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Dynamical analysis of Brillouin fiber lasers: An experimental approach
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We study experimentally and numerically the influence of the fiber length on the stability of Brillouin lasers
in both ring cavity and Fabry-Pérot configurations. For short enough fibers, experiments and numerical simu-
lations show that the Brillouin emission is stable for any input pump power. This behavior, in contrast with that
previously observed on long fibers, is interpreted within the framework of a modal analysis. Further experi-
ments, involving a sweeping of pump frequency, emphasize the role of the frequency detunings, which was

generally overlooked.

PACS number(s): 42.65.Es, 42.50.Ne, 42.81.—1

In the field of nonlinear dynamics, the study of stimulated
Brillouin scattering (SBS) in optical fibers has recently at-
tracted a great deal of interest [1—4]. Feedback from the fiber
ends is known to introduce instabilities leading to periodic
and quasiperiodic behaviors [1,4,5]. In the ring cavity con-
figuration, the SBS emission may exhibit solitonic regimes
[6]. One important result, common to the previous works, is
the absence of stable laser emission beyond the threshold
[4-9]. This behavior can be understood if one considers that
these studies are performed with fiber lengths on the order of
a few hundred meters. Such lengths lead to an important
single-pass gain and then obviously contribute to a decrease
in the lasing threshold when the fiber is enclosed in a reso-
nator. The free spectral range (FSR) of this cavity (a few
megahertz) is then much narrower than the width of the Bril-
louin gain curve which is about 100 MHz at 514 nm, the
pumping wavelength commonly used. Thus numerous cavity
modes lying near the center of the gain curve have almost
identical gains. A strong mode competition then manifests
itself just above the threshold, leading to the observed un-
stable regimes.

The aim of this paper is to analyze the influence of the
fiber length on the SBS laser dynamics and to quantify the
role of the cavity modes in the establishment of the instabili-
ties. In accordance with a modal analysis, numerical simula-
tions show evidence that the instabilities only occur for long
enough fibers and, contrary to the previous works, not nec-
essarily just above the lasing threshold. The results are suc-
cessfully compared with experiments involving a sweeping
of the pump power. Further experiments, performed by
sweeping the pump frequency, point out the effect of the
frequency detuning of the Stokes wave upon the laser behav-
ior.

Our numerical study enters into the framework of the
usual coherent three-wave SBS model [7,9] characterized by
the dimensionless equations

0,E(z,t)+d,E(z,t)=—gB(z,t)Ey(z,t)— BE(z,t),
atEs(Zat) - 0zEs(z’t) =gB*(Zat)E(Zat)”.BEs(Z’t)’ (1)

(1/B,)9,B(z,t) + B(z,t)=E(z,t)E}(z,1),
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where E(z,t), E(z,t) are, respectively, the pump and Stokes
complex field amplitudes, normalized to the maximum am-
plitude of the input pump field E,. B(z,t) is proportional to
the acoustic wave amplitude. g is the SBS gain parameter,
B is the attenuation coefficient of the optical fields,
B,=mAvgnL/c is the acoustic wave damping coefficient, L
the fiber length, ¢ the velocity of light, and »n the fiber re-
fractive index. Avp is the Brillouin gain bandwidth, esti-
mated to 60 MHz (full width at half maximum) at a working
wavelength of 800 nm [10]. This model is completed by
boundary conditions, which in the case of a ring cavity are

E(L,t)=pE(0,t)exp(it),
)

E(0.0)=pE(L,t)exp(i,) + p.

Y () is the accumulated phase difference per round trip
due to a possible mismatch between a cavity resonance and
the Stokes (pump) wave frequency. p is the reinjection rate
and u is a dimensionless pumping parameter.

The stationary solutions of Egs. (1) and (2) can be ob-
tained by canceling the time derivative of the moduli and
assuming the time derivative of the phases to be constant in
order to take into account possible frequency shifts [11], but
usually all the time derivatives are set to zero. This restric-
tive assumption leads to a set of coupled equations for the
moduli, all phases being independent of the spatial variable z
[12]. This imposes a phase continuity at z=0 and L, and the
model then implicitly includes the resonance condition
¥,= ;=0 usually assumed in previous works [4—9]; in par-
ticular, those evidencing instabilities just beyond the lasing
threshold. A direct comparison with those results requires us
to perform our simulations in this fully resonant condition. In
spite of this limiting assumption, our simulations allow us to
analyze the role of the fiber length on the laser dynamics,
which was overlooked in most of the previous studies, where
the system behavior is described by a ““gain factor’ propor-
tional to LE3 [8,9].

The numerical phase diagrams corresponding to the ring
and to the Fabry-Pérot lasers are respectively shown in Figs.
1(a) and 1(b). In the first case, the value of the feedback
parameter is estimated from our experiments (p=0.36). In
the case of the Fabry-Pérot laser (i.e., a finite-length medium
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FIG. 1. Numerical phase diagram in the case of: (a) ring cavity;
(b) Fabry-Pérot cavity. S and U respectively indicate the stable and
the unstable domains.

with reflective boundaries), the set of equations (1) is com-
pleted by a similar one (with 9,— —4d,) for the reflected
waves; the system dynamics is then described by two inde-
pendent sets of three equations. The backward and forward
propagating pump (SBS) waves are coupled by boundary
conditions corresponding to Fresnel glass-air reflections.

As shown in the two numerical diagrams, the Fabry-Pérot
laser and the ring laser globally exhibit the same dynamics.
Depending on the fiber length, three distinct dynamical be-
haviors can be distinguished:

(i) For fiber lengths lower than a critical value L., the
SBS emission remains stable for any input pump power. This
can be interpreted within the framework of a modal analysis.
In this case, the cavity FSR is comparable with the width of
the Brillouin gain curve, and only a few modes can experi-
ence gain. Near the threshold, only the mode that coincides
with the center of the gain curve has sufficient gain to over-
come the resonator losses and can oscillate. Since the Bril-
louin curve is homogeneously broadened, the laser always
remains monomode as the input power increases [13].

(ii) For long enough fibers, the SBS emission is unstable
just beyond the threshold. In this case, the resonator FSR is
so small that many of the modes close to the center of the
gain curve nearly experience the same gain and can oscillate
simultaneously near the threshold. This leads to the unstable
behaviors observed in previous works [4-9].

(iii) The transition between the dynamical behaviors ob-
served in the two previous cases (short and long fibers) oc-
curs inside a range of intermediate lengths. The SBS emis-
sion, stable and therefore monomode near the threshold,
becomes unstable for sufficiently high pumping levels.

Note that, for any fiber length, the ‘“Brillouin mirror”
regime may be reached by sufficiently increasing the pump-
ing level. The modal analysis, previously introduced in order
to describe the laser’s behavior near the threshold, also al-
lows us to explain the difference between the values of the
critical lengths obtained for the ring laser (48 m) and for the

Detector D,

FIG. 2. Schematic setup of the experimental arrangement: (a)
ring cavity; (b) Fabry-Pérot cavity.

Fabry-Pérot laser (11 m). For a given fiber length, the Fabry-
Pérot FSR is half that of the ring cavity. Thus, if the two
resonators had the same quality factor, the critical length
characterizing the Fabry-Pérot would be half that of the ring
laser (i.e., 24 m). However, in our numerical simulations, the
Fabry-Pérot quality factor is much lower than that of the ring
cavity. The strong overlapping between modes then favors
their competition and the critical length is reduced (<24 m).

In our experiments, we have chosen a 12-m-long mono-
mode fiber (polarization maintaining) in order to investigate
the experimentally unexplored phase diagram region and to
check our numerical predictions. This length is indeed
smaller than L. in the ring cavity case and slightly larger
than L in the Fabry-Pérot configuration (Fig. 1). The experi-
mental setup of the ring cavity is schematically shown in Fig.
2(a). The cw emission of a single-mode titanium:sapphire
laser operating at 800 nm is used as a pump source. This
laser is characterized by a 500-kHz linewidth, and its fre-
quency can be linearly swept over a range adjustable from 10
MHz to 30 GHz. It is optically isolated from the ring cavity
by a Faraday isolator, and the incident pump power is con-
trolled by an acousto-optic modulator (AOM). Input and out-
put fiber coupling are achieved through 20X microscope ob-
jectives; the maximum power injected into the fiber is then
about 100 mW. A low reflectivity beam splitter, inserted in-
side the cavity, respectively reflects the pump copropagating
and counterpropagating beams towards two silicium photo-
diodes D, and D,, which have a 200-MHz frequency band-
width. Finally, these are connected to a 125-MHz oscillo-
scope. The Fabry-Pérot experiments, which require a much
higher coupled power, are performed with the experimental
setup displayed in Fig. 2(b). The first-order Stokes emission
appears for an injected power of about 270 mW. An external
interferometer has been used to check that higher-order
Stokes components do not appear.

Figure 3 shows the Stokes (detector D,) and transmitted
pump (detector D) signals typically observed in the case of
the ring laser, when the input pump power is linearly swept.
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FIG. 3. Ring cavity. Experimental signals recorded while slowly
sweeping the input pump power. (a) Stokes power; (b) transmitted
pump power.

The sweeping rate is sufficiently slow (100 Hz) to avoid
dynamical effects on the location of the bifurcation points.
The optical length of the cavity is not externally stabilized.
Thus the resonance conditions, imposed in the numerical
simulations, are not fulfilled in the experiments. In particular,
the peak of the Brillouin gain curve does not necessarily
coincide with one cavity mode. However, the SBS emission
is stable beyond the lasing threshold. This remains compat-
ible with our modal analysis; the homogeneously broadened
Brillouin line indeed restricts the oscillation to the mode
nearest the center of the gain curve.

In the case of the 12-m-long Fabry-Pérot laser, Fig. 4
shows a typical result obtained by slowly sweeping the input
pump power. Stable SBS emission occurs just beyond the
lasing threshold, and periodic instabilities appear, via a Hopf
bifurcation, for higher input powers. The frequency of these
instabilities is equal to the Fabry-Pérot FSR (8.6 MHz) and is
characteristic of a mode beating.

In order to quantify the role of the frequency detuning
between the center of the gain curve (vg) and the nearest
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FIG. 4. Fabry-Pérot cavity. Same as Fig. 3: (a) Stokes power;
(b) transmitted pump power.
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FIG. 5. Ring cavity. Experimental Stokes signal recorded while
slowly sweeping the pump laser frequency. The swept range corre-
sponds to about twice the cavity FSR.

cavity mode (v.), we have performed a sweeping of the
frequency of the pump laser at constant power. Let us em-
phasize that this frequency sweeping entails two main ef-
fects: (i) a displacement of the Brillouin gain curve and then
a modification of the frequency detuning v,— v, ; (ii) a peri-
odic change in the intracavity pump field, which leads to a
change in the intracavity Stokes field. This latter effect is
responsible for the periodic modulation of the Stokes power
evidenced in Fig. 5. This recording was obtained for the ring
laser by slowly sweeping the frequency of the pump laser
over two cavity FSR’s. Within the interval A-B, the pump
laser frequency is halfway between two resonances of the
passive cavity (antiresonant configuration), and the intracav-
ity pump field is too low to initiate the SBS emission.
Sweeping the laser frequency from point B to point C leads
to an increase in the intracavity pump field, which becomes
sufficiently high to give rise to the Stokes wave. From the
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FIG. 6. Fabry-Pérot cavity. Experimental Stokes signal recorded
while slowly sweeping the pump laser frequency at (a) low input
power and (b) high input power. The swept range corresponds to
about three cavity FSR’s.
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lasing threshold (point B), the SBS emission is stable and
then involves the cavity mode nearest the peak of the Bril-
louin gain curve. The power of the Stokes field reaches its
maximum (point C) when the intracavity pump field is maxi-
mum; the pump wave is then resonant with one cavity mode
(¥,=0). A further increase in the frequency of the pump
leads to a deviation from this resonance condition, and both
the pump and Stokes powers decrease (interval C-A). Apart
from this modulation of the field powers, the sweeping of the
pump frequency entails a sweep of the frequency detuning
v,—v.. Bach time this latter is equal to half the cavity FSR,
the center of the Brillouin gain curve is in antiresonant con-
figuration and two modes then experience the same gain.
Thus they can oscillate simultaneously, then giving rise to
the mode beating observed around the points D. In fact, the
SBS emission is always stable and single-mode, except in
regions D where a mode hop occurs. Due to the Brillouin
shift (20 GHz), the cavity antiresonant configuration ob-
served at the Stokes frequency departs from that observed at
the pump frequency. The position of the mode hops then
depends on the relative values of the cavity FSR and the
Brillouin shift, and they can be located at any point inside an
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interval A-A. For higher pump powers, the SBS laser always
operates above the lasing threshold and the region A-B is not
observed.

In the case of the Fabry-Pérot laser, Fig. 6(a) shows the
evolution of the SBS output when the frequency of the pump
laser is slowly swept over about three FSR. Because of the
low-quality factor of the cavity, the modulation depth of the
pump and Stokes powers is much lower than for the ring
laser. On the recording, Fig. 6(a), the pump power is adjusted
above threshold in the stable domain of Fig. 1(b). As the
mode competition is favored, the ranges of instabilities asso-
ciated with the mode hops are enlarged, but the laser remains
stable in wide domains around the resonance between one
cavity mode and the peak of Brillouin line. For higher pump-
ing levels, inside the instability domain of Fig. 1(b), the laser
is unstable for any pump frequency [Fig. 6(b)].

In summary, we have evidenced the existence of a critical
length under which SBS lasers remain stable for any input
pump power. Near the lasing threshold, the SBS laser behav-
ior is interpreted within the framework of a simple modal
analysis. The effect of a cavity-Stokes frequency mismatch
does not affect significantly the stability of the emission.
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