-1.396053	-1.396637
1.73	-1.656594	-1.416482	-1.392451	-1.393023
1.78	-1.653957	-1.418199	-1.391131	-1.391509
1.8	-1.649371	-1.445225	-1.385831	-1.382534
1.9	-1.636000	-1.465544	-1.377716	-1.372591
2.0		-1.358956	-1.350585	
2.2				

TABLE V. Electronic potential energies (in hartrees) for nonsymmetric linear geometries. The origin of energy is that of the six particles (three electrons and three protons) at infinite separation. The energy of three separated $H(1 s)$ atoms is -1.500000 hartrees with respect to this origin. The geometry is such that $R_{1}=R, R_{2}=10.0$ bohrs, and $R_{3}=R_{1}+R_{2}=R+10.0$ bohrs. The state E_{4} is antisymmetric with respect to the $x y$ plane.

R (bohrs)	E_{1}	E_{2}	E_{3}	E_{4}
1.0	-1.622411	-1.247049	-1.246984	-1.247192
1.1	-1.648203	-1.273168	-1.272737	-1.272967
1.2	-1.663273	-1.287824	-1.287778	-1.288010
1.3	-1.670766	-1.295032	-1.295267	-1.295499
1.4	-1.673020	-1.297355	-1.297381	-1.297734
1.5	-1.671435	-1.309302	-1.295800	-1.296085
1.6	-1.667258	-1.331377	-1.291770	-1.291910
1.7	-1.661156	-1.350706	-1.286342	-1.285818
1.8	-1.653795	-1.367858	-1.278349	-1.278448
1.9	-1.645634	-1.383097	-1.270268	-1.270237
2.0	-1.636842	-1.396687	-1.261682	-1.261512
2.1	-1.627985	-1.408843	-1.254054	-1.252511

well as by PTW [92]. Using $R_{1}=1.633$ bohrs and CI spaces of size 15290,22570 , and 47060 , Diercksen, Duch, and Karwowski obtained transition energies of 2.17, 2.21, and 2.11 eV , respectively. Our data at $R_{1}=1.633$ bohrs give 2.23 eV and PTW obtained 2.24 eV . From the experimental spectrum [80], we estimate that the vertical transition at $R_{1}=1.633$ bohrs should occur at about 2.15 eV , so that our present E_{4} energy appears to be too high by about 0.08 eV . Possibly one more diffuse p function in the basis set would help to reduce this error. However, in general, our criteria for accurate multiple surface energetics have been met.

The squares $\left|\mathbf{T}_{i j}\right|^{2}$ of the electric-dipole transition moments between states E_{i} and $E_{j}(i j=21,31,32,43)$ for equilateral triangular geometry ($D_{3 h}$) are given in Table VIII. Allowed transitions in $D_{3 h}$ occur for $e^{\prime} \rightarrow 2 s$ (\mathbf{T}_{31} and $\left.\mathbf{T}_{32}\right)$ and $2 s \rightarrow 2 p_{z}\left(\mathrm{~T}_{43}\right)$. It can be seen that the $E_{1} \rightarrow E_{2}$ electric-dipole transition moment between two degenerate states is not zero since the calculation is car-

TABLE VI. Lowest conical intersection energy and its corresponding geometry.

Property	$E_{1}{ }^{\mathrm{a}}$	SLTH $^{\mathrm{b}}$	DMBE $^{\mathrm{c}}$
R^{d}	1.973	1.981	1.973
E^{e}	2.747	2.756	2.748

${ }^{\mathrm{a}} E_{1}$ is our ab initio data.
${ }^{\mathrm{b}}$ See Ref. [13].
${ }^{\text {c See Ref. [14]. }}$
${ }^{\mathrm{d}} R_{1}=R_{2}=R_{3}=R$ in bohrs.
${ }^{\text {e }}$ The lowest conical intersection energy with respect to that of the separated $\mathrm{H}+\mathrm{H}_{2}$ configuration in eV . For the SLTH and DMBE surfaces, the accurate $\mathrm{H}+\mathrm{H}_{2}$ energy is used as the reference. For the present $a b$ initio surface, the energy at the nuclear configuration with $R_{1}=1.402$ bohrs, $R_{2}=10$ bohrs, and $R_{3}=R_{1}+R_{2}=11.402$ bohrs is used instead. The difference between the second and the first of these reference energies is 0.040 eV .
ried out with the C_{s} symmetry and the description of the two states is not quite equivalent (see also Table III, where the E_{1} and E_{2} energies are not perfectly degenerate), but this transition moment is nevertheless small. $\left|\mathbf{T}_{43}\right|^{2}$ increases with R_{1} and approaches its theoretical value of 9.00 a.u. ${ }^{2}$ when $R_{1} \rightarrow \infty$. Its value of 7.24 a.u. ${ }^{2}$ compares well with the PTW [92] value of 7.23 a.u. ${ }^{2}$ at $R_{1}=1.64$ bohrs. If the same method of estimation is used as by PTW [92], both results of $\left|\mathbf{T}_{43}\right|$ from PTW and our present work lead to the same lifetime of about 70 $\mu \mathrm{sec}$ for the $2 p_{z}{ }^{2} A_{2}^{\prime \prime} \rightarrow 2 s^{2} A_{1}^{\prime}$ electric-dipole radiative process [62,63]. In Table VIII, $\left|\mathbf{T}_{31}\right|^{2}$ and $\left|\mathbf{T}_{32}\right|^{2}$ are almost identical. They would be exactly identical if the $D_{3 h}$ symmetry instead of C_{s} had been used in the wavefunction calculations. Their sum at 1.64 bohrs is 5.12 a.u. ${ }^{2}$, while PTW [92] obtained 4.89 a.u. ${ }^{2}$. One reason for the difference is that the present calculation employed a larger basis set. Another one is that in the current treatment we located Rydberg AOs on each atomic center, whereas PTW used a single Rydberg basis set located at the center of the triangle. The $\left|\mathbf{T}_{i j}\right|^{2}$ is the quantity that is related to experimental observables, e.g., absorption strength and oscillator strength. Figure 2 shows the (right-hand) orientation of the coordinate system for the values listed in Tables IX-XI.

In conclusion, the basis set we have used does satisfy all the selection criteria set previously. It gives good energy results of atomic $\mathbf{H}(n=1,2)$ states, diatomic $\mathrm{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$and $\mathrm{H}_{2}\left(b^{3} \Sigma_{u}{ }^{+}\right)$states, and $n=1,2$ lowlying Rydberg states of \mathbf{H}_{3}. It also gives good potential surface features of the ground state, which compared well with those of SLTH [13] and DMBE [14].

B. General features of the results

In this section, the general features of these four potential-energy surfaces and their transition moments are discussed in detail for some specific nuclear configurations.

TABLE VII. Saddle-point properties of the E_{1} potential-energy surface.

Property	Liu $^{\mathrm{b}}$	SLTH $^{\mathrm{b}}$	DMBE $^{\mathrm{c}}$	RMCS $^{\mathrm{d}}$	${\text { Ab } \text { initio }^{\mathrm{e}}}$
$R_{\mathrm{SP}}(\mathrm{bohrs})^{\mathrm{a}}$	1.757	1.757	1.755	1.758	1.758
$E_{\mathrm{SP}}(\mathrm{eV})^{\mathrm{a}}$	0.425	0.4251	0.418	0.440	0.443
$k_{s}\left(\mathrm{eV} / \text { bohrs }^{2}\right)^{\mathrm{a}}$	2.90	2.93	2.95	2.90	2.90
$k_{a}\left(\mathrm{eV} / \text { bohrs }^{2}\right)^{\mathrm{a}}$	-1.6	-1.57	-1.54	-1.46	

${ }^{\text {a }}$ The saddle-point geometry is described by $R_{1}=R_{2}=\frac{1}{2} R_{3}=R_{\mathrm{SP}} . E_{\mathrm{SP}}$ is the barrier height of the saddle point. k_{s} is the force constant for the symmetric stretch mode defined by $g_{s}=\sqrt{3} / 2\left(R_{1}+R_{2}-2 R_{\mathrm{SP}}\right) . k_{a}$ is the one for the asymmetric stretch mode defined by $g_{a}=\frac{1}{2}\left(R_{1}-R_{2}\right)$. E_{1} is approximated with the diagonal form $\frac{1}{2} k_{s} g_{s}^{2}+\frac{1}{2} k_{a} g_{a}^{2}$ at the saddle point.
${ }^{\text {b }}$ See Ref. [13]. The barrier height is defined as the difference between the saddle-point energy and the accurate value [99] of the $\mathbf{H}(1 s)+\mathbf{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$energy.

${ }^{\text {d}}$ Present results for the E_{1} RMCS surface. The barrier height is defined as the difference between the saddle-point energy and the energy at the nuclear configuration defined by $R_{2}=10$ bohrs and $R_{1}=1.402$ bohrs (at which value of R_{1} for the given R_{2} the present ab initio calculation has a minimum, as does the E_{1} RMCS surface). The accurate Kolos-Wolniewicz [133] equilibrium internuclear distance is $R_{1}=1.401$ bohrs and has an energy 0.040 eV below the present one.
${ }^{\text {e }}$ The $a b$ initio data are obtained from the results of the one-dimensional GMF5 fits. The definition of the barrier height is the same one defined in footnote d . The k_{a} value was not calculated for lack of a proper fit in the asymmetric mode to the ab initio data.

1. Equilateral triangular configurations ($D_{3 h}$)

More detailed studies of the $a b$ initio results reveal some interesting points in the equilateral triangular nuclear configuration. Although C_{s} is the only symmetry embedded in the calculation, when three atomic centers form an equilateral triangle, the full molecular symmetry group $D_{3 h}$ will manifest itself via the following features.
(i) The two $2 p_{x y}{ }^{2} E^{\prime}\left(E_{1}\right.$ and E_{2}) states are nearly degenerate.
(ii) The dipole transition moments \mathbf{T}_{41} and \mathbf{T}_{42}

TABLE VIII. Square of the absolute value of the electricdipole transition moment $\left|\mathbf{T}_{i j}\right|^{2}$ (in units of a.u. ${ }^{2}$) of \mathbf{H}_{3} for the equilateral triangular geometries. $\mathbf{T}_{i j}$ is the transition dipole vector between i and j states. The indices $1,2,3$, and 4 refer to states E_{1}, E_{2}, E_{3}, and E_{4}, respectively.

R (bohrs)	$\left\|\mathbf{T}_{21}\right\|^{2}$	$\left\|\mathbf{T}_{31}\right\|^{2}$	$\left\|\mathbf{T}_{32}\right\|^{2}$	$\left\|\mathbf{T}_{43}\right\|^{2}$
1.0	0.004	5.07	5.18	6.81
1.2	0.009	4.20	4.20	6.92
1.4	0.018	3.38	3.42	7.02
1.6	0.030	2.70	2.68	7.18
1.633	0.032	2.59	2.60	7.22
1.64	0.033	2.54	2.58	7.24
1.8	0.047	2.12	2.12	7.34
2.0	0.061	1.70	1.70	7.51
2.2	0.071	1.32	1.30	7.56
2.4	0.077	1.07	1.05	7.73
2.6	0.073	0.858	0.860	7.84
2.8	0.063	0.689	0.612	7.90
3.0	0.049	0.559	0.548	7.95

($2 p_{z}{ }^{2} A_{2}^{\prime \prime} \rightarrow 2 p_{x y}{ }^{2} E^{\prime}$) vanish due to symmetry reasons.
(iii) The $2 p_{x y}{ }^{2} E^{\prime}$ states can always be rewritten as

$$
\begin{align*}
\left|2 p_{x}^{2} E^{\prime}\right\rangle & =\cos \phi\left|\varphi_{1}\right\rangle+\sin \phi\left|\varphi_{2}\right\rangle, \tag{7}\\
\left|2 p_{y}^{2} E^{\prime}\right\rangle & =-\sin \phi\left|\varphi_{1}\right\rangle+\cos \phi\left|\varphi_{2}\right\rangle . \tag{8}
\end{align*}
$$

$\left|\varphi_{1}\right\rangle$ and $\left|\varphi_{2}\right\rangle$ are solutions of the electronic wave equation with the same energy, which form another E^{\prime} representation of the $D_{3 h}$ group. The phase ϕ is not determined by the variational method and can have an arbitrary value. For two calculations with different internuclear distances, the relative phases of these two calculations are random, which in turn causes the x and y components of the transition moments $\mathbf{T}_{31}, \mathbf{T}_{32}$, and \mathbf{T}_{21} to vary greatly (see Table IX). Even so, the $D_{3 h}$ symmetry ensures that the magnitudes of $\mathbf{T}_{31}, \mathbf{T}_{32}$, and \mathbf{T}_{21} do not depend on the phase ϕ and thus should change smoothly with the internuclear distance and $\left|\mathbf{T}_{31}\right|=\left|\mathbf{T}_{32}\right|$, $\left|\mathbf{T}_{31}(x)\right|=\left|\mathbf{T}_{32}(y)\right|$, and $\left|\mathbf{T}_{31}(y)\right|=\left|\mathbf{T}_{32}(x)\right|$.

All these features are confirmed numerically by the results listed in Tables III and IX and by Figs. 4-6. Since the molecular properties are more sensitive to the quality of the wave functions than are the energy eigenvalues, the results of these transition moments offer another strong indication that the obtained wave functions are of good quality.

The results of the GMF5 fit show that E_{1} has a barrier of 2.747 eV (relative to $\mathrm{H}+\mathrm{H}_{2}$) at $R=1.973$ bohrs. The surfaces E_{3} and E_{4} have a deep potential well of magnitude 9.721 and 9.558 eV , relative to their three-atom asymptote. These occur at $R=1.604$ bohrs for E_{3} and $R=1.642$ bohrs for E_{4}, respectively. At $R=1.64$ bohrs, the $a b$ initio energy spacing between states $2 s^{2} A_{1}^{\prime}$ and $2 p^{2} A_{2}^{\prime \prime}$ is $1299 \mathrm{~cm}^{-1}$, while the best value obtained by

TABLE IX. Absolute value of the component of the electric-dipole transition moment (in a.u.) between the four calculated electronic states for equilateral triangular geometries. $\mathrm{T}_{i j}$ is the transition dipole vector between i and j states. The indices $1,2,3$, and 4 refer to states E_{1}, E_{2}, E_{3}, and E_{4}, respectively. $432[-3]$ means $0.432 \times 10^{-3} . R_{1}=R_{2}=R_{3}=R$.

R (bohrs)	$\left\|\mathbf{T}_{41}(z)\right\|$	$\left\|\mathbf{T}_{42}(z)\right\|$	$\left\|\mathbf{T}_{43}(z)\right\|$	$\left\|\mathbf{T}_{31}(x)\right\|$	$\left\|\mathbf{T}_{31}(y)\right\|$	$\left\|\mathbf{T}_{32}(x)\right\|$	$\left\|\mathbf{T}_{32}(y)\right\|$	$\left\|\mathbf{T}_{21}(x)\right\|$	$\left\|\mathbf{T}_{21}(y)\right\|$
1.0	$0.432[-3]$	$0.194[-3]$	2.61	2.25	$0.944[-1]$	$0.927[-1]$	2.26	$0.586[-1]$	$0.521[-1]$
1.2	$0.541[-3]$	$0.120[-3]$	2.63	0.199	2.04	2.04	0.198	$0.916[-1]$	$0.182[-1]$
1.4	$0.483[-3]$	$0.489[-3]$	2.65	0.161	1.83	1.84	0.159	0.131	$0.227[-1]$
1.6	$0.809[-3]$	$0.546[-3]$	2.68	1.22	1.10	1.09	1.22	$0.202[-1]$	0.172
1.633	$0.557[-3]$	$0.922[-3]$	2.69	1.21	1.06	1.06	1.21	$0.235[-1]$	0.179
1.64	$0.830[-3]$	$0.378[-3]$	2.69	1.38	0.801	0.803	1.39	$0.909[-1]$	0.157
1.8	$0.647[-3]$	$0.538[-3]$	2.71	0.362	1.41	1.41	0.361	0.189	0.103
2.0	$0.497[-3]$	$0.732[-3]$	2.74	0.372	1.25	1.25	0.371	0.207	0.135
2.2	$0.140[-3]$	$0.100[-2]$	2.75	0.424	1.07	1.06	0.421	0.194	0.182
2.4	$0.904[-3]$	$0.556[-3]$	2.78	0.474	0.918	0.917	0.472	0.161	0.225
2.6	$0.152[-2]$	$0.153[-3]$	2.80	0.446	0.812	0.814	0.444	0.148	0.226
2.8	$0.150[-2]$	$0.206[-3]$	2.81	0.443	0.702	0.700	0.439	0.111	0.226
3.0	$0.710[-3]$	$0.758[-4]$	2.82	0.388	0.639	0.632	0.385	0.104	0.196

PTW [92] is $1422 \mathrm{~cm}^{-1}$ and the experimental estimation of the energy difference between the minima of those two states [80,92] is $1256 \mathrm{~cm}^{-1}$. Because $R=1.64$ bohrs is not the location of the real minimum of the E_{3} potential curve, the estimations of energy differences between the $2 s^{2} A_{1}^{\prime}$ state and the $2 p_{z}{ }^{2} A_{2}^{\prime \prime}$ state at 1.64 bohrs is not appropriate to be compared with the experimental value. The bottom of the E_{3} equilateral triangular curve is located at 1.604 bohrs and that of the corresponding E_{4} curve is at 1.642 bohrs (GMF5 fit). These two values agree very well with the experimental values of 1.606 and 1.640 bohrs [80]. The energy difference between these

TABLE X. Absolute value of the \boldsymbol{Z} component of the electric-dipole transition moment (in a.u.) from E_{4} to E_{1}, E_{2}, and E_{3} for symmetric collinear geometries. $\mathrm{T}_{i j}$ is the transition dipole vector between i and j states. The indices 1, 2, 3, and 4 refer to states E_{1}, E_{2}, E_{3}, and E_{4}, respectively. $0.432[-3]$ means $0.432 \times 10^{-3} . R_{1}=R_{2}=\frac{1}{2} R_{3}=R$.

$\begin{gathered} R \\ \text { (bohrs) } \\ \hline \end{gathered}$	$\left\|\mathbf{T}_{41}(z)\right\|$	$\left\|\mathrm{T}_{42}(\mathrm{z})\right\|$	$\left\|\mathbf{T}_{43}(z)\right\|$
1.0	0.130 [-5]	2.68	0.656[-5]
1.1	0.227[-5]	2.69	0.505[-5]
1.2	0.853[-6]	2.68	$0.361[-5]$
1.3	0.675[-6]	2.69	$0.464[-5]$
1.4	0.278[-5]	2.68	$0.160[-4]$
1.5	0.517[-6]	2.65	0.175[-5]
1.6	0.202[-5]	2.57	0.548[-5]
1.63	0.143[-5]	2.47	0.157[-6]
1.65	$0.227[-6]$	2.43	$0.300[-5]$
1.67	0.357[-5]	2.37	0.134[-5]
1.7	0.151[-7]	2.22	$0.199[-5]$
1.73	$0.402[-2]$	2.00	$0.139[-5]$
1.78	$0.120[-5]$	1.46	0.708[-5]
1.8	0.558[-6]	1.24	0.142[-6]
1.9	0.195[-6]	0.513	2.68
2.0	$0.137[-5]$	0.260	2.66
2.2	0.111[-6]	$0.879[-1]$	2.49

two minima is $1374 \mathrm{~cm}^{-1}$, which is still $100 \mathrm{~cm}^{-1}$ larger than the experimental value.

2. Collinear configurations ($\boldsymbol{C}_{\infty v}$)

The energies of E_{1}, E_{2}, E_{3}, and E_{4} in symmetric collinear geometries ($R_{1}=R_{2}=\frac{1}{2} R_{3}$) are listed in Table IV. Figure 7 shows the good agreement between our present $a b$ initio results and that of the lower sheet of the DMBE surface [14]. The bottoms of the curves for the DMBE surface and for our E_{1} GMF5 fit are located at $R_{1}=R_{2}=\frac{1}{2} R_{3}=1.755$ and 1.758 bohrs, respectively, an almost perfect agreement. Even in this collinear symmetric stretch mode, the E_{4} state still has a deep minimum of 7.6164 eV (with respect to its three-atom asymptote) at $R_{1}=R_{2}=\frac{1}{2} R_{3}=1.5189$ bohrs. Following

TABLE XI. Absolute value of the \boldsymbol{Z} component of the electric-dipole transition moment (in a.u.) between E_{4} and E_{1}, E_{2}, and E_{3} for nonsymmetric collinear geometries. $\mathbf{T}_{i j}$ is the transition dipole vector between i and j states. The indices 1,2, 3 , and 4 refer to states E_{1}, E_{2}, E_{3}, and E_{4}, respectively. $0.432[-3]$ means $0.432 \times 10^{-3} . R_{1}=R, R_{2}=10.0$ bohrs, and $R_{3}=R_{1}+R_{2}$.

R (bohrs)	$\left\|\mathbf{T}_{41}(z)\right\|$	$\left\|\mathbf{T}_{42}(z)\right\|$	$\left\|\mathbf{T}_{43}(z)\right\|$
1.0	0.743	2.46	$0.436[-6]$
1.1	0.743	2.45	$0.872[-6]$
1.2	0.742	2.55	$0.469[-7]$
1.3	0.741	2.64	$0.756[-8]$
1.4	0.741	2.60	$0.186[-6]$
1.5	0.747	0.108	$0.152[-2]$
1.6	0.740	$0.702[-3]$	1.31
1.7	0.751	$0.388[-3]$	2.33
1.8	0.751	$0.282[-3]$	2.07
1.9	0.749	$0.190[-3]$	1.87
2.0	0.748	$0.158[-3]$	1.87
2.1	0.756	$0.935[-3]$	0.114

FIG. 4. Potential-energy curves for equilateral $\mathrm{H}_{3} . R$ is the length of the side of the triangle. In equilateral configurations, the E_{1} and E_{2} states are degenerate with each other. The energy origin is -1.674474 hartrees $[=(-0.5-1.174474)$ hartrees, the accurate $\mathbf{H}(1 s)+\mathrm{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$value [133]], the same as that used in SLTH [13] and DMBE [14].
the $D_{\infty v}$ symmetry argument, the electric-dipole transition moment between the E_{1} and E_{4} states is supposed to be zero, as shown by our T_{41} results (see Table X). Since the upper sheet of the DMBE surface did not include the effect of avoided crossings of that state with other states, its behavior is quite different from our $a b$ initio results

FIG. 5. Magnitude of the electric-dipole transition moment T_{31} between the E_{3} and E_{1} states for equilateral $\mathrm{H}_{3} . R$ is the length of the side of the triangle.

FIG. 6. Magnitude of the electric-dipole transition moment T_{21} between the E_{2} and E_{1} states for equilateral $\mathrm{H}_{3} . R$ is the length of the side of the triangle.
(see Fig. 8). The behavior of our results are in good agreement with those obtained by PTW [92] with an avoided crossing around $R_{1}=R_{2}=1.75$ bohrs. The effect of this avoided crossing is also demonstrated by the decrease of the transition moment $\mathbf{T}_{42}(z)$ as R increases from 1.7 to 1.9 bohrs (see Table X). An even more abrupt change occurs in $\mathrm{T}_{43}(z)$ around $R=1.9$ bohrs (see Table X). Further analysis shows that the wave function of the E_{3} state when $R \leq 1.8$ bohrs is antisymmetric with respect to the plane formed by the z axis and the line that

FIG. 7. Comparison between the DMBE ground potentialenergy surface and the present $E_{1} a b$ initio results. The molecule is in a symmetric collinear configuration with $R_{1}=R_{2}=\frac{1}{2} R_{3}$, corresponding to $\gamma=180^{\circ}$ and $\theta=45^{\circ}$. The energy origin is that of Fig. 4.

FIG. 8. Comparison between the upper sheet of the DMBE surface and the present $E_{2} a b$ initio results. See Fig. 7 for other details.
contains these three atomic centers. Then it becomes symmetric after $R \geq 1.9$ bohrs. This crossing is not avoided because of different symmetries the wave function has before and after. To some extent, the avoided crossing in E_{2} induces the second crossing in E_{3} since the former changes the energy ordering, which leads to new state assignment for E_{3}. If $C_{\infty v}$ is embedded into the calculation instead of C_{s}, the state assignment of E_{3} will not be affected by the avoided crossing in E_{2}, which is of different symmetry, and T_{43} will have no abrupt changes at all. Here we leave the second crossing uncorrected because it serves as a reminder that when H_{3} starts to bend, the second crossing will become a real avoided crossing.

In the nonsymmetric collinear configuration with $\gamma=180^{\circ}$ and $\theta=0^{\circ}$, which corresponds to the asymptotic $\mathrm{H}+\mathrm{H}_{2}$ situation, the potential curves of E_{1} and E_{4} are parallel to each other (see Table V), with almost the identical GMF5 Morse parameters. Both curves give well depths of 4.707 eV around $R_{1}=1.403$ bohrs. The corresponding accurate value for isolated $\mathrm{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$from Kolos and Wolniewicz [133] is 4.7477 eV at a bond distance of 1.401 bohrs. Our full CI result for $\mathbf{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$ gives 4.7255 eV at a bond distance of 1.40 bohrs (Table II). These three sets of data agree with each other reasonably well. The electric-dipole transition moment \mathbf{T}_{41} between these two states varies little with the diatomic bond distance and has a value between 0.74 and 0.75 a.u. (Table XI). For comparison, the electric-dipole transition moment of an isolated H atom from $1 s \rightarrow 2 p_{z}$ is $0.745 \mathrm{a} . \mathrm{u}$. This excellent agreement suggests that our calculated E_{1} and E_{4} states are very close to the theoretical predictions of separated $\mathbf{H}\left(1 s, 2 p_{z}\right)+\mathbf{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$states.

For a separated $\mathbf{H}+\mathbf{H}_{2}$ system, the repulsive potential-energy curve of $\mathbf{H}(1 s)+\mathrm{H}_{2}\left(b^{3} \Sigma_{u}{ }^{+}\right)$intersects the curves of $\mathrm{H}\left(2 s, 2 p_{x}, 2 p_{y}, 2 p_{z}\right)+\mathrm{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$around the diatomic bond distance of 1.45 bohrs. The potentialenergy curves of $\mathbf{H}\left(2 s, 2 p_{x}, 2 p_{y}, 2 p_{z}\right)+\mathbf{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$intersect the curve of $\mathbf{H}(1 s)+\mathbf{H}_{2}\left(b^{3} \boldsymbol{\Sigma}_{u}{ }^{+}\right)$around the diatom-
ic bond distance of 2.2 bohrs [91]. For finite distance between H and H_{2}, many crossings are avoided. From our results along the ray of $\gamma=180^{\circ}$ and $\theta=0^{\circ}$ (see Table V and Fig. 9), the avoided crossing in E_{2} around 1.4 bohrs can be seen clearly. Its potential energy curve has a sharp downward turn with increasing R_{1}. The electricdipole transition moment T_{42} between the E_{4} and E_{2} states also has a sudden change in the same region (see Table XI). The calculated value of $\left|\mathbf{T}_{42}(z)\right|$ is around 2.5 a.u. before the crossing and drops below 0.002 a.u. after that, while the corresponding value for the $\mathbf{H}(2 s) \rightarrow \mathbf{H}\left(2 p_{z}\right)$ transition is 3.00 a.u. and the values for the $\mathbf{H}\left(2 p_{x y}\right) \rightarrow \mathbf{H}\left(2 p_{z}\right)$ transitions vanish by symmetry.
The potential-energy curve for the E_{3} state is relatively smooth, although there are changes in $\left|\mathrm{T}_{43}(z)\right|$ for $R>1.5$ bohrs. By analyzing the dominant coefficients of the MOs in the E_{2} and E_{3} CI wave functions (for $1.0 \leq R \leq 2.1$), we find five kinds of CI wave functions with unique patterns of dominant MO coefficients. Here we label them as $S_{1}, S_{2}, S_{3}, S_{4}$, and $S_{5} . S_{1}$ is associated with the asymptotic $\mathrm{H}(2 s)+\mathrm{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$state, S_{2} with $\mathbf{H}\left(2 p_{x y}\right)+\mathbf{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$(with its p-orbital perpendicular to the plane formed by the z axis and the line containing three atomic center), S_{3} with the repulsive $\mathbf{H}(1 s)$ $+\mathrm{H}_{2}\left(b^{3} \Sigma_{u}{ }^{+}\right)$state, and S_{5} with $\mathrm{H}(1 s)+\mathrm{H}_{2}\left(b^{3} \Sigma_{u}{ }^{+}\right)$. The S_{4} configuration has different characteristics, but we were not able to assign it to a known asymptotic state. The investigation of the E_{1} and E_{4} states also confirms that the E_{1} state corresponds to the asymptotic $\mathrm{H}(1 s)+\mathrm{H}_{2}\left(X^{1} \Sigma_{g}{ }^{+}\right)$state and E_{4} corresponds to $\mathrm{H}\left(2 p_{z}\right)+\mathrm{H}_{2}\left(X^{1}{ }_{\Sigma}^{g}{ }_{g}{ }^{+}\right)$. The electric-dipole transition moments between the $S_{1}, S_{2}, S_{3}, S_{4}$, and S_{5} states and the E_{4} state vary slowly as functions of R.
For $1.0 \leq R \leq 1.4, E_{2}$ is of the S_{1} kind and E_{3} the S_{2} kind. This explains the smooth variations in the values of $\left|\mathbf{T}_{42}(z)\right|$ and $\left|\mathbf{T}_{43}(z)\right|$ (see Table XI). For $1.5 \leq R \leq 1.6$, E_{2} undergoes an avoided crossing from the S_{1} kind to the

FIG. 9. Potential-energy curves for the E_{2} and E_{3} states for the nonsymmetric collinear geometry. The energy origin is that of Fig. 4.
S_{3} kind and remains in S_{3} afterward and E_{3} switches into the S_{4} kind (see Table XI). For $1.7 \leq R \leq 2.0, E_{3}$ becomes the S_{1} kind with the right magnitude of T_{43}. At $R=2.1, E_{3}$ again switches from S_{1} to S_{5} with a sudden decrease in \mathbf{T}_{43}.

As shown above, we have established a one-to-one correspondence between the changes in $\left|\mathrm{T}_{42}(z)\right|$ and $\left|\mathrm{T}_{43}(z)\right|$ and the variation in the nature of E_{2} and E_{3}. Since all those asymptotic states are nearly degenerate with each other, even though there are many changes in the nature of E_{3}, the energy of E_{3} still remains relatively smooth. We also find that S_{1}, S_{3}, S_{4}, and S_{5} are symmetric with respect to the plane formed by the z axis and the line containing these three atomic centers and S_{2} is antisymmetric. If $C_{\infty v}$ is used, E_{3} would continue to be S_{2} throughout the region $1.0 \leq R \leq 2$.1. Again we leave the state assignment of E_{3} uncorrected to serve as a reminder that when H_{3} starts to bend, all the crossings in E_{3} will become avoided ones and the situation is going to be very complicated.

3. General features of \boldsymbol{E}_{2} and \boldsymbol{E}_{3}

Because the number of $a b$ initio calculations is large, we limit our scope to the bond angle $\gamma=60^{\circ}$ for the discussion of general features of E_{2} and E_{3}. For γ values of $55^{\circ}, 65^{\circ}, 75^{\circ}, 85^{\circ}, 90^{\circ}, 100^{\circ}, 110^{\circ}, 120^{\circ}, 150^{\circ}$, and 180°, the behavior is similar.

In the equilateral triangular geometry $\gamma=60^{\circ}$ and $\theta=45^{\circ}$, the E_{2} state is degenerate with the ground state E_{1} and has a shallow well at an internuclear distance of 1.973 bohrs (see Fig. 10). When θ decreases, the well depth also decreases and disappears at $\theta=42^{\circ}$. After that, the curve becomes purely repulsive. When θ reaches 30°, one more feature appears around $R_{1}=1.5$ bohrs, signaling an avoided crossing. At this $\gamma=60^{\circ}$, $\theta=30^{\circ}$ cut of the E_{2} potential-energy surface, the internuclear distances are not too large and the interaction between the two electronic states involved in the avoided crossing is strong. For this reason, the transition from one state to another is smooth over a wide range of nuclear geometries. When θ further decreases, the nuclear configuration approaches the separated $\mathbf{H}+\mathrm{H}_{2}$ asymptotic situation and the interaction between the two states involved in the avoided crossing becomes weaker. As a result, the transition from one state to another becomes more abrupt in a small region of nuclear geometries.

The behavior of E_{3} is more complicated. In the range of $42^{\circ} \leq \theta \leq 45^{\circ}$, the E_{3} potential-energy curve has a deep well, with a Morse-like behavior. At $\theta=41^{\circ}$, a new feature appears around $R_{1}=2.4$ bohrs. This feature becomes more pronounced at $\theta=40^{\circ}$ and the slope of the curve for large R_{1} becomes small. When θ reaches 30°, the potential-energy curve does not have a well in the range $1.0 \leq R_{1} \leq 2.0$ bohrs. At $\theta=20^{\circ}$, there are again two features in the potential-energy curve with a transition point at $R_{1}=1.8$ bohrs. At $\theta=0^{\circ}$, the potentialenergy curve has a Morse shape up to $R_{1}=2.0$ bohrs. From the limited amount of ab initio data available, we are already able to see the significant complexity in the
potential-energy surface of the E_{3} state. We have attempted to understand what asymptotic states are involved in the fine surface features, but have not yet been able to accomplish this. Calculations involving higherenergy surfaces may be required for this purpose.

For $\gamma=55^{\circ}, 65^{\circ}, 75^{\circ}, 85^{\circ}, 90^{\circ}, 100^{\circ}, 110^{\circ}, 120^{\circ}, 150^{\circ}$, and 180°, the main features of the E_{2} and E_{3} states are similar

FIG. 10. Potential-energy curves for the E_{2} and E_{3} states with $\theta=45^{\circ}$. The energy origin is that of Fig. 4.
to those displayed for $\gamma=60^{\circ}$. Since the energies of all states have a weak dependence on γ when θ is close to 0° (approaching the separated $\mathrm{H}+\mathrm{H}_{2}$ limit), we have restricted ourselves to display the variations of E_{2} and E_{3} with γ for the single value $\theta=45^{\circ}$ [see Figs. 10(a)-10(c)]. Again an avoided crossing in E_{2} around $R_{1}=R_{2}=1.8$ bohrs is seen for γ in the range of 150° and 180°.

It is obvious that the RMCS surface fitting method is not appropriate to be applied to fit the potential-energy surfaces of E_{2} and E_{3} because of their rich and complicated features resulting from several avoided crossings. More elaborate methods [134,135] will be necessary for this purpose.

The only electric-dipole transition moment that displays reasonably smooth behavior is T_{41} between the E_{1} and E_{4} states. Since the transition moment is a combination of two electronic wave functions and a dipole moment operator, it should have more features and variations (see Tables IX-XI). For the rest of the transition moments involving E_{2} and E_{3}, the situation is more complicated. Fortunately, in ordinary applications, these moments are only needed in a very limited range of nuclear configuration. A localized fit to the transition moments will suffice for most practical needs.

The potential energies of the E_{1} and E_{4} states on cuts of constant γ and θ display a very simple Morse-like behavior. The RMCS surface fitting method has been applied to obtain the RMCS potential-energy surfaces for both states. The results are discussed in the next section.

IV. RMCS SURFACES FOR \boldsymbol{E}_{1} AND $\boldsymbol{E}_{\mathbf{4}}$

The potential-energy surfaces for the lowest state of A_{1}^{\prime} symmetry (E_{1}) and the lowest state of $A_{2}^{\prime \prime}$ symmetry (E_{4}) display simple functional properties and can be described easily using the RMCS potential-energy surface fitting method [128-130]. In the following, we first discuss the GMF5 fits [131,132] to the ab initio energies of E_{1} and E_{4} along the constant (γ, θ) cuts and the quality of the fits. Then the full three-dimensional RMCS fits to E_{1} and E_{4} and the quality of the RMCS fits are discussed. At the end, the surface features and topology displayed by the E_{1} and E_{4} RMCS surfaces are presented.

A. GMF5 fits along the constant ($\boldsymbol{\gamma}, \boldsymbol{\theta}$) cuts

Since the data points are chosen to be along the cuts of constant (γ, θ), the GMF5 fitting is done in a straightforward manner. The reference energies at the swing point P_{s} (see Fig. 3) are chosen to be -1.499994 hartrees for E_{1} and -1.124718 hartrees for E_{4} (see Sec. III A). The rms deviation is less than 2.3 meV and the maximum deviation is less than 3.5 meV in the resulting GMF5 fitting of the E_{4} energies for all constant (γ, θ) cuts. For E_{1}, the corresponding values are 2.4 and 4.6 meV .

The Morse parameters $D_{e}(\gamma, \theta) \quad l_{e}(\gamma, \theta), \beta_{0}(\gamma, \theta)$, $\lambda_{1}(\gamma, \theta)$, and $\lambda_{2}(\gamma, \theta)$ [see Eqs. (4)-(6)] are the results of the GMF5 fits. For a given γ value, after all ten sets of GMF5 fits are done for $\theta=0^{\circ}, 20^{\circ}, 30^{\circ}, 35^{\circ}, 40^{\circ}$,
$41^{\circ}, 42^{\circ}, 43^{\circ}, 44^{\circ}, 45^{\circ}$, the smoothness of these parameters with respect to θ is checked. If the parameters display excessively large fluctuations, we then go back to the GMF5 fitting step and make some adjustments, trying to reduce these fluctuations. After one or two iterations, the resulting Morse parameters become reasonably smooth.

The behaviors of GMF5 parameters (for the E_{1} and E_{4} surfaces) are similar for different γ values. The first three parameters D_{e}, l_{e}, and β_{0} are smooth functions of θ while λ_{1} and λ_{2} still display some rapid fluctuations. Since they are first- and second-order corrections to β_{0}, their effect in the GMF5 function is minor as long as $|x|=\left|l-l_{e}\right|$ is small [Eqs. (4)-(6)]. For the same reason, they are very sensitive to the locations of the ab initio points. The nonphysical fluctuation in λ_{1} and λ_{2} is reduced by choosing the smoothest curve going through almost all of the error bars if possible. The smoothed GMF5 fits are still in quite good agreement with the $a b$ initio data. For all constant $\gamma=55^{\circ}, 60^{\circ}, 65^{\circ}, 75^{\circ}, 85^{\circ}, 90^{\circ}, 100^{\circ}, 110^{\circ}, 120^{\circ}, 150^{\circ}$, and 180°, the rms deviation of the smoothed GMF5 fit to E_{4} is less than 6.6 meV and the one for E_{1} is less than 4.4 meV . Indeed this visual smoothing does decrease the accuracy of the GMF5 fits, but since the effect of λ_{1} and λ_{2} is only prominent in the region further away from the bottom of the GMF5 curve (that is, high potential energies), which is of less chemical interest, this degradation of the fitting quality is not too serious for the practical applications of those surfaces. Because of the conical intersection between E_{1} and E_{2} in the equilateral triangular configurations, the discontinuity of the first derivatives of those GMF5 parameters at $\theta=45^{\circ}$ is well justified.

B. Three-dimensional RMCS fits

With this set of smoothed GMF5 parameters known at all nodes of the two-dimensional (γ, θ) mesh, the threedimensional RMCS potential-energy surfaces for E_{1} and E_{4} are then coded into FORTRAN subroutines in an easy-to-use form. In the case that two bond angles of H_{3} are larger than (or equal to) 60°, there are two ways of obtaining the potential energy from the RMCS surface. The permutation symmetry of identical particles requires those two results to be equal. But the RMCS method does not have this property of the potential surface built in and the two choices of γ and the other two internal coordinate variables might lead to different RMCS energies for lack of self-consistency.
Since we use the maximum bond angle as γ, the resulting surface does have the full P_{3} symmetry. The drawback of this scheme is that the fitting accuracy decreases for all cuts with $\gamma=60^{\circ}$, especially when θ approaches 0°. For example, for a set of ab initio points of E_{4} along the cut of $\gamma=60^{\circ}, \theta=0^{\circ}$, the GMF5 fit is very good, with a rms deviation of 0.6 meV and a maximum deviation of 1.6 meV . For a given nuclear geometry configuration on this cut with $R_{1}=2.0$ bohrs (which corresponds to $R_{1}=2.0$ bohrs, $R_{2}=10$ bohrs, and $R_{3}=9.1652$ bohrs), the three bond angles of the triangle have values of $105.6^{\circ}, 60^{\circ}$, and 14.4°. Choosing the maximum bond angle one uses $\gamma=109.1066^{\circ}, \theta=5.9576^{\circ}$, and $l=8.0434$
bohrs instead of $\gamma=60^{\circ}, \theta=0^{\circ}$, and $l=8.0$ bohrs to evaluate the E_{4} RMCS energy. Even though both sets of values describe the same nuclear geometry configuration, the first set leads to a RMCS energy 82.7 meV away from the $a b$ initio result while the second set leads to a RMCS energy only less than 1.6 meV away from the $a b$ initio value.

This problem can be solved in two ways. The first is to use a coordinate system that implemented the full P_{3} identical particle symmetry. This will remove the twofold redundancy and the ambiguity left in our RMCS fitting procedure. The difficulty with this procedure is that our present $a b$ initio data might not be located at the best positions in the new coordinates for an easy and good fit. The second is to fine-tune the current RMCS surface fit in order to achieve the self-consistency of the surface. Since the ambiguity occurs in the range $60^{\circ} \leq \gamma \leq 120^{\circ}$, in which the Morse parameters change noticeably, it would be desirable to obtain more ab initio points.

C. Quality of the RMCS fits

In order to address the quality of the three-dimensional RMCS fits for E_{1} and E_{4}, we did the direct comparison between the energies of RMCS fits and the ab initio ones. For the E_{1} state, we also did several comparisons between our $a b$ initio results and their corresponding RMCS ones with the known SLTH and DMBE surfaces [13,14]. Surface features in some selected nuclear geometries are also presented.

In Table XII we list all results of comparison for E_{1}. The average difference between the $a b$ initio energies and the corresponding SLTH values is $0.051 \mathrm{eV} \quad(1.2$ $\mathrm{kcal} / \mathrm{mole}$), the corresponding rms deviation is 0.064 eV ($1.5 \mathrm{kcal} / \mathrm{mole}$), and the maximum deviation is 0.34 eV ($7.8 \mathrm{kcal} / \mathrm{mole}$). The closeness between the values of the average difference and that of the rms deviation suggests that the present $a b$ initio E_{1} surface is more or less parallel to but 0.05 eV above the SLTH surface. The individu-

TABLE XII. Comparisons of the $E_{1} a b$ initio and RMCS surfaces with the SLTH and DMBE surfaces.

Surfaces	$\Delta_{\mathrm{av}}^{\mathrm{a}}$ (eV)	$\Delta_{\mathrm{rms}}^{\mathrm{b}}$ (eV)	$\|\Delta\|_{\max }^{\mathrm{c}}$ (eV)
Ab initio and SLTH	$0.51[-1]$	$0.64[-1]$	0.34
Ab initio and DMBE	$0.53[-1]$	$0.58[-1]$	0.12
Ab initio and RMCS	$0.19[-3]$	$0.20[-1]$	0.27
RMCS and SLTH	$0.51[-1]$	$0.67[-1]$	0.38
RMCS and DMBE	$0.52[-1]$	$0.61[-1]$	0.20

${ }^{\text {a }}$ Average value of the difference between the potential-energy surfaces identified in the first column for the 1340 nuclear nuclear configurations at which the ab initio surface was calculated. $\Delta_{\mathrm{av}} \equiv(1 / n) \sum_{(i=1, n)}\left(x_{i}-x_{i}\right.$ ab initio $), n=1340$, and x_{i} stands for E_{1} surface data.
${ }^{\mathrm{b}}$ Root-mean-square value of the difference defined in footnote a: $\Delta_{\mathrm{rms}} \equiv\left[(1 / n) \sum_{(i=1, n)}\left(x_{i}-x_{i \text { ab initio }}\right)^{2}\right]^{1 / 2}$.
${ }^{\mathrm{c}}$ Maximum of the absolute value of the difference defined in footnote a: $|\Delta|_{\max } \equiv \max (1,2,3, \ldots, n)\left|x_{i}-x_{i \text { ab initio }}\right|$.
al energy differences for all 1340 individual nuclear geometries confirm this conclusion with very few exceptions. The average difference between the present $a b$ initio energies and the corresponding values of the DMBE surfaces is $0.053 \mathrm{eV}(1.2 \mathrm{kcal} /$ mole $)$, the rms deviation is $0.058 \mathrm{eV}(1.3 \mathrm{kcal} / \mathrm{mole})$, and the maximum deviation is $0.12 \mathrm{eV}(2.8 \mathrm{kcal} / \mathrm{mole})$. This set of data shows that the present $a b$ initio results agree better with the DMBE surface than with the SLTH one. It is worth mentioning that when the E_{1} RMCS surface is compared with the $a b$ initio data, the average difference is 0.19 meV , much smaller than the two previous average values. This is expected to be the case since the RMCS surface is a fit to the set of ab initio data.
The comparisons between the RMCS E_{1} surface (with the same set of nuclear configurations for which we did the comparison between the $a b$ initio surface and the SLTH and DMBE surfaces) with the SLTH and DMBE surfaces show similar trends, with an increase of about $4-5 \%$ in the corresponding rms values.

Since the saddle point of the ground electronic potential-energy surface (E_{1}) in the collinear nuclear geometry configuration has a very important role in the study of the chemical dynamics of the $\mathrm{H}+\mathrm{H}_{2}$ system, we list its location, the barrier height, and the two corresponding force constants in Table VII. The complete definitions of those quantities can be found in Refs. [13] and [14].

All surfaces for the E_{1} state have a very similar location for the collinear saddle point, ranging from 1.755 to 1.758 bohrs. The barrier heights of the E_{1} RMCS surface and the $a b$ initio surface are about $22-25 \mathrm{meV}$ higher than the corresponding DMBE value, or $5-6 \%$ higher. The two force constants for all surfaces agree among themselves quite well. This suggests that these potential-energy surfaces have similar shapes in the vicinity of the saddle point.

We did the GMF5 fit and also the ordinary threeparameter Morse fit to the $E_{1} a b$ initio data for equilateral triangular configurations. For comparison, the same fits were conducted for the calculated energies at the same set of molecular geometries for the SLTH, DMBE, and RMCS E_{1} surfaces. The obtained GMF5 parameters for these four surfaces agree with each other quite well (see Table XIII). The three-parameter Morse fits show the same trends displayed in the GMF5 fits. With only three parameters, this fit is less flexible and the fitting quality is lower than that of GMF5 fit. The threeparameters Morse fit gives a larger well depth D_{e}, a smaller equilibrium distance R_{e}, and a larger exponent β_{0}.

Since there has been no previous work that provides a detailed calculation of the E_{4} state, we only did comparison between our RMCS E_{4} surface with our $1340 a b$ initio data points, which has yielded $\Delta_{\mathrm{av}}=0.64 \mathrm{meV}$ (14.7 $\mathrm{cal} / \mathrm{mole}$) for the average deviation, $\Delta_{\mathrm{rms}}=0.021 \mathrm{eV}$ $(0.482 \mathrm{kcal} / \mathrm{mol})$ for the rms deviation, and $|\Delta|_{\max }=0.27$ eV $(6.16 \mathrm{kcal} / \mathrm{mol})$ for the maximum deviation (see the same definitions in footnotes a, b, and c of Table XII for E_{1}). The maximum deviation occurs at the point of
molecular configuration with $\gamma=55^{\circ}, \theta=0^{\circ}$, and $R_{1}=1.0$ bohr. For such a small R_{1}, the E_{4} state has a high energy and also changes steeply with R_{1}. The RMCS fit is not flexible enough to fit this point well.

The dominant feature of the E_{4} surface is the deep well in equilateral triangular energy configurations. The same GMF5 parameters for the equilateral triangular

TABLE XIII. Fits of the $E_{1,2}$ potential-energy surfaces for equilateral triangular configuration for (a) GMF5 parameters and (b) Morse parameters.

Property	SLTH ${ }^{\text {b }}$	DMBE ${ }^{\text {c }}$	RMCS ${ }^{\text {d }}$	$A b$ initio $^{\text {e }}$
(a) GMF5 parameters ${ }^{\text {a }}$				
$D_{e}(\mathrm{eV})$	1.992	2.000	1.962	1.962
$E_{e}(\mathrm{eV})^{\mathrm{f}}$	2.756	2.748	2.747	2.747
R_{e} (bohrs)	1.976	1.969	1.973	1.973
β_{0} (bohrs ${ }^{-1}$)	0.726	0.732	0.772	0.772
λ_{1} (bohrs ${ }^{-1}$)	0.036	0.027	-0.045	-0.045
λ_{2} (bohrs ${ }^{-2}$)	0.022	0.028	0.046	0.049
(b) Morse parameters ${ }^{\text {g }}$				
$D_{e}(\mathrm{eV})$	2.030	2.039	1.976	1.978
R_{e} (bohrs)	1.932	1.924	1.935	1.932
$\beta^{\beta_{0}\left(\mathrm{bohrs}^{-1}\right)}$	0.825	0.831	0.822	0.828

${ }^{\text {a }}$ See the text [Eqs. (4)-(6)] for the definitions of the GMF5 parameters. The minimum of the $E_{1}\left(R_{1}\right)$ curve is at $R_{1}=R_{e}$, listed in (a); the minimum of the model curve V is at $l=l_{e}$ in Eqs. (4)-(6) and an easy derivation with the help of Fig. 3 yields the relationship $R_{e}=10.0$ bohrs $-l_{e} / \sqrt{2}$. By definition [see Eqs. (4)-(6)], l_{e} is a Morse parameter and R_{e} is not. However, R_{e} shows the location of the minimum better, so we list it instead of the equivalent $l_{e} . E_{1,2}$ means that here, at equilateral triangular configuration ($\gamma=60^{\circ}, \theta=45^{\circ}$), $E_{1}=E_{2}$.
${ }^{\mathrm{b}}$ The fit used the SLTH energies [13] at the same set of nuclear configurations as in the GMF5 fit of the ab initio data. The reference energy is the theoretical value of three isolated H atoms. The values of D_{e} and R_{e} for the SLTH surface (not obtained from a Morse function) are 1.992 eV and 1.981 bohrs [13].
${ }^{\mathrm{c}}$ See footnote b for the selection of the nuclear configurations and the choice of reference energy. The values of D_{e} and R_{e} for the DMBE surface [14] (not obtained from a Morse function) are 2.000 eV and 1.973 bohrs [14].
${ }^{\mathrm{d}}$ See footnote b for the selection of the nuclear geometry configurations. The reference energy is chosen to be three times the value of the present SCF $H(1 s)$ energy with the $12 s 4 p 1 d / 7 s 4 p 1 d$ basis (see Tables I and II), which is about 0.2 meV above the theoretical value.
${ }^{e}$ The reference energy is the same defined in footnote d.
${ }^{\mathrm{f}}$ The energy of the minimum point with respect to that of a separated $\mathbf{H}+\mathbf{H}_{2}$ configuration. It is not one of the GMF5 parameters and has been listed in Table VI. For the SLTH and DMBE surfaces, the accurate $\mathbf{H}+\mathbf{H}_{2}$ energy [133] is used as the reference. For the E_{1} RMCS and the ab initio surfaces, the energy at the nuclear configuration with $R_{1}=1.402$ bohrs, $R_{2}=10$ bohrs, and $R_{3}=R_{1}+R_{2}=11.402$ bohrs is used instead. The difference between the second and the first of these reference energies is 0.040 eV .
${ }^{\text {g }}$ Equations (4)-(6) become the three-parameter Morse curve with the restrictions $\lambda_{1}=\lambda_{2}=0$ in (b).

FIG. 11. Two-dimensional equipotential contour plots of the RMCS E_{1} potential-energy surface for a given bond angle γ. The contour energies are in the range $0.5-6.0 \mathrm{eV}$ with increments of 0.5 eV . All contour plots have an outermost contour with an energy of 6.0 eV and an innermost one of 0.5 eV . The energy origin is that of Fig. 4.

FIG. 12. Two-dimensional equipotential contour plots of the RMCS E_{4} potential-energy surface for a given bond angle γ. All contour plots have an outermost contour with an energy of 10.0 eV . The energy step used for all plots is 0.5 eV . The energy origin is that of Fig. 4.

FIG. 13. Equatorial view of the RMCS E_{1} potential-energy surface. The hypersphere radius ρ is 3.27 bohrs. The contour energies are in the range $1.0-6.0 \mathrm{eV}$ with increments of 0.5 eV . The center of the plot (a local maximum) corresponds to the lowest conical intersection point of E_{1} and E_{2}. The energy origin is that of Fig. 4.

TABLE XIV. Fits of the E_{4} potential-energy surface for equilateral triangular configuration.

${ }^{\text {a }}$ See the text [Eqs. (4)-(6)] for the definitions of the GMF5 parameters and footnote a of Table XIII.
${ }^{\mathrm{b}}$ The reference energy is chosen to be the sum of the present SCF energies of $\mathrm{H}\left(2 p_{z}\right)+2 \mathrm{H}(1 s)$ with the $12 s 4 p 1 d / 7 s 4 p 1 d$ basis (see Tables I and II), which is about 0.2 meV above the theoretical value.
${ }^{\text {c }}$ The reference energy is the one defined in footnote d.
${ }^{\mathrm{d}}$ Energy of the minimum point with respect to that of a separated $\mathrm{H}+\mathrm{H}_{2}$ configuration. E_{e} is not one of the GMF5 parameters (see Table XIII). The energy of the ab initio E_{1} surface at the nuclear configuration with $R_{1}=1.402$ bohrs, $R_{2}=10$ bohrs, and $R_{3}=R_{1}+R_{2}=11.402$ bohrs is used as the reference energy. This is higher than the accurate energy Ref. [133] by 0.040 eV . ${ }^{\text {e }}$ Equations (4)-(6) become the three-parameter Morse curve with the restrictions $\lambda_{1}=\lambda_{2}=0$ in (b).

FIG. 14. Equatorial view of the RMCS E_{4} potential-energy surface. The hypersphere radius ρ is 2.16 bohrs. The contour energies are in the range $5.5-10.0 \mathrm{eV}$ with increments of 0.5 eV . It shows a deep minimum at the center of the plot, which is the global minimum of E_{4}. The energy origin is that of Fig. 4.
configuration for the E_{4} surface are listed in Table XIV, together with the results of the three-parameter Morse fit. For E_{4}, three-parameter Morse fit gives larger values of D_{e}, R_{e}, and β_{0}.

D. Contour plots of the RMCS E_{1} and E_{4} surfaces

The equipotential plots of both RMCS surfaces in the Cartesian coordinates of the bond distances R_{1} and R_{2} with constant bond angle γ are shown in Figs. 11(a)-11(c) (for the E_{1} state) and Figs. 12(a)-12(c) (for the E_{4} state). The general features of the RMCS E_{1} surface agree well with those of SLTH [13] and DMBE [14] surfaces. The contours of E_{1} in Fig. 11(b) $\left(\gamma=60^{\circ}\right)$ have a sharp turn for $R_{1}=R_{2}$ (or $\theta=45^{\circ}$) because of the conical intersection between the E_{1} and E_{2} states. Contour lines with high energy are not as smooth as those with low energy, because the effects of fluctuation of the λ_{1} and λ_{2} parameters obtained from GMF5 fits are more prominent in the high-energy configuration region. The deep global well of the RMCS E_{4} potential-energy sur-
face is clearly depicted in Figs. 12(a)-12(c).
Since the symmetrized hyperspherical coordinates have been very effective in the study of three identical particle system [17-22,102,104], we also plot the RMCS E_{1} and E_{4} surfaces in one of these coordinates [136]. More detailed information is available in Ref. [136]. The equatorial view of E_{1} and E_{4} on a hypersphere are depicted in Figs. 13 and 14 , respectively. The $C_{3 v}$ symmetry of the potential-energy surfaces for an identical triatomic system can be seen clearly.
In Fig. 13 the local maximum of the E_{1} RMCS surface is located at the center of the plots, which corresponds to an equilateral triangular configuration. The evenly spaced contour lines indicate that it is the conical intersection point between the E_{1} and E_{2} potential-energy surfaces. In Fig. 14 a local minimum of the E_{4} is located at the center of the plots. Three-dimensional color Stardend Application Visualization System (AVS) plots of model potential-energy surfaces E_{1} and E_{4} are reported in Kristyan's [137] work without the numerical analysis. More numerical data are available in Ref. [127].

V. CONCLUSION

The lowest four electronic states of \mathbf{H}_{3} have been studied. The results of their energies and corresponding electric-dipole transition moments are obtained. The second and third electronic states display complex behaviors such as avoided crossings, while the first and the fourth ones show a regular rotated-Morse-functionlike behavior. The RMCS potential-energy surfaces of both E_{1} and E_{4} have the right surface features. More studies are needed in order to obtain the potential-energy surfaces of E_{2} and E_{3}.

ACKNOWLEDGMENTS

We acknowledge and thank the U.S. Air Force Astronautics Laboratory (Contract No. F04611-86-001667), the Department of Energy (Grant No. DE-A0383ER), and NSERC (Canada) for financial support. We also thank the NAS program of the NASA-Ames Research Center and the NSF-San Diego Supercomputer Center for use of their CRAY Y-MP systems and the NASA Jet Propulsion Laboratory for use of their CRAY X-MP and Y-MP computers, on which most of the calculations were done. Special thanks are due to Professor R. J. Buenker for supplying us with the CRAY version of the MRD-CI code used in these calculations. Z.P. thanks Dr. Pablo Bruna for assistance.
[1] J. O. Hirschfelder, H. Eyring, and N. Rosen, J. Chem. Phys. 4, 121 (1936).
[2] R. N. Porter and M. Karplus, J. Chem. Phys. 40, 1105 (1964).
[3] H. Conroy and B. L. Brunner, J. Chem. Phys. 42, 4047 (1965).
[4] I. Shavitt, R. M. Stevens, F. L. Minn, and M. Karplus, J. Chem. Phys. 48, 2700 (1968).
[5] R. N. Porter, R. M. Stevens, and M. Karplus, J. Chem. Phys. 49, 5163 (1968).
[6] B. Liu, J. Chem. Phys. 58, 1925 (1973).
[7] P. Siegbahn and B. Liu, J. Chem. Phys. 68, 2457 (1978).
[8] A. A. Wu, Mol. Phys. 38, 843 (1979); 42, 379 (1981).
[9] C. W. Eaker and L. R. Allard, J. Chem. Phys. 74, 1821 (1981).
[10] M. R. A. Blomberg and B. Liu, J. Chem. Phys. 82, 1050
(1985).
[11] C. W. Bauschlicher, S. R. Langhoff, and H. Partridge, Chem. Phys. Lett. 170, 345 (1990).
[12] A. I. Boothroyd, W. J. Keogh, P. G. Martin, and M. R. Peterson, J. Chem. Phys. 95, 4343 (1991).
[13] D. G. Truhlar and C. J. Horowitz, J. Chem. Phys. 68, 2466 (1978).
[14] A. J. C. Varandas, F. B. Brown, C. A. Mead, D. G. Truhlar, and N. C. Blais, J. Chem. Phys. 86, 6258 (1987); Chem. Phys. Lett. 77, 181 (1981).
[15] G. C. Schatz and A. Kuppermann, J. Chem. Phys. 65, 4668 (1976).
[16] R. T. Ling and A. Kuppermann, in Abstracts of the Ninth International Conference on the Physics of Electronic and Atomic Collisions, Seattle, 1975, edited by J. S. Risley and R. Geballe (University of Washington Press, Seattle, 1975), Vol. 1, pp. 353 and 354.
[17] A. Kuppermann and P. G. Hipes, J. Chem. Phys. 84, 5962 (1986).
[18] P. G. Hipes and A. Kuppermann, Chem. Phys. Lett. 133, 1 (1987).
[19] S. A. Cuccaro, P. G. Hipes, and A. Kuppermann, Chem. Phys. Lett. 154, 155 (1989).
[20] S. A. Cuccaro, P. G. Hipes, and A. Kuppermann, Chem. Phys. Lett. 157, 440 (1989).
[21] G. A. Parker, R. T. Pack, B. J. Archer, and R. B. Walker, Chem. Phys. Lett. 137, 564 (1987).
[22] R. T. Pack and G. A. Parker, J. Chem. Phys. 87, 3888 (1987).
[23] J. Linderberg, S. Padkjaer, Y. Ohrn, and B. Vessal, J. Chem. Phys. 90, 6254 (1989).
[24] B. Lepetit, J. M. Launay, and M. Le Dourneuf, Chem. Phys. 106, 103 (1986).
[25] J. M. Launay and M. Le Dourneuf, Chem. Phys. Lett. 163, 178 (1989).
[26] J. Z. H. Zhang and W. H. Miller, Chem. Phys. Lett. 140, 329 (1987).
[27] J. Z. H. Zhang and W. H. Miller, Chem. Phys. Lett. 159, 130 (1989).
[28] G. C. Schatz, Chem. Phys. Lett. 150, 92 (1988).
[29] J. Z. H. Zhang, D. J. Kouri, K. Haug, D. W. Schwenke, Y. Shima, and D. G. Truhlar, J. Chem. Phys. 88, 2492 (1988).
[30] M. Mladenovic, M. Zhao, D. G. Truhlar, D. W. Schwenke, Y. Sun, and D. J. Kouri, Chem. Phys. Lett. 146, 358 (1988); J. Phys. Chem. 92, 7035 (1988); J. Chem. Phys. 91, 5302 (1989).
[31] C. H. Yu, D. J. Kouri, M. Zhao, and D. G. Truhlar, Chem. Phys. Lett. 157, 491 (1989).
[32] D. E. Manopoulos and R. E. Waytt, Chem. Phys. Lett. 159, 123 (1989).
[33] F. Webster and J. C. Light, J. Chem. Phys. 90, 300 (1989).
[34] K. Haug, D. W. Schwenke, Y. Shima, D. G. Truhlar, J. Z. H. Zhang, and D. J. Kouri, J. Phys. Chem. 90, 6757 (1986).
[35] J. Z. H. Zhang, Y. Zhang, D. J. Kouri, B. C. Garrett, K. Haug, D. W. Schwenke, and D. G. Truhlar, Faraday Discuss. Chem. Soc. 84, 371 (1987).
[36] D. W. Schwenke, K. Haug, D. G. Truhlar, Y. Sun, J. Z. H. Zhang, and D. J. Kouri, J. Phys. Chem. 91, 6080 (1987).
[37] M. Zhao, D. G. Truhlar, D. W. Schwenke, and D. J. Kouri, J. Phys. Chem. 94, 7074 (1990).
[38] D. W. Schwenke, K. Haug, M. Zhao, D. G. Truhlar, Y.

Sun, J. Z. H. Zhang, and D. J. Kouri, J. Phys. Chem. 92, 3202 (1988).
[39] M. Zhao, M. Mladenovic, D. G. Truhlar, D. W. Schwenke, Y. Sun, D. J. Kouri, and N. C. Blais, J. Am. Chem. Soc. 111, 852 (1989).
[40] M. Zhao, D. G. Truhlar, D. J. Kouri, Y. Sun, and D. W. Schwenke, Chem. Phys. Lett. 156, 281 (1989).
[41] N. C. Blais, M. Zhao, D. G. Truhlar, D. W. Schwenke, and D. J. Kouri, Chem. Phys. Lett. 166, 11 (1990); 188, 368(E) (1992).
[42] M. Zhao, D. G. Truhlar, N. C. Blais, D. W. Schwenke, and D. J. Kouri, J. Phys. Chem. 94, 6696 (1990).
[43] D. C. Chatfield, R. S. Friedman, D. G. Truhlar, B. C. Garrett, and D. W. Schwenke, J. Am. Chem. Soc. 113, 486 (1991).
[44] D. C. Chatfield, D. G. Truhlar, and D. W. Schwenke, J. Chem. Phys. 94, 2040 (1991).
[45] P. N. Day and D. G. Truhlar, J. Chem. Phys. 94, 2045 (1991).
[46] D. C. Chatfield, R. S. Friedman, D. G. Truhlar, and D. W. Schwenke, Faraday Discuss. Chem. Soc. 91, 289 (1991).
[47] S. L. Mielke, R. S. Friedman, D. G. Truhlar, and D. W. Schwenke, Chem. Phys. Lett. 188, 359 (1992).
[48] S. L. Mielke, D. G. Truhlar, and D. W. Schwenke, J. Phys. Chem. 98, 1053 (1994).
[49] S. L. Mielke, G. C. Lynch, D. G. Truhlar, and D. W. Schwenke, J. Phys. Chem. 98, 8000 (1994).
[50] F. M. Devienne and J. C. Rousteau, Acad. Sci. Paris 263B, 1389 (1966); 267B, 1279 (1968); 268B, 1303 (1969).
[51] T. Nagasaki, H. Doi, K. Wada, K. Higashi, and F. Fukuzawa, Phys. Lett. 38A, 381 (1972).
[52] N. V. Castro de Faria, M. J. Gaillard, J. C. Poizat, and J. Remillieuz, Ann. Isr. Phys. Soc. 4, 134 (1981).
[53] C. Cisneros, I. Alverez, G. R. Garcia, C. F. Burnett, J. A. Ray, and A. Russek, Phys. Rev. A 19, 631 (1979).
[54] M. Vogler, Phys. Rev. A 19, 1 (1979).
[55] J. K. G. Watson, Phys. Rev. A 22, 2279 (1980).
[56] P. M. Curtis, B. W. Williams, and R. F. Porter, Chem. Phys. Lett. 65, 296 (1979).
[57] H. Herzberg, J. Chem. Phys. 70, 4806 (1979).
[58] I. Dabrowski and G. Herzberg, Can. J. Phys. 58, 1238 (1980).
[59] G. Herzberg and J. G. K. Watson, Can. J. Phys. 58, 1250 (1980).
[60] G. Herzberg, H. Lew, J. J. Sloan, and J. K. G. Watson, Can. J. Phys. 59, 428 (1981).
[61] G. Herzberg, J. T. Hougen, and J. K. G. Watson, Can. J. Phys. 60, 1261 (1982).
[62] G. I. Gellene and R. F. Porter, J. Chem. Phys. 79, 5975 (1983).
[63] J. F. Garvey and A. Kuppermann, Chem. Phys. Lett. 107, 491 (1984).
[64] J. F. Garvey and A. Kuppermann, J. Chem. Phys. 86, 6766 (1987); 88, 5985 (1988).
[65] S. J. Jeon, A. B. Raksit, G. I. Gellen, and R. F. Porter, J. Chem. Phys. 82, 4916 (1985).
[66] H. Helm, Phys. Rev. Lett. 56, 42 (1986); 61, 298 (1988).
[67] H. Helm, Phys. Rev. A 38, 3425 (1988).
[68] H. Helm, L. J. Lembo, P. C. Cosby, and D. L. Huestis, in Fundamentals of Laser Interactions, edited by X. Ehlotzky (Springer-Verlag, Berlin, 1989), pp. 264-289.
[69] A. Dodhy, W. Ketterle, H. P. Messmer, and H. Walther, Chem. Phys. Lett. 151, 133 (1988).
[70] S. F. Selgren and G. I. Gellene, Chem. Phys. Lett. 146, 485
(1988).
[71] H. Figger, M. N. Dixit, R. Maier, W. Schrepp, H. Walther, I. R. Peterkin, and J. G. K. Watson, Phys. Rev. Lett. 52, 906 (1984).
[72] H. Figger, Y. Fukuda, W. Ketterle, and H. Walther, Can. J. Phys. 62, 1274 (1984).
[73] A. B. Raksit, R. F. Porter, W. P. Garver, and J. J. Leventhal, Phys. Rev. Lett. 55, 378 (1985).
[74] W. Ketterle, H. P. Messmer, and H. Walther, Europhys. Lett. 8, 333 (1989).
[75] W. Ketterle, Chem. Phys. Lett. 160, 139 (1989).
[76] C. Bordas, P. C. Cosby, and H. Helm, J. Chem. Phys. 93, 6303 (1990).
[77] N. Bjerre, I. Hazell, and D. C. Lorents, Chem. Phys. Lett. 181, 301 (1991).
[78] D. G. Truhlar and R. E. Wyatt, Adv. Chem. Phys. 36, 141 (1977).
[79] G. Herzberg, Annu. Rev. Phys. Chem. 38, 27 (1987).
[80] J. K. G. Watson, in From Atoms to Polymers, Isoelectronic Analogies, edited by J. F. Liebman and A. Greenberg (VCH, Weinheim, 1989), pp. 129-165.
[81] G. I. Gellene and R. F. Porter, Acc. Chem. Res. 23, 141 (1990).
[82] H. F. King and K. Morokuma, J. Chem. Phys. 71, 3213 (1979).
[83] M. Jungen, J. Chem. Phys. 71, 3540 (1979).
[84] R. L. Martin, J. Chem. Phys. 71, 3541 (1979).
[85] K. C. Kulander and M. F. Guest, J. Phys. B 12, L501 (1979).
[86] Ch. Nager and M. Jungen, Chem. Phys. 70, 189 (1982).
[87] S. Raynor and D. R. Herschbach, J. Phys. Chem. 86, 3592 (1982).
[88] H. J. Foth, H. R. Mayne, R. A. Poirier, J. C. Polanyi, and H. H. Teller, Laser Chem. 2, 229 (1983).
[89] H. R. Mayne, R. A. Poirier, and J. C. Polanyi, J. Chem. Phys. 80, 4025 (1984).
[90] H. R. Mayne, J. C. Polanyi, N. Sathyamurthy, and S. Raynor, J. Phys. Chem. 88, 4064 (1984).
[91] A. C. Roach and P. J. Kuntz, J. Chem. Phys. 84, 822 (1986).
[92] I. Petsalakis, J. Theodorakopoulos, and J. S. Wright, J. Chem. Phys. 89, 6850 (1988).
[93] G. H. F. Diercksen, W. Duch, and J. Karwowski, Chem. Phys. Lett. 168, 69 (1990).
[94] Z. Peng, A. Kuppermann, and J. S. Wright, Chem. Phys. Lett. 175, 242 (1990).
[95] M. V. Berry, Proc. R. Soc. London Ser. A 392, 45 (1984).
[96] C. A. Mead and D. G. Truhlar, J. Chem. Phys. 49, 23 (1979).
[97] C. A. Mead, Chem. Phys. 49, 23 (1980).
[98] H. C. Longguet-Higgins, U. Opik, M. H. L. Pryce, and R. A. Sack, Proc. R. Soc. London Ser. A 244, 1 (1958).
[99] G. Herzberg and H. C. Longguet-Higgins, Discuss. Faraday Soc. 35, 77 (1963).
[100] H. C. Longguet-Higgins, Adv. Spectrosc. 2, 429 (1961).
[101] C. A. Mead, Chem. Phys. 49, 23 (1980).
[102] B. Lepetit, Z. Peng, and A. Kuppermann, Chem. Phys. Lett. 166, 572 (1990).
[103] C. A. Mead, J. Chem. Phys. 72, 3839 (1980).
[104] B. Lepetit and A. Kuppermann, Chem. Phys. Lett. 166, 581 (1990).
[105] N. C. Blais, D. G. Truhlar, and C. A. Mead, J. Chem. Phys. 89, 6204 (1988).
[106] G. Herzberg, Spectra of Diatomic Molecules, 2nd ed. (Van Nostrand, Princeton, 1950).
[107] G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules, 2nd ed. (Van Nostrand, Princeton, 1950).
[108] H. J. Foth, J. C. Polanyi, and H. H. Teller, J. Phys. Chem. 86, 5027 (1982).
[109] P. R. Brooks, Chem. Rev. 88, 407 (1988).
[110] A. B. Raksit, R. F. Porter, W. P. Garver, and J. J. Leventhal, Phys. Rev. Lett. 55, 378 (1985).
[111] B. A. Collings, J. C. Polanyi, M. A. Stolow, and J. W. Tarr, Phys. Rev. Lett. 59, 2551 (1987).
[112] V. Engel, Z. Bacic, R. Schinke, and M. Shapiro, J. Chem. Phys. 82, 4844 (1985).
[113] V. Engel and R. Schinke, Chem. Phys. Lett. 122, 103 (1985).
[114] P. M. Agrawal, V. Mohan, and N. Sathyamurthy, Chem. Phys. Lett. 114, 343 (1985).
[115] J. L. Krause and M. Shapiro, J. Chem. Phys. 90, 6401 (1989).
[116] T. Seideman and M. Shapiro, J. Chem. Phys. 92, 2328 (1990).
[117] T. Seideman and M. Shapiro, J. Chem. Phys. 88, 5525 (1988), and references therein.
[118] T. Seideman, J. L. Krause, and M. Shapiro, Chem. Phys. Lett. 173, 169 (1990), and references therein.
[119] D. Talbi and R. P. Saxon, J. Chem. Phys. 89, 2235 (1988).
[120] The program Hondo can be obtained from the Quantum Chemistry Program Exchange. In the Mrd-CI package, it has been solely used in the integral evaluation step.
[121] R. J. Buenker and S. D. Peyerimhoff, Theor. Chim. Acta 35, 33 (1974).
[122] R. J. Buenker, S. D. Peyerimhoff, and W. Butscher, Mol. Phys. 35, 771 (1978).
[123] R. J. Buenker, in Molecular Physics and Quantum Chemistry into the 80 s, edited by P. G. Burton (University of Wollongong Press, Wollongong, 1980).
[124] R. J. Buenker, in Studies in Physical and Theoretical Chemistry, edited by R. Carbo (Elsevier Scientific, Amsterdam, 1982) Vol. 21, p. 17.
[125] R. J. Buenker and R. A. Phillips, J. Mol. Struct. THEOCHEM 123, 291 (1985).
[126] S. H. Lin, B. Fain, and N. Hamer, Adv. Chem. Phys. 79, 133 (1990).
[127] Z. Peng, Ph.D. thesis, California Institute of Technology, 1990 (unpublished).
[128] J. M. Bowman and A. Kuppermann, Chem. Phys. Lett. 34, 523 (1975).
[129] J. N. L. Connor, W. Jakubetz, and J. Manz, Mol. Phys. 29, 347 (1975).
[130] J. S. Wright and S. K. Gray, J. Chem. Phys. 69, 67 (1978).
[131] P. J. Kuntz and A. C. Roach, J. Chem. Soc. Faraday Trans. II 68, 259 (1972).
[132] J. S. Wright, J. Chem. Soc. Faraday Trans. II 84, 219 (1988).
[133] W. Kolos and L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965).
[134] S. Thareja and N. Sathyamurthy, J. Chem. Soc. Faraday Trans. II 81, 717 (1985).
[135] S. Chapman, M. Dupuis, and S. Green, Chem. Phys. 78, 93 (1983).
[136] A. Kuppermann, Chem. Phys. Lett. 32, 374 (1975).
[137] S. Kristyan, Comput. Phys. 8, 556 (1994).

[^0]: ${ }^{*}$ Present address: Biosym Technologies, Inc., 9685 Scranton Road, San Diego, CA 92121.
 ${ }^{\dagger}$ Present address: Department of Chemistry and Biochemistry, University of Arkansas at Fayetteville, Fayetteville, AR 72701.

