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The dynamic Kingdon trap is a trap designed for the permanent storage of charged particles. While the Paul
trap is based on the principle of strong focusing, the dynamic Kingdon trap uses strong defocusing to achieve
trapping. It is shown that the dynamic Kingdon trap exhibits a sequence of period-doubling bifurcations. A
numerical solution of the Laplace equation for a finite-length dynamic Kingdon trap with holding caps shows

that this trap can be implemented in the laboratory.

PACS number(s): 32.80.Pj, 65.45.+b

The static Kingdon trap, an ion trap consisting of nothing
more than a metal filament surrounded by a metal cylinder,
was described early in the literature [1]. This trap is simple
and robust and has one important advantage: it works with a
static voltage applied between the cylinder and the filament.
In the absence of collisions and neglecting radiative effects,
this trap is able to “imprison” [1] a charged particle for an
indefinite period of time. It has one disadvantage: the particle
has to orbit the filament, for if it had no angular momentum
component in the direction of the filament, it would quickly
be captured by the filament and discharge. But if an ac volt-
age is added to the dc voltage, stable trapping can be
achieved even for zero angular momentum with respect to
the filament; the simple static Kingdon trap becomes the dy-
namic Kingdon trap. It is a close relative of the Paul trap
[2,3], but there are important differences as we shall see
below. We will now discuss an ideal cylindrical version of
the dynamic Kingdon trap with infinite length. A realistic
trap of finite length will be discussed later.

A superposition of an ac and a dc voltage applied between
the filament and the outer cylinder of the trap results in a
charge density (charge per unit length)

o = 04 1+ 0,c08(¢) 1)

on the filament. The electric field between the filament and
the outer cylinder points into the radial direction. Its magni-
tude is given by

E = o/2meyr, 2

where r is the distance from the filament. In the absence of
an initial velocity component perpendicular to the r direc-
tion, the motion of an ion with mass m and charge Z in this
field will be one-dimensional in the r direction, and a single
scalar equation suffices to describe the ion dynamics:

mr = ZE = Zo/2meyr. 3)

Introducing dimensionless time 7=()¢/2 and a unit of
length / such that

2ZUdc =1 4
mQ2mweyl?| ®)

the equation of motion for r reads
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r o+ [s—21700s(2*r)]% = 0, (5)

where s (according to the relative polarities of Z and o 4.)
can take the values * 1 and = 0,/20,.. Equation (5) looks
very similar to a Mathieu equation [4], but it is nonlinear. It
may be called the “Kingdon equation.” I am not currently
aware of a systematic study of the Kingdon equation in the
mathematical literature, but a physical approach based on the
notion of the pseudopotential [5] provides already some
valuable insight into the properties of (5).

The essence of the pseudopotential approach is to replace
a rapidly oscillating inhomogeneous force field with a static
force (also known as the “ponderomotive force”) that can be
derived from a time-independent ‘“pseudopotential.” The
idea is that on average the pseudopotential has the same ef-
fect as the time-dependent field. The method is discussed in
standard textbooks [6,7]. The net result is the following:
Suppose a particle of mass m, moving in one dimension x, is
subjected to a rapidly oscillating force f(x,t) =
fo(x)cos(wt). Then, to a good approximation, the average
force acting on the particle can be obtained as the negative
gradient of the pseudopotential U, ¢(x) = f3(x)/4m w?. Be-
cause of the fast residual components of the force, not taken
into account in the pseudopotential, the particle will execute
rapid oscillations around its average path determined by
U,sr. This oscillatory motion is called the “micromotion”
[2,3,5]. Its amplitude & can be estimated according to [6,7] as
& = |fo(x)|/mw?. According to these results the total
pseudopotential for (5) (including the static potential) is
given by

U.sf(r) = sln(r) + 7*/4r?, (6)
and the micromotion amplitude is given by

&€= q2r. )
Interpreting (6) we see that the effect of the ac voltage is to
drive the ion away from the central filament of the trap and
toward the outer cylinder. Thus, the effect of the ac voltage is
destabilizing, or in the language of accelerator physics (see,
e.g.,[8]), the effect is one of strong defocusing. In order to
counterbalance the defocusing effect, the dc voltage applied
to the trap has to be chosen such that the ion is attracted
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TABLE 1. Equilibrium values of r, (column 2), 7o /7 (column 3),
and ¢ (column 4) for a single ion stored in a dynamic Kingdon trap
for various values of the control parameter % (column 1) and damp-
ing constant y=10"3.

7 ro ro/m £

4 2.889 0.722 0.7073
6 4.283 0.714 0.7072
8 5.687 0.711 0.7071
10 7.095 0.710 0.7071

toward the filament. This is equivalent to the choice s=1,
while for s= —1 both the ac and the dc voltage conspire to
drive the ion toward the outer cylinder of the trap. In other
words, stable trapping is possible only if (6) exhibits a po-
tential minimum. For s=—1 no such minimum exists. The
trap is globally unstable. For s=1, however, (6) always pos-
sesses a potential minimum located at

ro = n/\2. ®

The micromotion amplitude at the minimum is given by

&= 92ry = 142. 9)

Summarizing, the pseudopotential picture predicts the fol-
lowing scenario for s=1. In the presence of a cooling
mechanism (buffer gas, or laser cooling) a charged particle in
the dynamic Kingdon trap will settle down close to the
pseudopotential minimum r, of the trap, executing small os-
cillations of magnitude ¢ around this equilibrium position.
Thus, the main result of the pseudopotential analysis is that
the dynamic Kingdon trap is indeed a working device for the
stable trapping of charged particles.

In order to check the pseudopotential picture, and to rig-
orously demonstrate the working principle of the dynamic
Kingdon trap in the presence of the micromotion, numerical
simulations of a dynamic Kingdon trap were performed.
Cooling was simulated by adding a damping term to (5).
This way the Kingdon equation was turned into the damped
Kingdon equation given by

1
P+ oyr +[s—21]cos(27')]7 = 0. (10)

The damped Kingdon equation (10) was integrated for
¥=1073 and several 7 values using a fourth-order Runge-
Kutta scheme [4] with constant step size A7 = 7r/100. It was
checked that this step size was sufficient to guarantee accu-
rate solutions. Table I lists the results obtained for rg,
ro/m, and & for » values ranging from =4 to 7=10. The
value of r, was taken as the time average of r over one
complete micromotion cycle; the value of &, the micromo-
tion amplitude, was defined as & = (7,,0x— 7min)/2, Where
¥ max and r,,;, are the maximal and the minimal distances of
the ion from the filament, respectively. The column for the
values of (/7 was included in Table I since according to (8)
we would expect this quantity to be constant and equal to
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FIG. 1. Period-doubling bifurcations for a single ion in an ideal
dynamic Kingdon trap. (a) g=3.5, simple period-1 limit cycle; (b)
g=3.0, period-2 attractor; (c) g=2.92, period-4 attractor; (d)
q=2.916, period-8 attractor.

1/\/2. Table I shows that £ is very close to its pseudopoten-
tial estimate 1/1/2. The values of ro/m, too, converge toward
1/42, as expected.

Since (10) is nonlinear and contains a drive term, there is
a possibility for bifurcations and chaos to appear as a func-
tion of the control parameter 7. Indeed, by using the same
numerical scheme as was employed for generating Table I,
several period-doubling bifurcations were identified in the
parameter region 7<4. Figure 1(a) shows a phase-space por-
trait of the motion for 7=3.5. The motion is regular. It is a
limit cycle that corresponds to stable trapping at ry=~2.55
with a micromotion amplitude of £=~0.7. Lowering the con-
trol parameter to 7=23.0 shows that the motion is now on a
more complicated attractor [see Fig. 1(b)]. A period-doubling
bifurcation of the limit cycle shown in Fig. 1(a) must have
occurred between 7=3.5 and 7= 3.0. Figure 1(c) shows that
at 7=2.92 the motion is on a period-4 attractor. Clearly an-
other bifurcation must have occurred between 7=3.0 and
7=2.92. Figure 1(d) shows the motion at 7=2.916 to be on
a period-8 attractor. Again, a bifurcation must have occurred
between 7=2.92 and n=2.916.

In order to exhibit the bifurcations more directly, (10) was
integrated with y=10"2 while slowly scanning the control
parameter 7 from 7=3.2 to 7=2.914. The whole 7 interval
was traversed in 2 X 10° cycles of the drive term in (10). The
slow scanning speed is necessary in order to give the system
time to relax. At 16 000 predetermined #» values in the inter-
val [2.914, 3.2] the values of r were obtained at the end of 16
successive cycles of the driving field in (10) and plotted vs
the corresponding 7 value in a diagram. The result is shown
in Fig. 2. The period-doubling bifurcations, whose presence
was only indirectly concluded from the phase-space struc-
tures presented in Fig. 1, are now plainly visible. Focusing in
on the bifurcation points, a total of five bifurcations was
identified. They occur at #,~3.12462, 7,~2.93802,
73~2.917 144, 7,~2.914775, and 75~2.914506. From
Fig. 2 it might not be clear why, e.g., at 7=2.92, there are
only three branches of r and not four. The explanation is the
following. Since the r values are plotted at integer multiples
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FIG. 2. Bifurcation diagram for a single charged particle stored
in an ideal dynamic Kingdon trap.

of full cycles, there can be degeneracies in r. This is imme-
diately clear from Fig. 1(b), for example. The two phase-
space loops in Fig. 1(b), e.g., touch at maximum excursion.

The bifurcations shown in Fig. 2 resemble a period-
doubling scenario [9]. Integrating (10) from cycle to cycle
corresponds to a two-dimensional mapping [r(z),7(¢)]
—[r(¢+ ),r(¢+ )] that is approximately Hamiltonian be-
cause the damping constant is so small. The universal
Feigenbaum constant for two-dimensional mappings is given
by [10]

M-,
5=llmM

~8.72. (11)
jooo Wi Mj+1

On the basis of the first five bifurcation points we obtain
(m=—m)/(m—m) = 89, (m—n3)/(m3—7ns) = 88,
(73— m4)/ (43— ns) = 8.8. These values are very close to
the relevant Feigenbaum number.

The main question now is whether trapping, and in par-
ticular the period-doubling bifurcations, can be observed ex-
perimentally. Obviously we cannot have an infinitely long
trap and any finite version will lead to field distortions. Also,
it would be desirable to have a focusing force in the z direc-
tion, the direction of the trap’s axis, in order to be able to
observe the trapped ion at a specific location. In order to
investigate this issue, the Laplace equation was solved nu-
merically for a realistic dynamic Kingdon trap shown in Fig.
3. The trap is a finite-length version of the ideal dynamic
Kingdon trap discussed above. The aspect ratio of the trap is
a:b=1:2. The trap is equipped with two end caps that are
held at the same potential as the outer cylinder of the trap.
The line segments in Fig. 3 indicate the direction and the
magnitude of the electric field inside the trap. It can be seen
that due to the symmetry of the trap the radial field in the
middle of the trap (at z=b/2) is exactly in the radial direc-
tion. Therefore, at z=5b/2 and as far as the direction of the
field is concerned, the realistic Kingdon trap behaves exactly
like the ideal dynamic Kingdon trap. It was checked that not
only the direction, but also the magnitude of the electric field
in the vicinity of z=5b/2 behaves like 1/r to a very good
approximation. The question is whether exact 1/r behavior is
necessary to observe the period-doubling bifurcations dis-

FIG. 3. Cross section of a realistic version of the dynamic King-
don trap in the r-z plane with aspect ratio a:b=1:2. The orientation
of the line segments indicates the direction of the electric field; the
length of the segments is proportional to the strength of the field.

cussed above. This question was answered by considering
the generalized Kingdon equation

1
Fo+ oy +[1—277cos(2'r)]r—a = 0, (12)

where a is a real constant. For a#1 field distortions in the
realistic trap can be modeled. The cases «=0.9, 0.7, 0.5, and
0.3 were studied in some detail. In all these cases a period-
doubling scenario was observed with the first period- dou-
bling bifurcation occurring at 7~3.2, 3.4, 3.8, 4.6, respec-
tively. This proves that, apart from a numerical shift in the
location of the bifurcation points, the period-doubling sce-
nario itself is astonishingly robust against field distortions.
Figure 3 also shows that, due to the presence of the two end
caps, the trap provides a focusing force in the z direction.
Trapped particles will be found preferentially close to the
center of the trap. Since the field in z direction vanishes
exactly at z=b/2, the z field does not influence the » motion
at z=>b/2. Thus, the r motion decouples as assumed in the
theory for the ideal dynamic Kingdon trap.

The dynamic Kingdon trap is remarkable in several re-
spects. (i) In contrast to the Paul trap [2,3] the ac voltage
does not produce a focusing effect but a defocusing effect.
This is easily understood on general grounds. A trapped ion
in an inhomogeneous ac field is a “low-field seeker” [3].
Since the field of a straight charged wire decreases with the
distance from the wire, an applied ac voltage clearly tries to
push an ion away from the central filament of the dynamic
Kingdon trap. As shown above, this effect can be counterbal-
anced by a static attractive charge on the filament. The com-
bined effects of attractive static charge and the repulsive ef-
fect of the ac voltage produce stable trapping. (ii) Since a
trapped ion will hover above the filament, the micromotion
cannot be eliminated even for a single trapped particle. For
spectroscopic applications this is clearly a disadvantage. For
applications in nonlinear dynamics this is an advantage
since, as we saw above, even a single ion can exhibit inter-
esting nonlinear effects on the basis of its never-vanishing
micromotion. (iii) Interestingly, the equivalent of the
“Mathieu equation” for single-ion trapping in the Paul trap
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is nonlinear for the dynamic Kingdon trap. This allows us to
scale out the Paul trap’s a parameter [2—4] (proportional to
the dc applied electric field). Thus, the single-ion dynamic
Kingdon trap has only one control parameter #», which makes
the discussion of nonlinear scenarios simpler. (iv) Another
advantage of the dynamic Kingdon trap is its mechanical

simplicity. As shown in Fig. 3, a cylindrical arrangementwith
end caps and an aspect ratio of 1:2 is sufficient to observe the
predicted effects.

It is a pleasure to thank Professor S. Fishman and Pro-
fessor R. E. Prange for instructive discussions concerning the
bifurcation scenario in the dynamic Kingdon trap.
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