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Convergence of diabatic to adiabatic scattering calculations
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%'e investigate the convergence of diabatic scattering representations that make use of the commonly applied
closure relation (which eliminates first and second derivative coupling terms from the Schrodinger equation for
the scattering wave function) to the adiabatic scattering formulations from which they are derived (wherein the

internal basis states depend upon the collision coordinate). Numerical examples using a simple model of
electron transport in a tapered waveguide are presented. The convergence of the diabatic to the adiabatic results

with respect to the number of basis states is extremely slow. We discuss the significance of these findings to
atomic and molecular scattering calculations.

PACS number(s): 03.65.Nk, 11.55.—m, 31.10.+z

H, (x, , . . . ,x„;Ri, . . . ,R~) t/I~=E~(Ri, . . . ,Rtt) t/t„,
(1)

where x; represents the ith electronic coordinate and Rz rep-
resents the pth nuclear coordinate. A number of popular
computer programs are available for this purpose [1].Adia-
batic time-independent collision dynamics can be formulated
in terms of the solution to the Schrodinger equation
WE ~(r/, r), where r is a scattering coordinate and rI is a set
of internal coordinates that includes the electronic coordi-
nates and may include nuclear coordinates orthogonal to r
[2],

H%'F =EN~ (2)

Many problems in atomic and molecular physics and
solid-state physics are most naturally represented in an adia-
batic formulation wherein the internal basis states are para-
metrically dependent upon the scattering coordinate. For ex-
ample, atomic and molecular scattering problems are most
naturally represented in terms of an adiabatic formulation,
since the structure calculations used to determine the internal
molecular states solve for the eigenvalues and eigenvectors
of the electronic Hamiltonian H, in an adiabatic basis. Elec-
tronic structure calculations determine the eigenvalue s

IE~(R, , . . . ,R~))t and eigenvectors ( /t(t,x, . . . , ,x;

Ri, . . . ,R~)j of H, that depend parametrically upon the
nuclear coordinates,

It is common to transform the dynamical equations result-
ing from the adiabatic formulation into diabatic ones, and to
use closure to explicitly eliminate the first and second deriva-
tive coupling terms from the resulting diabatic dynamical
equations of motion [3—6]. In this Rapid Communication we
review the nature of this transformation and investigate the
convergence of the closure approximation and its effect on
the resulting diabatic scattering results.

Upon substituting Eq. (3) into Eq. (2) and taking matrix
elements with the internal basis functions, the following
equation for F(r) is obtained [2—6]:

&F(r)+ 2p[E1—U(r)]+B(r)+2A(r) —F(r) =0,
r dr)

(4)

and the second derivative coupling matrix elements are

82

ay, , (r)=Iy„(er) z y„,(gr)) (6)

where U(r) is the potential-energy matrix and 1 is the unit
matrix. The first derivative coupling matrix elements are
given by

Here H=T+H, , T is the nuclear kinetic-energy operator,

y is an initial channel index, and 'Il'z
~ can be expanded in an

adiabatic orthonormal basis (P~(r/, r) I,

WF,(g, r) =g P, , (g, r)F.. .(r)/r, (3)

where F is the scattering wave function. As we shall see, in
addition to the eigenvalues and eigenvectors in Eq. (1), the
matrix elements (t/t~~8/c/r~ t/t~ )„and (t/t~~B /t/r I t/j~ )„are
also needed to calculate dynamics. The computer programs
of Ref. [1] (or any other commercially available programs)
do not calculate the nuclear derivative coupling matrix ele-
ments.

dC
=CA (7)

We have recently developed a stable invariant imbedding
algorithm for solving for the S matrix contained in the as-
ymptotic form of the wave function F(r) given in Eq. (4)
and demonstrated its implementation [7,8]. Other methods
for calculating adiabatic dynamics also exist [9].These algo-
rithms eliminate the necessity for going to a diabatic repre-
sentation. However, the A(r) and B(r) terms need to be in
hand in order to calculate the dynamics.

The first derivative term A dF/dr in Eq. (4) can be elimi-
nated by making an orthogonal transformation using the in-
tegrating factor [10] C(r) that satisfies the equation

1050-2947/95/51(5)/3403 (4)/$06. 00 51 R3403 1995 The American Physical Society



R3404 Y. B. BAND AND I. TUVI 51

(or dC'/dr = —AC', since A is antisymmetric). Substituting
F= C'g into Eq. (4), and making use of Eq. (7), we obtain a

Schrodinger equation for g that does not contain a first de-
rivative term,

Hence, for a complete adiabatic basis, Eq. (8) becomes

d g(r) + 2p(E1 —C(r) U(r) C'(r))g(r) = 0. (15)

d g d
2 + C 2p, (E1—U) +B—AA ——A C'g =0.

dr dr (8)

This transformation can be viewed as one from an adiabatic
basis set i(/I«(«/, r)) to an r-independent diabaric basis set

This is the commonly used diabatic form of scattering
[3,4,11].

For a finite adiabatic basis, ((/( («/, r), y' =1, . . . ,N),
one can make a transformation to a finite diabatic basis,

(«/), u'=1, . . . ,M), with an [MXN] transformation
matrix C «(r)=(P (r/)! P«(r/, r))„.The wave function
in the adiabatic representation can be expressed in terms of
the M-dimensional diabatic representation,

with

Hence,

(10) y'=1

M

(/I«i(«l, r)F««(r)/r= g (t) («l)R «(r)/r,

%E «(r/, r) =g P«(«/r)F««(r)/r
y'

with

g(r) = C(r)F(r).

The transformation matrix C «(r) can be calculated from

A««i(r) by inserting a complete set of diabatic states into
Eq. (5):

X r y —
yr yr

(13)

i.e., if the basis (!@ (r/))) is complete, dC/dr=CA.
Moreover, the first and second derivative coupling terms A
and B can be eliminated from Eq. (8), provided the
adiabatic basis is complete, since then B(r)=A(r)A(r)
+(d/dr)A(r), as is easily demonstrated:

d= g A«/3(r)A& «(r)+ —A««(r). (14)

where the second equality in Eq. (11) becomes an approxi-
mation because the diabatic basis is not complete. Neverthe-
less, Eq. (8) for the [M XN]-dimensional matrix g is equiva-
lent to Eq. (4) for the [NXN]-dimensional matrix F, as can
be shown using the [MXN]-dimensional integrating factor
in Eq. (7) and the definition F= C'g. However, Eq. (15) is an

approximation to Eq. (8) for a finite adiabatic basis because
the closure relation B(r) =A(r)A(r) + (d/dr)A(r) is not ex-
act. To calculate the scattering using Eq. (15), one must first
calculate the [M XN]-dimensional matrix C(r) using Eq. (7)
and then form C(r)U(r)C'(r). To do so, A(r) must be
known, but B(r) need not be. Alternatively, and without ap-
proximation [but with the price of having to compute
C(r)], one can calculate the scattering using Eq. (8). Clearly,
both A(r), B(r) and C(r) must be in hand to use Eq. (8).
Hence, C(r) must be numerically determined using Eq. (7)
before using either Eq. (8) or (15); this can be at least as
computationally intensive as solving the original scattering
equation, Eq. (4). Therefore, there is no compelling reason to
use a diabatic representation [either Eq. (8) or (15)] for prob-
lems originally formulated in an adiabatic representation,
since methods of solving Eq. (4) are available.

It is of interest to determine how many adiabatic basis
states (!(/) «(«/, r))) are necessary to numerically obtain clo-
sure [Eq. (14)] within a given accuracy, and furthermore, to
determine the differences in the scattering results using Eqs.
(15) and (4) as a function of basis-set size. In order to do so,
we have developed a simple model for which the derivative
coupling matrices A(r) and B(r) are analytically evaluated

[12], since, to our knowledge, A(r) and B(r) matrices have
not been published for any chemical problem, and codes to
calculate them are not readily available. Consider a two-
dimensional waveguide structure shown in the inset of Fig.
1, where the potential U(r, r/) vanishes inside the waveguide
and is infinite outside. The boundary conditions dictate that
the internal wave functions vanish at the edges of the device,
r/= —w(r)/2, and w(r)/2, where w(r) is the r-dependent
width of the device. Hence, the internal basis set de-

pends on r; P«(r/, r) = Q2/w(r) siniyvr[r/+w(r)/2]/w(r)),
y=1,2, . . . , and the matrix elements of the Hamiltonian

H=(p„+p„)/2p, + U(r, «/) take the form
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FIG. 1. Conductance g=(2e /h)Tr[TTt] vs energy, calculated
using adiabatic and diabatic two-channel representations. Inset
shows the two-dimensional waveguide structure.

2P„ l

(P,(V r)IHIP, (V r))„=~,, — &,, , (r)J,—2p p

FIG. 2. Conductance vs energy calculated with N = 15
in the adiabatic formulation and the percent difference

[g„(N) gD(N)]/g„(N—) between the adiabatic and diabatic calcu-
lations for N= 15.

, dw /0
A(r) = —w

dr y0 0/'

where

1
B„~i(r)+U~~ (r),2p (

sw'

/dw 2 12 4
B(r) = w

~ dr/
0

U (r)= 2 8
2Pw

(18)

8,, „( )= 0„(, ) —r„(, ))Br

dw 1 dw

dr 2w dr

a2
a„t~)=(0,(v') ~„.p, (v~))

,dw)',
dr

1 3(dwl d w

2w 2 dr / dr

/dw) ' d'w3, W 2 Z~~ .
w ( r/ r (20)

The integrals Z~~ = (2y'/w)I /2d r/ sin[ye(r/+w/2)/
w] r/ cos[y' m( r/+ w/2)/w j, &y, y' = ( t/I y( r/ r ) I r/I t/ry'( r/ r )& &,

and Y,=(p (r/, r)I r/!p (r/, r))„can be analytically de-
termined. Using the form w(r) =wo —4w/2(t»h[(r —rt)
/tr ] —tanh[(r —r2)/o. j}, the first and second derivatives of
w(r) with respect to r can be easily evaluated. The param-
eters wo, Aw, and o. are specified in the inset of Fig. 1 and

r2 —rz is taken to be 140 bohr.
Let us evaluate A and 8 for %=2 to determine how well

the closure relation is maintained:

hence, B(r)AA(r)A(r)+ (d/dr)A(r). The closure rela-
tion is badly broken if w '(dw/dr) is not small. For
%~3 this comparison becomes more tedious. Let us instead
determine how the conductance changes with basis size us-
ing the adiabatic and diabatic formulations.

The conductance g as a function of energy calculated
adiabatically [using Eq. (4)j and diabatically [using Eq. (15)j
with two channels (N=2) is presented in Fig. 1. The con-
ductance is given by g=(2e /h)Tr[TTtj, where T is the
transmission amplitude matrix from left to right. The thresh-
old for the lowest internal energy channel is 0.021 61 har-
trees and the second channel threshold is 0.086 43 hartrees.
Below 0.0639 hartrees no channels are locally open in the
constriction, whereas above this energy, one channel is lo-
cally open. Hence the conductance above this energy does
not exceed unity. The differences between the approximate
diabatic results using Eq. (15) and the adiabatic results are
substantial, with hundreds of percent differences between
them. In Fig. 2 we present the conductance vs energy calcu-
lated adiabatically with N = 15 and the percent dif-
ference between the adiabatic and diabatic results. For
0.16&EGO.256 hartrees the oscillations in the conductance
die away with increasing F.. A third asymptotic channel
opens at E=0.1945 hartrees, and a small blip in the conduc-
tance occurs just below this energy. At E=0.256 hartrees a
second channel becomes locally open in the constriction, and
a series of oscillations of the conductance begins with peak
conductance equal to 2. The percent difference with N = 15 is
substantially smaller than with %=2, but the difference is
still significant. The difference oscillates with energy, and the
magnitude of the oscillation decreases with increasing en-
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FIG. 3. Percent difference in the conductance calculated adia-

batically and diabatically, as a function of energy for N= 12 and 15,
and the percent convergence of the adiabatic calculation

[g„(N= 12) g„(N= 8—)]/gA(N=12) and [gA(N= 15) g„(N-
=12)]/g„(N=15). The N=15 results are solid curves and the
N=12 are dashed.

ergy until the second local channel in the constriction opens.
This picture is repeated at higher energies. Figure 3 shows
the percent difference in the conductance calculated adiabati-
cally and diabatically, [gA(N) gD(N)]/g—„(N), as a func-
tion of energy for N=12 and 15, and the convergence
of the adiabatic calculations between N = 8 and 12,
fg„(N=12) gA(N=8)]—/gz(N=12) and N=12 and 15,
[gA(N=15) gA(N= 12)—]/gz(N= 15). The percent differ-
ence between the adiabatic and diabatic results decreases ex-
trernely slowly with increasing ¹ with N=15 the percent
difference is 3.5% at E=0.06 hartrees. However, the adia-
batic results have converged as a function of N to better than
0.5%.

In summary, we developed a simple model for which we
tested the convergence of the diabatic dynamical results cal-
culated making use of the closure relation, Eq. (14), to the
adiabatic results, and the convergence is found to be ex-
tremely slow. To conclude, we discuss implications of the
slow convergence of diabatic calculations to the results of

the adiabatic formulation from which they are derived. There
is an endless variety of chemical systems for which our con-
clusions may have important implications; e.g., curve cross-
ing isomerization reactions as a function of a torsional mode
of a molecule; here we elaborate two examples. In the hy-

drogen exchange reaction and its isotopic equivalents; e.g.,
D+H2 —+H+HD, a conical intersection occurs between the
two lowest potential-energy surfaces. The point of intersec-
tion is at the configuration where nuclei form an equilateral
triangle. The geometric phase associated with the motion
around the intersection has been shown to have dynamical
consequences, even at energies below the conical intersec-
tion energy (2.7 eV about the minimum of the ground-state
surface) [13,14]. To date, only adiabatic calculations on one
(the lowest) potential-energy surface have been performed.
However, the coupling to the upper electronic adiabatic
potential-energy surface also affects the cross sections at suf-
Aciently high energies. It is of interest to see how the cou-
pling to the second surface (degenerate with the lowest sur-

face at the equilateral triangle point) affects the differential
cross sections for the various vibrational rotational states of
the diatomic molecules. Calculation of this dynamics in the
adiabatic formulation using Eq. (4), and using diabatic for-
mulation, Eq. (15), may yield different results using two
electronic basis states. The calculation should be performed
using Eq. (4) without making use of the closure relation, and
the diabatic calculation should be checked against the adia-
batic one. As a second example, consider the scattering
p+H(is)~p+H(nl) (or replace the proton by a rare-gas
atom or even a hydrogen atom). The H2+ potentials and the
nuclear derivative coupling matrix elements between the
potential-energy surfaces correlating to the same nl atomic
term limits (all the molecular states correlating to the same n

are asymptotically degenerate because of the hydrogen de-
generacy) should be calculated. Again, Eq. (4) should be
used to calculate the dynamics, and the convergence of the
calculation using Eq. (15) should be studied.
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