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It is shown that the contribution to the double-to-single ionization ratio 0 * (w)/o ¥ (w) of helium caused by
small momentum transfer breaks down the asymptotics of this ratio at the high-energy limit. The addition of up
to 10% at w=12 keV is expected to cause a slope in the ratio, which can be related to the properties of the
ground state. The contribution is expected to be important also in the analysis of the double photoionization of

H™ and H,.

PACS number(s): 32.80.Fb

I. INTRODUCTION

Early experiments on the double photoionization of he-
lium,

v+ He — He?" +e +e™ (€))

with photons of energies up to hundreds eV showed the ratio
of cross sections for double ionization to single ionization

R _ M (w) )
(w)= (@) 2

to turn into constant
R=Ry~1.6x10"2 3

for photon energies much larger than the binding energies J.
The result was supported by numerous calculations reviewed
in [1,2].

Recent experiments [3] carried out with photons of ener-
gies of several keV gave data consistent with Eq. (3). How-
ever, it was noted in [4] that the experiments detected the
number of ions He' and He?' in the final state. At the
energies w=6 keV, the former were produced mostly by
Compton scattering. Thus the result of these experiments
supports

= const, @)

with the total cross sections o,= o+ o, where o **) de-
notes the cross section of the Compton process
w+He—w' +He? " +e™ +e™ [4].

The results of the first calculations of U§+ have been pub-
lished recently [5]. Since the cross sections 0" and o-? can
be distinguished experimentally [4] it is reasonable to start
with the simpler problem of calculating the ratio R(w) deter-
mined by Eq. (2) at larger energies. In this paper we calculate
a contribution that causes a breakdown of the asymptotics
described by Eq. (3). It increases the value of R by
5-10 % at =12 keV.

II. BREAKDOWN OF ASYMPTOTICS

To understand the nature of the contribution, recall the
mechanism of single photoionization in the asymptotic re-
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gion, which requires that large momentum be transferred to
the nucleus since the process cannot take place if the electron
is free. The energy dependence of the amplitude Fg for the
single photoionization is determined by that of the bound-
electron wave function ¥ in momentum space. Effectively,

Fo=(amay® 20y ). s)

Since w>J, p;—k=p; is much larger than the characteris-
tic momentum 7 of the bound electron 7. (If the bound elec-
trons are described by Coulomb functions with effective
charge Z,, »=maZ,.) Bound electrons can exchange an
infinite number of virtual photons with momentum f~ # but
each exchange by momentum p,> » leads to a small factor
of the order 7*/p%; see Fig. 1(a). So large momentum p, is
transferred to the nucleus by a single hard photon and

—8m ma Z N,
(p1—k)*

Here N is the wave function at the origin of configuration
space. Substituting Eq. (6) into Eq. (5) we find the amplitude

Y(p1—k)= (6)

()

FIG. 1. The Feynman diagrams describing the mechanism of
single and double photoionization processes in the asymptotic re-
gion [(a) and b)] and the mechanism causing the breakdown of
asymptotics (c). The dark blob represents soft photons with mo-
menta f~ 7 exchanged between electrons and between electrons
and the nucleus. The dashed line shows the hard virtual photon with
momentum f> 7.
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F, . In the general case the two-electron system is described
by the function W' (r,,r,). The amplitude for single ioniza-
tion is

(ep1) 8T ma Z

— 12
F,=(47ma) Pik)? N,

7
with
N={@o(r)|¥(r,0)), ®

where ¢, describes the electron in the ground state of
He™.

The main contribution to the cross section of double
photoionization comes from the part of the spectrum where
one of the outgoing electrons carries a small energy
&g,~J<<w. One of the bound electrons again transfers a large
momentum p;> 7 to the nucleus. The amplitude takes the
form of Eq. (7), with N being replaced by the matrix element
{@o(r)|¥(r,0)) and with ¢, describing the outgoing elec-
tron with energy &, in the field of the nucleus [Fig. 1(b)].
The amplitude of the double ionization contains F; as a fac-
tor.

The cross section

T
d0'2+=ZIFI25(w—sl—ez)dF, 9)

with dT=[d%p,/(27)*][d>p,/(2)%], is dominated by
P2~ n, €,~J. This leads to a similar energy dependence of
o and 0%, i.. to Eq. (3), and the integral over p,~ %
determines the value of R .

If the energies of both outgoing electrons &; ,~ w>J, the
process also yields large momentum that is to be transferred
to the nucleus unless the values of the energies are not close
to w/2. In this region the amplitude also contains the ampli-
tude of single photoionization [6]. The contribution of this
part of the spectrum to R is of the order (J/w)>.

However, if the values &, , are close to w/2, an alternative
mechanism is possible in which large momentum k—p, is
transferred to the second electron but not to the nucleus—see
[6] and the more detailed analysis in [7]. The process can
take place without the nucleus; the amplitude F for the pro-
cess when the initial state is that of two free electrons at rest
does not vanish. It yields

k=pi+p;. (10)
Equation (10) leads to
s1=ey_(w 12 )
w | \m]

One can see from Fig. 1(c) that the structure of the am-
plitude is similar to that of the single-photoionization process
F,. However, now it is the second electron that accepts the
large momentum k—p; and then leaves the atom with mo-
mentum p,=k—p;. For that part of the spectrum deter-
mined by Eq. (11) the amplitude can be presented as the
product of the amplitude for the free process F and a factor
that depends on momentum g =k—p;— p, that is transferred
to the nucleus,
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F(w>P1’Q)=F0(w;P1)S(Q): (12)
where
_ (ep1) (ep2)
F “‘(4”“)3/2(@1—@4 o) B

The factor S(gq) is easily expressed through the two-electron
wave function in momentum space

d3
s@)= [ b a1 (14

or in configuration space

S(q)=f &r¥(r,r)e v, (15)

Now we calculate the cross section using Eq. (9) and
presenting dI'=[d’p,/(27)*][d>q/(27)3]. The integral
over g is dominated by g~ n<<p. The amplitude F appears
to be (w/m)"? times smaller than that of the single photo-
effect. Neglecting the terms ~ (k/p,)~(w/m)"? in Eq. (13),
we obtain Fy~(e,p1+p,)=(ek)=0. Thus the part of the
spectrum determined by Eq. (11) gives a correction of the
order w/m to the ratio R(w). A straightforward calculation
gives

8\/5 o)
R(w)=Ry+ -5—27 C’—n‘ , (16)

with

1 43 1
C=;,‘zf (_2%%3—|S(q)12=1_v_2f Iri¥(r,n?. A7)

In terms of Hylleraas variables [8] s=r;+r,, t=r;—r,,
u=|ry|, the function ¥(r,r)=Y(s,t,u) with s=2r,
u=t=0. If ¥(ry,r,) is the product of single-particle func-
tions, i.e., ¥(ry,ry)=4(r1)¥(r,), we obtain

1
C=Ff drl(r)]*. (18)

Note that the contribution can be obtained from the most
general form of the equation for double ionization in con-
figuration space:

F=(¢(ri,r2)|vit va2|¥(r1.r2)), (19)

with y;=e " "*")(eV,) and ¢ the wave function of the final
state. Since &;,>J, the outgoing electrons can be described
by plane waves. Thus Eq. (19) consists of terms of the form
Jdridr,¥ (rq,ry)explilkr))—i(pr1)—i(pory)]. In the general
case, the exponential factor limits the phase volume of inte-
gration by |r1’2| =p;, 21< 7~ !, while the bound electrons are
concentrated mostly at the distances r~ 7~ 1. Thus the am-
plitude is strongly quenched. However, introducing variables
R=(r{+ry)/2, p=(ry—ry)/2, we find that the exponential
factor becomes exp[i(gR)+i(k—p,+p;,p)]. Thus if g~n
both r; and r, can be made of the order of 7 while the
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distance between the bound electrons r{, should be small.
We explicitly build the function ¥ at ,~p ™! by the calcu-
lation in momentum space.

II1. SUMMARY

We have calculated the contribution that causes the break-
down of the asymptotics of the process described by Eq. (1).
It is proportional to the photon energy w. The leading rela-
tivistic corrections to the cross sections o* and o** are also
of this order. However, the proportionality between the am-
plitudes is maintained in the relativistic region, as well [9].
Hence the corrections cancel out in the ratio Ry. Thus the
second term of Eq. (16) provides the only correction of the
order w/m.

Analysis of the energy distribution carried out in [7]
shows the correction to exist at all the energies w>J. If
0> n(aZ)~1 keV it is the leading correction to Eq. (3).
The contribution becomes noticeable at larger values of w.

We find that C=1/8 if the hydrogenlike functions are
used as the functions ¢. Note that the value does not depend
on the charge of the nucleus. For the Hartree-Fock functions,
C=0.11. The value appears to be smaller for the functions
depending on r,. Considering the Hylleraas three- and six-
parameter functions, which are polynoms in s, ¢, and u, we
find C=7.0X10"2 and C=6.8X10"2. The more compli-
cated Kinoshita function gives C=5.5X1072. (The explicit
form of the functions and the values of parameters are pre-
sented in Table 6 of [10].)

Thus the correction increases the value of R by about
10% for the largest value of w=12 keV for which there are
experimental data nowadays. The effect increases linearly
with w. Measurements at higher values of w should show a
slope in the function R(w). It is determined by certain prop-
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erties of the ground state—see Egs. (16) and (17).

The contribution occurs in the double photoionization of
any system. In photoionization of heavier atoms it is of mi-
nor importance if at least one of the ionized electrons is an
external one. In effect the latter interacts with the effective
charge Z,~1 and R ~Ze"2, while the second term of Eg.
(16) is proportional to Z ~2_ However, for the special case of
double photoionization of the K shell, the dependence of
both terms of right-hand side of Eq. (16) on Z is the same.
The contribution is important in the analysis of the double
ionization of lighter systems containing two electrons, such
as the negative ion H™ and molecular hydrogen H, [11,12].

In other ionization processes (i.e., the ionization by elec-
tron impact) with large energy transferred to an atom, the
double-to-single-ionization ratio also turns into a constant in
asymptotics. However, the contribution to the ratio obtained
in this paper does not emerge [9]. Indeed, in these processes
the energy is transferred to the atom by virtual photons. Now
single ionization is allowed for free electrons, and this also
applies to the double ionization. Both processes take place
with small momentum transfer g~ 7. The constant double-
to-single ratio is determined by the part of the spectrum
where one of the electrons is slow, i.e., £;~w; g,~J, while
the region &, ,~ w provides a small correction ~(J/ ).
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