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Determination of highly excited states of diatomic-molecular ions using exact H2+-like orbitals
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A simple configuration-interaction method to calculate accurate electronic energies of two-electron molecu-

lar ions at intermediate internuclear distances is presented. The correlated basis functions are constructed from

exact H2 molecular orbitals, and include an explicit dependence on the interelectronic distance in order to
describe the cusp conditions of the Coulornbic field. An important simplification of the Hamiltonian matrix

elements is deduced. The method is applied to determine new potential curves of highly excited states of
He2

+ molecular ions dissociating into two excited fragments. The 'X state dissociating into He+(2p)+
He+(2P) presents a deep well located at R = 5.0 a.u. , where metastable states can survive. These states could
be of interest in excimer lasers.

PACS number(s): 31.15.+q, 31.20.Tz, 31.50.+w

The determination of accurate potential curves of di-
atomic molecular ions at intermediate and large internuclear
distances —typically more than 4 a.u.—is important and re-
mains an open problem in chemical physics. It is known that
only the simplest system, H2+, can be studied exactly,
within the Born-Oppenheimer approximation. This follows
from the separability of the Schrodinger equation in prolate
spheroidal coordinates [1].Much work has been devoted to
this model system in order to understand which are the im-
portant parameters governing the fine balance between elec-
tronic exchange and electronic polarization. They ultimately
explain the intermediate and long-range interactions of this
ion. Recent works of Scott, Dalgarno, and Morgan, and ref-
erences therein, illustrate these problems [2]. It is shown that
it is crucial to describe carefully the electronic polarization
due to the nuclei at the first step of the theoretical treatment
in order to reproduce correctly the electronic exchange at
intermediate and large distances, even for the ground state of
this ion.

The study of multielectron molecular ions is of interest.
The He2

+ molecular ion has a well in its potential curve for
the ground state, allowing trapped metastable states. It is
tempting to study highly excited states; for example, those
dissociating into two excited atoms, in order to see if some
electronic potential curves have a well by which excited
states are allowed to survive. One can speculate that these
states could be of interest in building excimer lasers with a
wavelength in the far uv range. To the best of our knowledge,
only a very few studies of these states have been made be-
fore (see below).

This problem is not easy. It is of major importance in
studying excited states to include the electronic polarization
carefully from the beginning. We have in addition the diffi-
cult task of describing the Coulombic interaction between
the electrons. The orbitals studied by Scott, Dalgarno, and
Morgan [2] include the true polarization, but it seems diffi-
cult to introduce the interelectronic correlation within this
approach. Also the determination of excited orbitals and the
treatment of their degeneracies are far from straightforward.
The usual methods of quantum chemistry are not well suited
at first sight. They neither take into account the correct po-

larization nor do they treat the important cusp conditions and
Kato's theorem [4] in a convenient way. To obtain reliable
results, it is necessary to perform a large configuration inter-
action (CI), or to optimize many variational parameters in a
sophisticated wave function in a James-Coolidge approach.
Indeed relatively few molecular ions have been studied with
these methods. Results are only available for the first excited
states, and are restricted more or less to internuclear dis-
tances of the covalent range.

Following a different approach, exact H2+ orbitals are
attractive as a starting point to study multielectron molecular
ions [5] (H2+ orbitals mean here more generally the exact
solutions of the two-center Coulombic field problem with
charges Z&, Z& located at points A,B separated by the dis-
tance R: "Hz+-like" orbitals [6]). Indeed this choice in-
cludes in a natural way the electronic polarization due to the
nuclei. Unfortunately they look to be inappropriate to de-
scribe molecular ions beyond H2+ at intermediate and large
internuclear separations, due to the well-known problem of
an incorrect atomic dissociation limit [7].

In the present work we want to show that the H2+-like
orbitals remain good candidates for describing the behavior
of molecular-ion potentials at intermediate and long-range
internuclear distances. The key to our approach lies in a
simple and accurate description of the electronic correlation
in order to restore the correct dissociation limit. To do so we
proceed in two steps. First, we introduce explicitly the inter-
electronic distance r &2 in the molecular wave function of the
ion, built with Hz+ orbitals; second, we perform a small CI
between these correlated basis states.

We derive an expression for the Hamiltonian matrix ele-
ments between functions written as the product 9";=4&A,
'P, = +~A. The result is quite general and will be very useful
in performing the CI. Setting the Laplacian V6=V, +V2
and the gradient V6= V, + V2, where the indices 1, 2, and 6
stand for the three coordinates of electrons 1, 2, and all the
(six) coordinates, respectively. The Hamiltonian operator H
is written in the nonrelativistic approximation, using atomic
units:

H= —V6/2+ Vt+ V2+ I/rt2,
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where V& is the potential acting upon electron k=1,2. The
matrix elements H;, are given by the expression

H;, = (4;A I

—V 6/2+ V, + V2+ 1/r, 2I 4', 0)

+ 4;0 ( V, + V~+ 1/r, 2) @,0 )
.

The strategy is to remove the term I= (4;AV64,"760) in
the above expression, as it involves a difficult integration on
all the space coordinates. To do so we rewrite I as

lomb repulsion. The simplest choice follows Hylleraas [8]:
A(r, 2)=1+0.5ri2. A more involved functional form for
Q(r, 2) could be chosen; some examples can be found in a
recent study of neutral diatomic molecules [9].But it was not
necessary here to do that, as the description of the correlation
will be enhanced subsequently by performing a small CI
between these correlated basis functions.

The present definitions of 4 and A take into account not
only the electronic polarization, but also insure the fulfill-
ment of the important cusp conditions of the molecular wave
function [4].This specific choice of ~Ii and fI leads to further
important simplifications. Finally the Hamiltonian matrix el-
ements can be written in a very simple form:

[V6(~I~;4,)+~Ii,V64i, —4,V6rIi;] V6A dr H;J = (4;4JA [1/ri2+ (E;+E~)/2]),

and twice perform integrations by part (first Green transfor-
mation). Taking into account the relation V6A =2AV60
+2V60 V60 results in the cancellation of some terms. Fi-
nally we find

+ (Vi+ Vq+ 1/ri2)4;C, A

Up to this point no particular choice is made for 4 and A.
The net gain in the above formula is that we now have the
term V60 V60 instead of V64,"V60. We shall see below
that 0 can be chosen quite generally as an analytical form
leading to a convenient expression for the dot product
V6A - V6A. Now we specify the function 0' =4A. Let the
function 4 stand for the electronic configuration, built on
H2 -like orbitals. Explicitly we take for 4 an antisymme-
trized function @=A(P„P„),@„being the H2 orbital's
exact solution of

( Vk/2+ &k) 0.=e.W. &k ZA /rkA ZB/rkB

k= 1,2.

In this equation Z&,Z& are the nuclear charges, located at
points A and B with separation R; rz„,rzz are the distances
of the electron k to A,B, respectively; and a„ is the elec-
tronic energy of H2+ at this internuclear distance. The con-
figuration wave function 4; is the solution of

( —V 6/2+ V, + V2)4=E;4 with eigenvalue E; = e„+e„.
As an example, the ground-state configuration Pi is (with
the usual united-atom notation)

4 i = Qi, (1)$i, (2)[n(1)P(2)—u(2)P(1)]/Q2.

The electronic spins are described by the function

[u(1)P(2) —n(2)P(1)]/+2 and need not be considered ex-
plicitly.

The function 0 is chosen in order to take into account the
major part of the interelectronic correlation due to the Cou-

reducing the present calculations involving explicitly corre-
lated wave functions to the familiar computations of quan-
tum chemistry using well-known bielectronic integrals.

In the past, interesting attempts have been made by Con-
roy to obtain solutions for molecular few-electron problems
also incorporating exact cusp conditions [10), and by Wilets,
Henley, and Martensson [11].In these references, an impor-
tant feature, in common with the present work, is the factor-
ization of the full wave function as a product W =SC, where
S is called the "shape function" and is related to the orbital
part, and C is an analytical function describing the correla™
tion of the electrons (here we have written %=4&A). Re-
sults for molecular systems containing up to four electrons
have been presented for the ground states. This suggests that
the extension of our approach to few-electron systems could
be feasible in principle. The simplification of the matrix el-
ements that we have deduced above via the Green transfor-
mation could be valuable in practical calculations on these
few-electron systems. Basically it involves only the factor
ization of the full wave function, which remains possible, as
shown by Conroy; see also a discussion on the Jastrow factor
in Wilets's paper.

An alternative way to extend the method to multielectron
systems is the introduction of an effective potential that af-
fects a special electron in a molecule. Following this ratio-
nale, we have already performed studies of alkali-metal
dimers like Na2, but have restricted them to a single-
configuration wave function in the covalent range [12].No
doubt that the present work will improve this previous ap-
proach for future work.

To check the accuracy of the present method we have
calculated the ground-state energy of the He2 + molecular
ion. For this system very accurate calculations exist up to
R=4.5 a.u. made by Yagisawa, Sato, and Watanabe [13],
using sophisticated James and Coolidge wave functions. For
larger internuclear distances, accurate determinations of the
potential curve were performed by Sato and Hara [14] and
Cohen and Bardsley [15], using respectively the full CI
method —introducing typically 100 configurations —and the
generalized valence-bond method. The first excited states
'Y,

g and 'P„have also been calculated with great accuracy
by Bishop and Cheung [16].The potential curve of the low-
est state has a well-known dip, and is the reason why long-



R2670 C. LE SECH

TABLE I. Electronic energies (a.u.) as a function of R for the X 'Xg
state of Hez +, including the nuclear repulsion 4/R, determined using
different approaches (see text).

R (a.u.)

Present
results

Results from Results from Results from
Ref. [13] Ref. [14] Ref. [15]

0.5
1.0
1.5
2.0
2.5
3.0
3.5

4.5
5.0
6.0
7.0
8.0
9.0

10.0

—1.9298
—3.5840
—3.6590
—3.6225
—3.6345
—3.6750
—3.7172
—3.7516
—3.7790
—3.8017
—3.8345
—3.8579
—3.8753
—3.8886
—3.8990

—1.9486
—3.5997
—3.6725
—3.6302
—3.6370
—3.6755
—3.7118
—3.7399
—3.7573

—1.9405
—3.5909
—3.6645
—3.6253

—3.6724
—3.7130
—3.7470
—3.7743
—3.7970

—3.8965

—3.597 02
—3.670 62
—3.629 37
—3.637 29
—3.676 74
—3.717 55
—3.751 41
—3.778 54
—3.800 48
—3.833 55

—3.875 07

—3.900 03

lived metastable states can exist (D, =1.6 eV). More re-
cently this state has been studied by Nicolaides [3], who
speculates on the interest in the ability of the trapped meta-
stable states in the ground state to store energy.

Table I reports the present results obtained for the ground

Xg state, calculated with only a two configuratio-n state-
wave function, without any variational parameter:
W;=[c&4(1so. )+c2@(2po. )]Q. They are compared
with the best values available from the authors quoted above.
One can notice that for internuclear distances R&3.0 a.u. ,
our results are slightly above those of Yagisawa, Sato, and
Watanabe [13]and Sato and Hara [14],but for R)3 a.u. our
values lie below, and lead to the expected 1/R behavior at
larger distances. In the range 3.5 a.u.(R(8.0 a.u. our values
are also below those obtained by Cohen and Bardsley [15],
which are the best results for large distances. The slight ap-
parent discrepancy occurring for R = 10.0 a.u. our result is
E = —3.8990 a.u. instead of —3.90003 a.u. given by Cohen
et al.—is not due to our method itself, but has to be attrib-
uted to the present numerical accuracy for integrations,
which degrades a little as R increases beyond, typically, 8.0
a.u. for low-lying states, especially for the ground state. The
reason is related to the fact that for large values of R, exact
molecular orbitals behave like very rapidly decreasing expo-
nential functions in order to reproduce the nearly atomic be-
havior of the electrons on each nucleus. We have checked
that the present numerical accuracy is equal to or is better
than 0.001 a.u. for the ground state and 0.0001 a.u. for the
excited states, which are discussed below, for all internuclear
distances. The numerical accuracy can be improved by using
more points in the Gauss-Legendre integration than has been
done in the present work —we have taken at most only 16
Gaussian points for each quadrature in the present work or
taking the more suitable Gauss-Laguerre integration for large
values of R, if greater accuracy is really needed.

The previous discussion demonstrates the validity of our
approach, and proves clearly the benefit of introducing from
the very beginning the theoretical expression for the correct
electronic polarization and the cusp conditions. In the usual

TABLE II. Comparison of the electronic energies (a.u.) for different internuclear
distances R for the gg states of He2 + dissociating the He+(2p)+He+(2p) state (1)
and the He+(2s)+He+(2p) state (2), including 4/R, with the results of Sato and

Hara [14] (see text).

State (1) 1 Xg[AI(10g 1o )]
Present Sato and

R (a.u.) results Hara [14]
State (2)

Present results

2 g [AI(1o. ,lo.„)]
Sato and

Hara [14]

3.0 —0.7090

3.5 —0.8740

4.0 —0.9540

4.5 —0.9871

5.0 —0.9940

10.0 —0.9267

—0.7313
—0.8709
—0.9467
—0.9793
—0.9879
—0.9284

—0.6057
—0.7418
—0.8189

—0.8805
—0.9101

—0.6086
—0.7251
—0.7994
—0.8434
—0.8673
—0.9086

approaches (CI, or variational methods) many parameters or
configurations are necessary to reproduce the electronic po-
larizability and the regular singularities of the Coulombic
field, resulting in a less efficient approach, especially at in-

termediate and large internuclear distances. This is particu-
larly true for excited states of molecules bearing electric
charges where polarization is of the greatest importance. Fi-
nally let us note that taking exactly into account the
molecular-orbital polarization ensures the correct description
of the Stark effect of the hydrogenoid ion He+(n = 2) in the
electric field of the other ion at large internuclear separations.
We have calculated several other excited states, and could
draw for them similar conclusions; thus we do not report
these results here, as they are already accurately known.

Furthermore we have been motivated to apply our method
to determine highly excited states. It is tempting to study
those states dissociating into He (n=2)+He+(n=2).
They appear to be of interest if their behavior can be found to
be similar to that of the ground state. We have considered the
molecular configurations (2sog), (3po„), (3dog), and

(4fo„), all gg st.ates dissociating into He+(n=2). To the
best of our knowledge, few calculations exist on such highly
excited states. Sato and Hara [14] have studied some of
these states, which they denote as 1 Xg[AI(1 o.z, lo „)]

2 ~$ [AI(1o-,lo.„)]. Comparing our values for
the states dissociating into He+(2po) + He+ (2po) and
He+(2s)+He+(2po), we have been able to assign the
former to the 1 'Xg[AI(la. g, lcr„)] and the latter to the
2 Xg[AI(1 og, 1o„)].We compare in Table II the numerical
values obtained by our method to those calculated by Sato
and Hara [14] for these two states. One can check that all the
energy values are close to each other for different internu-
clear distances. As an example, for R=5.O a.u. the energy's
values differ by 6X10 a.u. The previous authors did not
notice the well in the state dissociating into He+(2p„)+
He+(2po) that we present below, as they did not take into
account the 4/R repulsion term. Let us remember that the
present wave function is compact and simple, and could be
useful for further calculations on the dynamical properties of
these states.

We display in Figs. 1 and 2 the electronic energy values of
the states dissociating He+(2po)+He+(2po), He (2s)+
He+(2po), He+(2s)+He+(2s), and He+(2p)+He+(3p).
One can notice that the state dissociating He+(2po)+
He (2po), which is a mixture of covalent and ionic states
(3drrs), (4fo„), has a potential well at R=5.0 a.u. , of
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FIG. 1.The two lowest energies of the molecular configurations:

(2sas), (3po.„), (3dos), and (4fa„), all. 'X states of
He2

+ dissociating into He+(n = 2). Curves A and B represent the
thresholds of two continua corresponding to He (1s)+He2++e
and He+(2s;2p)+ He ++ e states.

depth D, = 1.84 eV. Figure 2 is an enlargement of the well of
the state dissociating into He+(2po)+He (2po). The full
triangles are the values taken from Sato and Hara [14] for
corresponding states. We also show the well occurring at
R =6.0 a.u. with depth D,'= 0.72 eV for the 'Xg state disso-
ciating He+(2po)+He+(3po). It has been determined in a
similar way. The height of the barrier of the state dissociating
He+ (2po) + He+ (2po)D, = 1.84 eV precludes the decay
by rapid tunneling. As this state is well separated
from the He+(1s)+He +e and He+(2s;2p)+He +e
continua —and assuming it can be populated —this excimer
state could be a good candidate for decaying significantly via
radiative transitions to the repulsive ungerade states that are
necessarily below the He+(1s)+He + limit, typically emit-
ting photons of 30 eV.

In the present work we have shown that it is important to
include in the wave function the correct electronic polariza-
tion and cusp conditions in order to describe in a simple and

FIG. 2. Details of the potential well of the 'X states dissociat-
ing into He+(2po)+He+(2po) and He+(2po)+He+(3po), lo-
cated respectively at R=5 and 6 a.u. Full triangles, values of the
states 1 'Xg[AI(log, la.„)] and 2 'X [gAI(1 rtelo„)] ta. ken from
Sato and Hara [14] adding 4/R.

efficient way the molecular ions at intermediate internuclear
distances. A convenient description of the interelectronic in-
teractions can restore the correct atomic-state dissociation
limits. Highly excited states, where polarization becomes
very crucial, can be studied easily following this approach.
We have illustrated this point by calculating states dissociat-
ing into two excited He+(n = 2) ions. The wave function that
we have considered here is only a two-state wave function
and contains no variational parameters. The validity of the
present approach for studying highly excited states is con-
firmed by comparison with other theoretical determinations
of such states. We observe that in the range of internuclear
distances 3.0 a.u. (R(8.0 a.u. our energy value determina-
tion can be compared favorably to the best one presently
available, even for the ground state. We have found that the
'Xg state of the molecular ion Hez + dissociating into

He" (2po)+He+(2po) has a deep potential well located at
5.0 a.u. , authorizing metastable states that could be of inter-
est in excimer lasers.
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