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at 10, 20, and 52.9 eV above threshold
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We have calculated the coplanar triply differential cross section (TDCS) for double ionization of helium by
one photon at total energies of 10, 20, and 52.9 eV above threshold. Our results agree very well with recently
measured and calculated angular distributions [O. Schwarzkopf, B. Krassig, J. Elmiger, and V. Schmidt, Phys.
Rev. Lett. 70, 3008 (1993); O. Schwarzkopf, B. Krassig, V. Schmidt, F. Maulbetsch, and J. S. Briggs, J. Phys.
B 27, L347 (1994); F. Maulbetsch and J. S. Briggs, ibid 26, L.647 (1993)]for the cases of equal energy sharing

(photoelectron energies E, and Ez, such that Ei =Ez=5 eV and E, =Ez= 10 eV) and unequal energy sharing

(E,=5 eV, Ez=47.9 eV). In contrast to previous calculations of the TDCS, our calculation is based on a

basis-set method that is, in principle, exact, and we obtain absolute values of the TDCS that are fairly well

converged with respect to the basis size.

PACS number(s): 32.80.Fb

The triply differential cross section (TDCS) for double
ionization of helium by one photon provides a sensitive tool
for exploring electron-electron correlation in photoionization
processes. However, this quantity is neither easy to calculate
nor easy to measure. Nevertheless, Schwarzkopf et al. [1—3]
recently measured, for the first time, relative values of the
coplanar TDCS for double photoionization of helium at total
energies from 10 to 53 eV above threshold. They investi-
gated both equal energy sharing, where the photoelectron
energies Ei and E2 were such that E&=E2=5 eV or
E&=E2=10 eV, and unequal energy sharing, where Ei=S
eV, Ez=47.9 eV. Maulbetsch and Briggs [3,4], using an ap-
proximate final-state wave function, which is a product of
three Coulomb wave functions [5,6], succeeded in calculat-
ing angular distributions whose shapes are in very good
agreement with the measured data. However, while this
three-Coulomb wave function is correct at large distances
[i.e., (kiri)(ktqriq) &1 and (kqrq)(kizrtq) &1, where these
quantities are defined below], it is incorrect at small dis-
tances, and since the absolute probability for ionization is
determined in the region near the nucleus one cannot expect
to obtain accurate absolute probabilities; indeed, the three-
Coulomb wave function yields absolute values of the TDCS
that are believed to be substantially incorrect over a region of
a hundred or so eV (perhaps more) above threshold [7,8]. In
this paper we present results of basis-set calculations of the
TDCS; the angular distributions are also in very good agree-
ment with the measured data, and in addition the absolute
values of the TDCS are fairly well converged with respect to
the size of the basis.

The method used here was used earlier to calculate the
asymmetry parameter and energy distribution for double
photoionization of helium [9].The calculation of the TDCS
poses a far bigger challenge, since convergence with respect
to basis size is more difficult to achieve. We sketch the
method only briefiy here, and with a slightly different em-
phasis from Ref. [9] (in particular, we pay attention to the
possibility of spurious contributions from single ionization).
We work in the velocity gauge, use atomic units, and ignore

spin (we factor out the spin). The Hamiltonian of the atom is

H, =p, /2+ p—~/2 —Z/ri Z/rz+ I—/riz, where p, and pp are2 2

the canonical momentum operators for the electrons, Z is the
atomic number of the atom, and r& and r2 are the electron
coordinates relative to the nucleus, with r&2= r&

—r2,
ri= lril rz= lrzl an«iz= Iridal ««i »d k. b«h«»I
momenta of the two electrons, with Ei=ki/2 and E—z

——kz/2
their final energies. The triply differential cross section for
the atom to absorb one photon, of frequency co, and for the
two electrons to emerge into solid angles dA& and dA2 is

d(7

dE, dBidA2
4m

ktkzl f(kt, kp)l .

Here the amplitude f(k, , kz) is

(2)

(E/ —H. )l~) = ~ (pi+ p~) l P;) (4)

The wave function 0'k k (ri, rz) describes two electrons

that emerge with momenta k& and k2 at asymptotically large

where e is the unit polarization vector for the light, and
where l%';) (normalized to unity) and l'It(k I„) (symmetrized

and normalized on the momentum scale) represent the initial
and final states of the atom and are eigenvectors of 0, with
eigenvalues E; and E&—=E;+ ~ =E&+E2, respectively. The
total cross section o. for double ionization is obtained by
integrating over the full solid angle of each electron, and
over E, from 0 to E&/2; since we symmetrized I'p„„), this1' 2

vector describes the same state as l'I't I„), and we must2' 1

restrict Ei to be smaller than E2 to avoid double counting.
For computational purposes it is convenient to first reexpress
the amplitude as the fIux formula

f(k, ,k, ) =(+'„, '@l(H.' —H. ) l~ ),

where
l
~) satisfies the inhomogeneous equation
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distances after scattering from each other and from the
nucleus, whereas the wave function ~(rt, rz) describes the
initially bound atom after it has absorbed one photon. While

,. (r, , rz) has both incoming- and outgoing-wave com-1' 2

ponents, ~(rt, rz) has only outgoing-wave components,
and when r, and rz are both large ~(rt, rz) has the asymp-
totic form

Z& and Z2 are constrained by the stationary phase condition
and may be chosen as [11—13] Z;=Z —6;, i=1,2 with
Z=2 and

(k; k))k;
k

LJ

where k;, =k; —k, , j4i, and k;i=lk;;I; we have

R/
i KR —i yln(2KR)e~(rt, rz)~I~K f(ki, kz) (5)

+( ) (r r ) Q2(2~)
—3eiki rt+ikz rz

where R g=—r, + rz is the hyperradius, K= gkt+ kz, and
y= (R/K)( —Z/r i —Z/r z+ 1/r iz). Using Green's theorem
the volume integral on the right-hand side of Eq. (3) can be
expressed as a surface integral over a hypersphere of very
large hyperradius R. The surface integral can be evaluated

upon inserting the asymptotic forms of 9'k k (rt, rz) and~(r, , rz) . Although ~(r, , rz) and (the incoming wave

part of) qi'„„(r, , rz) both contain components that describe

one free electron and one bound electron, it can be shown
that there is no contribution to the surface integral from the
region where n—= tan (ri /rz) is near 0 or m/2, i.e., where
the ratio «, /rz or rz/r, is very small. Hence there is no
contribution from single ionization. This remains true if the
asymptotic form of Eq. (5) is used over the entire hyper-
sphere, even though it is invalid in the region u=O or vr/2;

the "spurious" contribution from this region oscillates with
R and averages to zero. The only contribution to the surface
integral comes from the point of stationary phase of the in-

tegrand, which corresponds to the classical asymptotic mo-
tion r, =k, t and rz=kzt, where t=R/K (the "t—ime") is a
large parameter [10,11].Therefore we can tentatively replace
'P„„(rt,rz) by a trial wave function y„„(rt,rz) that sat-

isfies the correct boundary conditions in the directions of
classical asymptotic motion of two free electrons, provided
that the surface contribution from other directions oscillates
with R and averages to zero. Following Rudge and Seaton
[10] we choose gk k (r, , rz) to be a product of two one-1' 2

particle wave functions that describes the electrons moving
independently in the Coulomb potential —(Zi /r i)—(Zz/rz), where the velocity-dependent effective charges

J= 1,2

f(ki kz) =(xk, ,'k, l(Ef+ lY—Ha) I~) (8)

where W is the potential

r12

However, the right-hand side of Eq. (8) involves a volume
integral that is formally divergent, since W falls off asymp-
totically as a Coulomb potential except along the lines

t, r2=k2t, and r&2=ks2t, where R' vanishes. Never-
theless, since the integrand oscillates the integral can be
given meaning in the Lebesgue sense. Furthermore, it can be
shown that the surface contribution from single ionization,
from the region n=O or m/2, oscillates with R and averages
to zero. To evaluate the integral on the right-hand side of Eq.
(8) we represent the amplitude by a (divergent) series, and
analytically continue this representation by Pade summation
[14,15]. We obtain a series representation of f(k, , kz) by
expanding ~(rt, rz) on a two-electron basis consisting of

S l(ri)S„'I'(rz) Yii' (ri rz), where Yll' (r
couples spherical harmonics and where S„&(r) is a radial
Sturmian function that is a polynomial of degree

,—=n —I —I multiplied by r'e' "

X tFi(iy, ,1,—ik.,r, ik,"r;),—

where y&
= —Zi/k~. and where the prefactor +2 compensates

for not symmetrizing the trial wave function. Hence Eq. (3)
simplifies to

X X

FIG. 1. The coplanar triply differential cross section (TDCS) for equal energy sharing when 8t is fixed: (a) 8, = 180', E, = 10 eV; (b)
Ot =284', E, = 10 eV; and (c) 8t = 284', E,=5 eV. The measured data are from Schwarzkopf et al. [1,2]; the dashed and dotted lines are
from the velocity and length gauge versions, respectively, of the theory of Maulbetsch and Briggs [4]; and the solid line represents the

present results.
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FIG. 2. The coplanar TDCS for unequal energy sharing when

8& is fixed: 8&=180', E&=5 eV, and Ez=47.9 eU. The measured
data are from Schwarzkopf et al. [3]; the dashed and dotted lines
are from the velocity and length gauge versions, respectively, of the
theory of Maulbetsch and Briggs [3]; and the solid line represents
the present results.

We now show results of calculations for the TDCS for
one-photon ionization of ground-state helium. In our calcu-
lations we employed a very large basis, consisting of 34
radial functions S„t(r) per I (per electron) with 0~ I~5. The
"wave number" ~ was chosen to lie in the upper right quad-
rant of the complex tr plane (l tel = 1.2, argtc= 80') so as to
accommodate both outgoing-wave open channels and expo-
nentially decaying closed channels. In order to reduce round-
off error in matrix elements of the electron-electron repul-
sion, which can accumulate rapidly as the basis size
increases, we devised a numerical method (to be described
elsewhere) for accurately evaluating these matrix elements.
This method is especially suited to parallel computation, and
our calculation was carried out on the massively parallel
Connection Machine, CM-5. In the experiments of Schwarz-
kopf et al. the synchrotron light that was used was not com-
pletely linearly polarized. The light is characterized by a
Stokes parameter 5& such that the observed TDCS is a
weighted average of cross sections corresponding to polar-
izations along the x and y axes, with weights (1+S&)/2 and

(1—S,)/2, respectively t1]. The major polarization compo-
nent (at least 77—80%) is along the x axis. In Figs. 1 and 2
we show polar plots of the TDCS in the xy plane; the direc-
tion of k1 is fixed while the direction of k2 is allowed to vary
in the xy plane. We compare our results with the data from
the experiments and also with the results calculated, in the
length and velocity gauges, by Maulbetsch and Briggs [3,4].
We have rescaled all of the results so that they agree at the
maximum value of the TDCS. Let 8& and 82 be the angles
that k& and k2, respectively, make with the x axis. Figure 1
is for the case of equal energy. sharing, i.e., E& =Ez, with (a)
e&=180', E&=10 eV, S&=0.554; (b) 0&=284', E,=10 eV,
S,=0.564; and (c) 8& = 284, E &

= 5 eV, S,=0.595. Figure
2 is for the case of unequal energy sharing, i.e., E1=5 eV
and E2=47.9 eV, with 8&=180 and S&=0.99. The agree-
ment between all of the results is rather good; the only sig-
nificant discrepancy, where the theoretical results agree with
each other but lie well outside the error bars of the experi-
ment, is in the top lobe of Fig. 1(a). In Fig. 3 we show
absolute values of the TDCS for the same cases considered
in Figs. 1 and 2. The convergence of the absolute values with
respect to basis size is best when the two electrons emerge in
opposite, or nearly opposite, directions, and is worst when
the two electrons emerge in similar directions. On average,
the relative convergence error is very roughly 5%.

The shapes of the angular distributions in the case of
equal energy sharing have been commented on in detail by
Maulbetsch and Briggs [4], and so we discuss here only the
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FIG. 3. The absolute values, in atomic units, of the coplanar
TDCS for the four cases considered in Figs. 1 and 2.

case of unequal energy sharing. Focusing on the bottom fig-
ure of Fig. 3 we see that when one electron emerges rapidly
and the other slowly there are two sets peaks, one set at 0
and 360' and the other at 90' and 270 . The electron that
emerges rapidly absorbs most of the energy; this is the elec-
tron that absorbs the photon. The slow electron is concomit-
tantly either shaken off or knocked out (see, e.g. , Ref. [16]).
Prior to the absorption of the photon the two bound electrons
undergo "soft" collisions with each other in such a manner
as to maintain the equilibrium of the atom. Upon the swift
removal of one of the electrons, the absence of further soft
collisions may result in the shakeoff of the other (slow) elec-
tron. If this occurs, the slow electron is most likely to emerge
in the direction opposite the fast electron, owing to the re-
pulsion between electrons [17]. Thus the peaks at 0' and
360' may be interpreted as originating from shakeoff. On the
other hand, after absorbing the photon the fast electron may
undergo a "hard" binary collision with the other electron,
and, on kinematical grounds, if the latter electron is initially
at rest the two electrons will subsequently emerge with a
relative angle of either 90 or 270'. Thus the peaks at 90
and 270 may be interpreted as originating from knockout.
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