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Maxwell-Bloch equations: A unified view of nonlinear optics and nonlinear atom optics
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The linear and nonlinear properties of propagation of an electromagnetic field through a medium may be
derived by the effective elimination of the medium from the coupled Maxwell-Bloch equations. In this paper
we suggest, on the other hand, the elimination of the field from the Maxwell-Bloch equations as a means to
derive a nonlinear master equation for, e.g., an atomic sample in a laser field. This presents a straightforward

and physically intuitive derivation of equations for "nonlinear atom optics, " obtained recently by other ap-

proaches.

PACS number(s): 42.50.—p, 32.80—t

By laser cooling it is possible to produce atomic samples
where the quantum nature of the center-of-mass motion be-
comes significant. At high densities collective effects are ex-
pected to be important, and recently a new domain of theo-
retical studies has emerged: nonlinear atom optics. A
conventional starting point for the analysis of this situation is
the construction of an equation for a system consisting of a
number W of identical atoms. This equation may, by a
Hartree-type approximation, be reduced to an effective non-
linear one-atom master equation or to a nonlinear Schro-
dinger equation in case of negligible dissipation [1—4].

The purpose of this Rapid Communication is to show that
these nonlinear equations may be obtained easi1y from the
well-known Maxwell-Bloch equations. The Maxwell-Bloch
equations for the combined system of an electromagnetic
field and a gas of polarizable atoms are often used to analyze
the propagation of light through matter. By an elimination of
the atomic degrees of freedom one gets an effective equation
for the field only, involving the linear and nonlinear suscep-
tibilities of the medium. As we are interested in the quantized
motion of atoms in a laser field, e.g., in laser cooling and
atom interferometry, we shall take the opposite viewpoint in
this Rapid Communication and eliminate the field in the
Maxwell-Bloch equations. Damping and dispersion of the
field as it propagates through the medium depend on the
spatial distribution of atomic dipoles, and hence the effective
atomic master equation becomes nonlinear.

We start with the mean electric field E(r, t) in the me-
diurn, defined as the mean value of the total electric field
operator, including both the transverse and the longitudinal
components of the field. In the absence of free charges, free
currents, and magnetization, the density of charge and cur-
rent in the medium can be expressed in terms of the polar-

ization density P(r, t) After elimina. tion of the mean mag-
netic field, the Maxwell equations lead to the equation of
propagation for the mean electric field:

P(r, t) =XTr[p(t) 6(r R)D) =—WTr;„,[(rl p(t) lr)D]. (2)

R is the center-of-mass operator, D is the dipole operator for
the atom, and % denotes the total number of atoms. In the
last term of Eq. (2) the trace over the external variables has
been performed.

We approximate the atomic density matrix p by the solu-
tion to the usual master equation for an atom coupled, in the
electric dipole approximation, to the classical electric field

E(r, t), and to the quantized electromagnetic field in the
vacuum state giving rise to energy shifts and radiative damp-
ing. Incorporating the effects of the atomic kinetic and inter-
nal energies and of spontaneous emission in the Liouville
operator M [p], this equation can be written

d

d p(t) =~I:p(t)]+ —,.„[-D E(R, t),p(t)] (3)

Equations (1)—(3) constitute the coupled Maxwell-Bloch
equations.

Truly, the electric field experienced by an atom contains a
component due to incoherent scattering from the other atoms
in the medium. This component has a vanishing mean value

and does not contribute to E(r, t) The approximat. ion made
in order to obtain the Maxwell-Bloch equations is therefore
to disregard this incoherent component of the electric field.

If we consider the case of an incident monochromatic

field Et (r, t) with a frequency cot, and we assume a steady
state for the atomic dipole at this frequency, we may solve
Eq. (1) by simply adding the field radiated by the individual
dipoles. This leads to the simple relation between the posi-
tive frequency components of the total electric field, the in-
cident field, and the polarization of the medium,

~ 8, E(r, t) = ——grad div+ —
2 8, P(r, t),c' ') '

eo ( (4)F(r) = Ki(r)+ — d r'[g(r r')]~r'), —
apJ

where the polarization, appearing in Eq. (1), is calculated
from the atomic density matrix, describing both internal and
external states of the atom:

with the expression for the 3X3 matrix [g(r)]
(n, P=x,y,z):
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g p(r) is a Green's function for the positive frequency part
of Eq. (1); the component with a common factor e'"I "/kl r
provides the usual expression for the field emitted by a di-

pole [5], while the 8'(r) term is required to determine the
field at the location of the dipole, as shown in the static case

in Ref. [5] when P~ 8(r). Equation (4) is readily general-
ized to the case of multichromatic incident light.

Before proceeding as outlined in the introduction, we

would like to determine more carefully the field Ed driving
the atom. In the Maxwell-Bloch equations, which are the

crudest mean-field approximation, Ed is identical to E. By
noting that the driving field should contain only the contri-

bution of the probe field EI and of the X—1 other atoms, it
is possible to get a more accurate estimate of the positive

frequency part 8'z of Fd from Eq. (4), with H replaced by

[(W—1)/N]W. Also, the fact that our atoms are considered

as individual entities suggests that a given atom should not
be coupled to the field created by another atom at its own

location [see the 8(r) term in Eq. (5)]. The effects of this

physical requirement can be implemented by the introduction
of a small fictitious excluded volume around the atoms.
When put to a vanishing limiting value at the end of the
calculation this excluded volume does not change the results
obtained from an exact treatment of the problem, but it is
supposed to lead to an improvement of our approximate

mean-field approach. We therefore omit the 8'(r) term

of Eq. (5), which amounts to replacing g p(r) by g p(r)
=g p(r)+(1/3) 8 pB(r) in (4), and finally we get for the

driving field:

K~(R) = 5j (R) + Tr'([g(R —R ')]D ' p(')). (6)

We note that in a regime where W —1 =% the replacement of

g by g is equivalent to the addition of P(r)//3so to the elec-
tric field amplitude in the optical Bloch equations, as is, e.g. ,
done in [6] (local field correction).

By inserting the expression for the driving field into the
atomic master equation (3), we obtain the equation for the
atomic density matrix:

d 1—p=M [p]— [D+ —.81(R)+H.c.,p]

(
Tr' g g p(R —R')D Dp

+g*/i(R —R')D Dp+, p p(') (7)

p p(') (1+yP]2)p p(')/[1+ r/Ti(p )]. (8)

The exchange operator P&2 is defined by its action on two-
particle state vectors, Pi2~$)S~g') =~/')S~$). If we are far
from having a macroscopic population of any quantum state,
i.e., (P~p~g)~&1 for any

~ P), the normalization factor can be
replaced by unity. The resulting equation, in the case of a
two-level atom, turns out to be identical to the one obtained
in Ref. [2], except for the contact term, which is different
from the one in our Eq. (5), and which is kept in the further
treatment of that paper. In view of the special treatment,
suggested for this term above Eq. (6), we do not consider this
difference to be of physical significance. Our master equa-
tion (7) reduces to the nonlinear Schrodinger equation ob-
tained in a specific situation, neglecting dissipation, in Ref.
[4], when the definition of g in Refs. [3,4] is corrected to

g=kl ~r —r'~. Here the contact term is not included.
We believe that the present derivation is more straightfor-

ward and that it can bring more insight because the nonlin-
earity of the master equation is related directly to the propa-
gation of the electromagnetic field in the medium. A special
example illustrating this aspect is that of laser cooling of an
optically thick gas, Ref. [7]:attenuation of the laser beams as
they propagate through the gas results in imbalanced inten-
sities and hence a net force on atoms pointing from the edges

D,D are the u components of the raising and lowering
parts of the atomic dipole. As the same density matrix p is
applied for primed and unprimed variables, we obtain a non-
linear master equation.

We can interpret the tensor product in the last term of Eq.
(7) as a Hartree approximation to a two-atom density matrix.
It is then natural to include the bosonic (r/= 1) or fermionic
(r/= —1) exchange symmetry of two-particle states by using
properly symmetrized density matrices, so that in Eq. (7) we
make the replacement,
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towards the center of the sample; an interpretation of this
effect in terms of nonlocal interactions is possible but clearly
less appropriate.

As we obtain exactly the same equations, the validity of
the calculations for a specific problem is not improved, but
we may have a better feeling for the approximations made
than what is offered by the approach in Refs. [1—4]. One
should expect that, e.g., the incoherent spontaneously emit-
ted light, disregarded in our equations, influences the atomic
dynamics, and, indeed, the corresponding contribution to ra-
diation pressure is considered to be an important ingredient
in the understanding of the dynamics of a trapped atomic
cloud [8,9].

To estimate the extent to which atomic interactions are
taken into account in Eq. (7), we consider a gas (N&) 1) of
ground-state atoms, illuminated by a weak laser beam

Et (r, t) = Fz (r)e ' t.'+ c.c., on a transition between a
ground state of angular momentum jg=0 and an excited
state of angular momentum j,=1. In a regime where the
Doppler shift due to the atomic motion and the recoil shift
A, kz/2M are much smaller than the rate l of spontaneous

emission, the atomic kinetic energy p /2M can be neglected
during the time required (a few I' ) for the mean atomic
dipole to reach a steady state. In the absence of quantum
statistical effects and to first order in the probe field ampli-

tude, we get from Eq. (3) (with E replaced by Ed) and from
Eq. (2) the positive frequency part of the polarization den-

sity, ~r) = eonp(r) 8'd(r), where p(r) =N(g, r~ p~g, r) is
the density of ground-state atoms and o. is the atomic polar-
izability. We eliminate the driving field using Eq. (6)
(N&) 1), and from Eq. (1) we derive in the usual manner the
(complex) refractive index of the probe field for a uniform

density p(r)=po, n= $1+upo/(1 —apo/3), which is the
well-known Lorentz-Lorenz formula [10]. (For a transition
with a dipole moment d and a resonance frequency coal, the
polarizability has the value n = —d /[fico(tot —co~,
+ iI'/2)]. )

This result for the refractive index does not include near-
dipole effects such as the shift of energy levels by resonant
van der Waals interactions [11—13]. Therefore these high
density corrections are not taken into account in the
Maxwell-Bloch equations.

In the further discussions of the nonlinear equations in
Refs. [2,4] severe approximations are made, so as, e.g., to

replace a term equivalent to our g p(r) by AB(r) 8 p. The
validity of this approximation may be difficult to assess from
the derivations in the cited papers. Here, we associate the
spatial structure of the nonlinear term directly with the
propagation of electromagnetic fields, and the replacement
corresponds to a simplified radiation pattern, probably over-
simplified for most applications. As readily seen from Eq.
(4), the total field F emerging from a medium would in this
case be identical to the probe field 8z, which is not correct
when the field dephasing or absorption is not negligible over
the atomic sample.

Our treatment of the coupled Maxwell-Bloch equations
has a classical analog in the self-consistent field approach to
ionized plasmas. The electric and magnetic fields, appearing
through the usual Lorentz force in the transport equation for
the electron and ion distribution functions, may be expressed
in terms of the charge densities and currents. This procedure
establishes the Vlasov equations [14], and it is, indeed, very
similar to the one adopted in the present paper. The Vlasov
equations are derived under the assumption of a collision-
free plasma, disregarding an extra collision integral from the
equations. This approximation may be related to the neglect
of incoherently scattered light in our calculations.

Coupled equations for electromagnetic fields and charged
particles also appear in the theory of semiconductors. Here it
is established that a Hartree-Fock approximation of the elec-
tronic state, disregarding collisions, yields the "coherent
contribution" to the dynamics only [15].The fact that effects
of incoherently scattered light are not treated exactly by the
Hartree approach in [2] is thus no surprise, but the reported

agreement with our approach probably reveals this feature
more clearly.

Finally, it should be mentioned that in contrast to the
usual Maxwell-Bloch equations, the center-of-mass motion
of the atoms in the medium is treated here fully quantum
mechanically. It is of course possible to also extract the so-
lution for the electromagnetic field from our equations with-
out neglecting the atomic motion, and one may anticipate a
number of new phenomena in field generation from such
considerations.

We are grateful to Jean Dalibard for a critical reading of
the manuscript.
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