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Twin-hole dark solitons
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It is generally believed that interaction between dark solitons is repulsive, and two solitons cannot form a
bound state. Recently, it has been pointed out that parametric interactions in a diffractive quadratic nonlinear
medium can support one-dimensional twin hole -spatial dark solitons [K. Hayata and M. Koshiba, Phys. Rev. A
50, 675 (1994)].We demonstrate numerically and analytically that this twin-hole dark soliton is modulationally
unstable. Instead, we show that, in the other physical context, wave mixing between the first and second
harmonics due to cascaded second-order processes in a dispersive quadratic media can support stable twin- (or
multi-) hole dark solitons. We explain the physical mechanism that allows these solitons to exist aud analyze
their stability numerically and analytically.

PACS number(s): 42.50.Rh, 02.30.Hq, 42.60.Jf, 42.65.Jx

It is well known that optical dark solitons can exist in a
Kerr-like (cubic or X( )) nonlinear medium such as local dips
(or holes) on a modulationally stable continuous wave (cw)
background. These solitons have already been observed ex-
perimentally as intensity-modulated pulses in optical fibers
(temporal dark solitons), dark strips in the transverse cross
section of laser beams passing through a nonlinear medium,
and also as self-guided "holes" in the beams propagating in
waveguides (spatial dark solitons) (see, e.g., the review pa-
per [1] and references therein). In recent years significant
attention has been paid to the physics and properties of dark
solitons. For example, spatial solitons are considered as per-
fect self-induced waveguides, which allow guiding and steer-
ing of light beams [2], i.e., manipulation of light by light
itself, the basic goal of future optical devices.

It is generally believed that interaction between dark soli-
tons is repulsive, and two dark solitons cannot form a bound
state (see, e.g., [1]). However, if such a bound state still
exists, it must have two holes in the intensity profile, so that
it can be naturally called a twin-hole dark soliton, . Recently,
Hayata and Koshiba [3] have pointed out that parametric
wave interactions in a quadratic nonlinear medium can sup-
port one-dimensional twin-hole spatial dark solitons. In par-
ticular, they have found an exact twin-hole dark soliton so-
lution of the generalized second-harmonic generation
equations, which also include the diffraction effect. The pur-
pose of the present paper is twofold. First, we demonstrate
numerically and analytically that the solitons discussed by
Hayata and Koshiba are modulationally unstable and thus it
might be difficult to observe these solitons experimentally.
Second, looking for the existence of stable dark solitons in
another physically important case, we show that stable tem-
poral two- (and multi-) hole dark solitons can exist due to
wave mixing between the first and second harmonics in a
quadratic nonlinear medium. We also point out the physical
mechanism that allows these solitons to exist.

Considering interaction of the first (cut = cu) and second
(co2=2co) harmonics in a dielectric medium with X( non-
linear susceptibility, we assume their amplitudes E& and Ez
to be slowly varying and derive from Maxwell's equations
the system of two equations coupled through components

g,,-I, of the nonlinear susceptibility tensor,

aE, a2E,

BE2 8 E2

where Xi =(4m cu /kic )X( (co;2tu, —tu) and X2=(8mt0 /

k2c )X (2cu;cu, tu), z is the propagation distance, and Bk is
a phase mismatch between the first and second harmonics.
The system (1) generalizes the standard equations of the
theory of the second harmonic generation [4]. It describes
two different physical situations: In the first, spatial case, g
stands for the transverse spatial coordinate, and

yi 2= 1/2ki 2, so that Eqs. (1) take into account the effect of
diffraction. In the second, temporal case, g stands for re-
tarded time and y, =——,—'8 k;/Boo, (j= 1,2) are the dispersion
coefficients.

We are interested in stationary solutions of the system (1),
and look for the fields in the form

E =w1
ipz

v2o XiX2

i(2P+ bk)z (2)

where p is a nonlinearity-induced shift of the propagation
constant and o.—=

I yiI/I y2I. Equations for w and U are

BW oI W
i +r 2

—w+W*U =0,8( Br

U 0U
2to +s z

—nU+ —w =0,
8 81 (3)

where j=pz, r= (I pl/I yi I) 0 r = sgn(pyi), s =
sgn(Py2), and u—=(2P+ Bk)tr/P.

Following Hayata and Koshiba [3], we consider the case
of spatial solitons when sgn(yi)=sgn(yz) =+1, and look
for stationary (independent of g) localized solutions of Eqs.
(3), which are described by the system of the ordinary dif-
ferential equations for real w(r) and v(r),
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FIG. 3. Characteristic profiles of the single dark-soliton solu-
tions of Eq. (3) at r= —1 and s=+1: (a) a=10.0 and (b)
a=1.0. Note the nonzero amplitude minimum of the second har-
monic in both cases and nonmonotonic tails in case (b). In contrast
to the solution (5), solitons of this family exist for every value of
a&0.
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We have investigated the exact solution given by Eq. (5)
by the split-step beam-propagation method (see, e.g., [9]) to
analyze numerically its stability. The example of the propa-
gation dynamics is presented in Fig. 2. It is clearly seen that,
after some propagation distance, the cw background that sup-
ports the twin-hole dark soliton becomes unstable. The dis-
tance at which the instability manifests itself growing from a
numerical noise is bigger than that used by Hayata and Ko-
shiba in their paper [3], where this instability has not been
found. Nevertheless, if we start from an initial condition in
the form of a slightly perturbed solution (5), the instability
appears to be seen immediately. The instability observed
here does not affect much the localized part of the solution. It
is, in fact, the modulational instability of the cw background.
Analysis of the linear stability of cw solutions (6) against
modulations -exp(iq(+ipse) reveals two branches for the
dispersion relation,

q1,2(P ) I.~1—4~1 ~2]i~

where A&=2uo. +2(sp +a)+-,'rp o. (2+rp ) and

Q2 ——4n +rp (2+rp )(sp +a) —4n(sp n+)( Ir+p ).
These two spectrum branches resemble "optical" and
"acoustic" modes of a diatomic lattice. It is important that
instabilities can appear due to both "acoustic" (as for a
single NLS equation) and "optical" branches (parametric
modulational instability). The analysis of the expression (7)
displays modulational instability of all dark solitons of the
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FIG. 4. Bound states of a pair of dark solitons with nonmono-
tonic tails at n=2. 1. These bound states are stable twin-hole dark
solitons. The plots (a) to (c) show three different relative distances
between a pair of single dark solitons (which correspond to three
different local extrema of their effective interaction potential; thus

only certain relative distances between single solitons are possible).

system (3) at r=s= —1, since in this case the cw back-
ground is not stable for any combination of the parameters
o. and a, and thus the necessary condition for the existence
of stable dark solitons is not satisfied. In addition to the
analysis of the cw stability we have also investigated the
evolution of perturbation eigenmodes for the discrete set of
the dark-soliton solutions found numerically. To do this, we
linearize Eq. (3) around the solution of interest and solve the
resulting linearized equation numerically to find exponen-
tially growing modes. In agreement with the cw analytical
results, we have found that all considered dark-soliton solu-
tions of Eqs. (3) at r=s= —1 have exponentially growing
modes and thus are unstable. For example, the increment X

of the fastest growing instability mode of the solution (5) lies
in the interval 0.65)) ~0.45 for 0.5(o.(4.0.

Thus, the twin-hole dark soliton found by Hayata and
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Koshiba has been proved to be modulationally unstable.
Therefore, the question remains: Does a stable twin-hole
dark soliton exist~ This is a more general question than that
for the particular model (3), because, to our knowledge, up to
the present time no one has reported stable twin-hole dark
solitons in other fields of nonlinear science. However, as we
show below, the positive answer does exist for the model (3)
at r = —1 and s=+ 1. Now the system (3) describes a tern

poraI pulse propagation in a dispersive y~ ~ medium. It can
be derived for the case of the opposite signs of the second-
order dispersions yj (j= 1,2) in the system (1).

To find stationary dark-soliton solutions, we analyze again
Eqs. (4) for real w(7) and v(7) by means of the shooting
technique but this time taking r = —1 and s = + 1. In the case
n)0 we have found numerically a continuous family of
dark one-soliton solutions. Two characteristic representatives
of this family are shown in Figs. 3(a) and 3(b) for a= 10.0
(monotonic tails) and n=1.0 (nonmonotonic tails), respec-
tively. Dark solitons of this family exist for every value of
n (a)0). However, the modulational instability analysis
[Eqs. (7)] predicts that at r = —1 and s=+ 1 the cw back-
ground, which supports these dark solitons, can be stable
only if a)2 and o.)o.,„(tr,„=1.689). Additionally, the
dark solitons with nonmonotonic tails shown in Fig. 3(b)
exist only if a(8 (this can be shown by an analysis similar
to that presented in a recent paper [10]), so that the stable
dark solitons with nonmonotonic tails are expected to exist in
the interval 2(a&8. In the analytical adiabatic approach
[11]where dark solitons are considered as effective particles
interacting through exponentially decaying forces, such non-
monotonic tails produce local minima in the effective inter-
action potential of weakly overlapping solitons, and, there-
fore, a dark soliton with nonrnonotonic tails can trap another
one. The physical picture of the soliton bound states is well
understood for bright solitons [12], but after corresponding
generalizations it can be used for dark solitons as well. In our

problem this qualitative picture suggests the existence of in-
finitely many families of bound states of two (or more) dark
solitons. These solitons have two (or more) intensity minima,
so that they are twin- (or multi-) hole dark solitons. Our
numerical analysis shows that these solitons really exist for
every value of ot (0&a~8). Some of the simplest examples
of the two-soliton bound states are shown in Fig. 4 at
a=2.1. In spite of the fact that the solution for the first
harmonic shown in Fig. 4(a) looks similar to that found by
Hayata and Koshiba, it differs greatly from the result (5),
especially by the structure of the second harmonic [cf. Figs.
1(a) and 4(a)]. We have found several twin- (and multi-) hole
dark-soliton families. For every value of n, solitons of the
various families can be classified by the number of single
dark solitons forming these bound states, and also by the
relative distance between the neighboring dark solitons [see
Figs. 4(a) —4(c)]. Our numerical analysis shows that at least
some of these families consist of stable solitons (in the inter-
val 2(a(8), e.g. , the twin-hole dark solitons shown in
Figs. 4(a) and 4(b) are stable for o.)1.7. However, the
bound energy strongly depends on the relative distance be-
tween solitons, i.e., on the order of the minimum of the ef-
fective interaction potential.

In conclusion, we have demonstrated numerically and
analytically that the exact solution found by Hayata and Ko-
shiba [3],which describes a twin-hole dark soliton, is modu-
lationally unstable. Instead, we have pointed out the other
physical situation when many families of twin- (and multi-)
hole dark solitons can remain stable. The physical reason for
the existence of these stable bound states of dark solitons is
in their nonmonotonic tails. Bound states of two (or more)
dark solitons are formed due to mutual trapping of the neigh-
boring solitons in the positions corresponding to the local
minima of the effective interaction potential.
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