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Laser cooling and the highest bound states of the Na diatom system
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Using a multichannel bound-state method we predict the highest bound states of the Na diatom system,
which are closely related to the collisional behavior of ultracold atoms. The results agree well with a model
where the hyperfine interaction is treated in first-order perturbation theory, except for the triplet level closest to
the continuum, which we predict to be very weakly bound. This level is responsible for the large, positive
scattering length of the m/= ~f states of the lower hyperfine manifold. Its experimental observation would
confirm our prediction of a stable Bose condensate.

PACS number(s): Pacs number(s): 32.80.Pj, 42.50.vk

Collisions between cold atoms play an important role in
the rapidly developing field of laser cooling experiments.
They are interesting as a largely unexplored kind of collision
in a new temperature regime [1]and are crucial in determin-
ing fundamental limits on the accuracy of precision experi-
ments like the cesium atomic frequency standard [2,3], and
in determining trapping times in neutral atom traps [4].

Despite rapid recent developments, the description of cold
collisions is still far from complete due to insufficient knowl-
edge of interatomic potentials. Fortunately, compared to ther-
mal and superthermal collisions the ranges of energy E and
of orbital angular momentum I involved are so small that
knowledge of most of the singlet and triplet potentials is not
needed: information on the inner potential parts enters colli-
sional observables only in the form of a cumulated radial
phase @(E= O,l =0) at a rather large radius ro, together with
its first derivatives d P/dE and d P/d [I(I+ 1)] at
E=0, l=0 [5—7]. This reduces the needed information con-
siderably: only these parameters and the relatively better
known outer potential parts are to be determined.

A second advantage of cold collisions is the possibility,
associated with their proximity to the threshold of the con-
tinuum, to extrapolate various quantities through threshold
both in the upward and downward directions. Information on
the highest bound states can be used to derive the scattering
lengths [5—7] and vice versa. With this in mind, experimental
groups are presently focusing on the determination of the
location of such highly excited states by means of two-
photon experiments in Li2 [8], Na2 [9], and Rb2 [10].The
present paper is a contribution to this type of approach. Spe-
cifically, our purpose is to use a multichannel bound-state
method to predict the location and other properties of the
highest discrete Na2 states, which can be used as a guide in
the ongoing experiments.

In previous papers [6,7] we have improved the state-of-
the-art Na theoretical singlet potential curve by an inverse
perturbation analysis (IPA) and obtained bounds on the un-
certainty in the inner part of the singlet and triplet potentials,
characterized by 5P(E = O, l = 0) . From these potentials we
derived the scattering length for collisions of Na atom pairs
in the f=1, m&= ~ 1 states of the lower hyperfine manifold
and in the doubly polarized f=2, m&= ~2 states [11].The
latter was found to be a 2 2

= 106+&&a 0 and the former
a &=86+23ao. Recently, Ketterle's group at MIT has

measured the elastic cross section for collisions of
f= 1, m&= —1 atoms [12].From the low-energy cross sec-
tion they find at i = ~ (92~ 25)ao, in agreement with our
prediction. We now proceed, using our present knowledge of
the Na+Na interaction properties, to predict the highest
Na2 bound states which have not yet been seen by two-
photon spectroscopy or other methods.

The Hamiltonian for the system of two ground-state Na
atoms can be written effectively as [13,14]

"2 2

0= +g V".I+V'+V'P
sp

where the first term is the kinetic energy for the relative
motion of the atoms with p, the reduced mass, V" and V
are the single-atom hyperfine and Zeeman terms, and the
two-atom interaction term V is the central interaction, i.e.,
the effective form of the sum of all Coulomb interactions
between electrons and nuclei. For the specific form of the
above interaction terms we refer to Refs. [13,14].The central
interaction conserves the orbital angular momentum quan-
tum numbers I and m I and the total spin projection

MF = m/ + m/ where f is the total one-atom spin vector
1 2

(f=s+ i, with s and i the one-atom electron and nuclear
spin, respectively). At large internuclear distances the central
interaction can be neglected and the two-atom hyperfine
states, denoted as ~(ft, m/, f2, m& )+), where the + symbol

stands for symmetrization, are the most appropriate basis to
describe the asymptotic channels in a scattering problem. For
small r the central interaction is much stronger than the hy-
perfine interaction. In this region the basis i(SI)FMF) is to
be preferred. Here, 5 and I stand for the total (two-atom)
electron and nuclear spin quantum numbers, respectively. As
most bound-state wave functions do not extend beyond the
distance where the exchange part of the central interaction is
of the same order of magnitude as the hyper6ne interaction,
it is usually permitted to neglect the hyperfine interaction. In
this paper, however, we are interested in the highest bound
levels that do extend to distances where the hyperfine
avoided crossings are located and even beyond. An extreme
example of the dominant role of the hyperfine mixing in such
states has been studied by Demtroder's group [15] for Cs2,

1050-2947/95/51(6)/4333(4)/$06. 00 51 R4333 1995 The American Physical Society



R4334 A. J. MOERDIJK AND B. J. VERHAAR 51

TABLE I. Positions of Na2 1=0 bound levels. UB stands for "unbound. "All energies in cm

Zeroth-order state E (zeroth order) E (first order) E (coupled channels) ~u, l(SI)F) states

S=1,v =15,1=0

S=O,v =65,1=0

S= 1,v = 14,1=0

S=O,v =64,1=0

S=1,v =13,1=0

S=O,v =63,1=0

-0.002

-0.033

-0.171

-0.458

-0.944

-1.723

0.043
UB
UB

-0.016
UB
UB
UB
UB

-0.127
-0.157
-0.186
-0.186
-0.200
-0.229
-0.458
-0.458
-0.900
-0,929
-0.959
-0.959
-0.979
-1.003
-1.723
-1.723

0.043
UB
UB

-0.016
UB

-0.077
UB
UB

-0.127
-0.156
-0.186
-0.186
-0.200
-0.230
-0.462
-0.465
-0.900
-0.929
-0.959
-0.959
-0.979
-1.002
-1.725
-1.726

~15,0(13)4)
~

15,0(11)2)
~
15,0(11)1)

~
15,0(13)3)

i 15,0(11)0)
iis,o(13)2)
~65,0(00)0)
~65,0(02)2)
1

14,0(13)4)
~

14,0(11)2)
1
14,0(13)3)

1
14,0(11)1)

~
i4,0(ii)0)

i
14,0(13)2)

~

64,0(02)2)
~

64,0(00)0)
1
13,0(13)4)

113,0(11)2)
i
13,0(13)3)

i 13,0(11)1)
113,0(11)0)
113,0(13)2)
i
63,0(02)2)

~
63,0(00)0)

fi d
2 F(r)+ C(r)F(r) =EF(r),

2p dl (2)

in which case it even leads to a significant amount of mixing
of electronic parities g and u. The central interaction couples
all two-atom byperfine states with the same MF, so that the
Schrodinger equation for a scattering or bound-state problem
can be formulated as a coupled-channels problem in the hy-
perfine basis.

Our method of predicting the location and other properties
of the multichannel bound states is essentially an extension
of a continuum coupled-channels method for cold-atom col-
lisions [13,16] to below threshold. Schrodinger s equation is
rewritten as a set of coupled equations

solution in the internal solution space, which fits smoothly
onto one in the outer solution space, is a vanishing Wronsk-
ian determinant:

det(F, .„F „, F,„F „,)=0—. .

This condition is only met at the discrete energies of the
bound states. Special care is taken to use a form [17]for the
starting conditions as well as for the Wronskian determinant
that is of such high order in the radial step size as to be
consistent with the order of the radial integration method [1].

Before presenting the results of the coupled-channels
bound-state calculation it is instructive to discuss a model in
which the hyperfine interaction is treated in first-order per-
turbation theory. It can be written as

where the columns of the solution matrix F represent a com-
plete set of linearly independent solutions and C stands for
the coupling matrix. The rows correspond to the mutually
coupled hyperfine channels. In contrast to the continuum
case the (discrete) eigenvalue E is unknown. Guessing a
value for E, the set (2) is solved in the outward radial direc-
tion up to an interatomic distance beyond the hyperfine
avoided crossings, where C becomes diagonal. The boundary
conditions for the columns of this solution F'-„near the ori-
gin are arbitrary as long as they are independent and regular.
In the outer region a similar set of equations, decoupled in
the hyperfine basis, is solved in the inward direction starting
with regular asymptotic bound-state boundary conditions at
infinity, yielding a diagonal solution matrix F „,. A neces-
sary and sufficient condition for the existence of a single

hf hf . . ahf hfV =
2 (st tg+s2 r2) — 2S I+ 2(st —s2) (tq —r2)

—= VI f+ V~f (4)

V+ = [F(F+1)—S(S+1) I(I+ 1)]. —(5)

where S and I are the total electron and nuclear spin of the
two-atom system and azf stands for the hyperfine constant.
The term V" mixes singlet and triplet states and can be
neglected when the energy spacing between subsequent sin-

glet and triplet levels is large relative to aj,f. For V+ the
following expression applies:
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FIG. 1. Positions of Na2 bound states predicted using the mul-

tichannel bound-state method. The dashed line is the onset of the
continuum for the channel (f=l)+(f=1). The IU=15,1=0(13)2)
level is very weakly bound.
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Bose-Einstein statistics requires S+I+l to be even, which
makes it easy to derive the bound-state energies from the
pure singlet and triplet levels in combination with the hyper-
fine splittings given by (5). In Table I the results of this
first-order calculation and those of a rigorous multichannel
calculation are presented for l=0. To be specific we re-
stricted ourselves to the case of a vanishing magnetic field.
Note the splitting of the S= 0 levels due to the repulsion by
nearby S= 1 states, which is a consequence of the coupling

by V in second order and leads to an effective i & i2 cou-hf ~

pling of the nuclear spins 115]. Figure 1 shows the multi-
channel results. Note the strong "compression" of levels
close to the continuum in accordance with the Stwalley —Le
Roy —Bernstein formula for long-range molecules 118,19]
and the fact that the hyperfine splitting is small relative to the
spacing between successive singlet and triplet levels.

From the table it is seen that in almost all cases the rig-
orous multichannel calculation gives results in close agree-
ment with the first-order predictions. This is especially true
for the F= 1, 3, and 4 states, since V"~ couples only (SI)F
states with a common F value. For the above F values, how-
ever, only a single (SI) combination is possible.

A remarkable difference between the two calculations is
associated with the highest triplet level. The first-order
model predicts the 1(13)2) state to be in the continuum,
whereas the multichannel calculation predicts it to be very
weakly bound 120]. Experimental confirmation of this pre-
diction is of crucial importance, since it would confirm the
previously predicted 16] positive sign of the scattering length

a& i needed for the stability of the condensate in ongoing
attempts to realize Bose-Einstein condensation in a gas of
ultracold f= 1,m~= —1 Na atoms [21]. As pointed out
above, present experimental evidence has only confirmed the

TABLE II. Energies (in cm ') of highest Naz bound levels.

IU, l (Sl)F) state

114,4(13)4)
114,4(13)3)
114,4(13)2)
114 3(12)3)
114,3(10)1)
114,3(12)2)
114,3(12)1)
114,2(13)4)
114,2(11)2)
114,2(13)3)
114 2(11)1)
114,2(11)0)
114,2(13)2)
114,1(12)3)
114,1(10)1)
114,1(12)2)
114,1(12)1)
113,8(13)4)
113 8(11)2)
113,8(13)3)
113,8(11)1)
113,8(11)0)
113,8(13)2)

-0.0004
-0.055
-0.104
-0.061
-0.095
-0.108
-0.138
-0.087
-0.118
-0.146
-0.146
-0.162
-0.190
-0.129
-0.158
-0.172
-0.201
-0.130
-0.160
-0.190
-0.190
-0.204
-0.234

Iv, l (SI)F) state

113,7(12)3)
113,7(10)1)
113,7(12)2)
113,7(12)1)
113,6(13)4)
113,6(11)2)
113,6(13)3)
113,6(11)1)
113,6(11)0)
113,6(13)2)
164,6(02)2)
164,6(00)0)
164,5(o3)3)
164,5(01)1)
164,4(02)2)
164,4(00)0)
164,3(o3)3)
164,3(01)1)

163,11(03)3)
163,11(01)1)
163,10(02)2)
163,10(00)0)

-0.306
-0.335
-0.350
-0.379
-0.437
-0.466
-0.496
-0.496
-0.510
-0.540
-0.104
-0.108
-0.197
-0.203
-0.285
-0.288
-0.351
-0.356
-0.112
-0.114
-0.361
-0.362

FIG. 2. Energy of IU=15,1=0(13)2) level as a function of
added triplet phase, 6$(0,0) (below) and corresponding scattering
length a» (above).
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predicted large absolute value of a» but not its sign.
The above predictions are based on the central values for

the singlet and triplet phases P(0,0) determined in Refs.
[6,7]. The range of uncertainty 5$(0,0) in these phases ob-
tained in the same work gives rise to an error bar on the
positions of the levels. As the uncertainty in the singlet po-
tential is much smaller than that of the triplet potential the
predictions for the singlet levels are the most accurate ones.
For the highest S=O level, for instance, we find AF to be
between +0.013 and —0.003 cm . In Fig. 2 the depen-
dence of the ~V=15, l=0(13)2} level on an extra triplet
phase hg(0, 0) is shown together with the corresponding
scattering length a». Note the strong increase of the latter
for the bound state approaching threshold. A typical error bar
for the lower triplet states is ~ 0.04 cm

In the foregoing we restricted ourselves to the Na2 I=O
levels. The same multichannel method can be used to predict
also the IWO levels, which are of less importance for
two-photon experiments initiated with cold atoms. In view of

other types of two-photon experiments [22,15] attempting to
locate bound states close to the continuum, we also present
the energies of the most weakly bound states with /4 0 (see
Table II).

Summarizing, we have predicted the positions of the

highest Na2 singlet and triplet bound states on the basis of a
multichannel bound-state method. In general, the differences
with a model in which the hyperfine interaction is treated in

first order are small. For I =0 the highest triplet level forms
an exception as our multichannel method predicts the

~U
= 15,1=0(13)2}state to be bound in contrast to the first-

order model. Similar deviations from first order are expected
on an even larger scale for heavier alkali metals such as

Rb2 and Cs2.
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