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The concept of intrinsic and operational observables in quantum mechanics is introduced. In any realistic
description of a quantum measurement that includes a macroscopic detecting device, it is possible to construct
from the statistics of the recorded raw data a set of operational quantities that correspond to the intrinsic
quantum-mechanical observable. This general approach is illustrated by the example of an operational mea-

surement of the position and the momentum of a particle, as well as by an analysis of the operational detection
of the phase of an optical field. For the latter we identify the intrinsic phase operator and report its explicit
foim.

PACS number(s): 03.65.Bz, 42.50.Dv

The quantum measurement theory provides for a concep-
tual framework in which one can understand the features of
the quantum world in terms of measurable or observable
quantities. Since the birth of quantum physics, the theory of
measurement has proved to be controversial, both in its
physical and philosophical aspects. These controversies have
generated long lasting debates about the relation of the quan-
tum formalism to the quantities that are actually measured by
macroscopic devices used in real experiments [1].

It is the purpose of this Rapid Communication to present
a general, down-to-earth approach, connecting in a natural

way the standard formalism of quantum mechanics with the
statistical raw data recorded in an experiment. In this ap-
proach an operational link is established and discussed be-
tween the quantum observables and the macroscopic devices
used to detect and measure quantum phenomena. We argue
that, for each measurement, it is possible to construct from
the statistics of the recorded raw data a set of operational
quantities that correspond to the quantum-mechanical ob-
servables in a certain way. Here, the "raw data" do not refer
to the unprocessed laboratory records but rather to the
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"positive-operator-valued-measure" or POVM that is the
mathematical representation of the statistical information
gathered. In one way of looking at quantum measurements
[2] the emphasis is on such POVMs. For us, however, the
underlying intrinsic observable is the heart of the matter.

We illustrate our approach to operational measurements
using two different examples. The first example deals with a
model measurement of the position and the momentum of a
particle, and the second example is devoted to a real homo-
dyne detection of the phase of optical signals.

We start with a general description of our approach. For
a quantum system described by a density operator p, statis-
tical properties of an arbitrary observable A can be evaluated
with the aid, of the moment-generating function

Z(X) = Tr(pexp(L4))

in accordance with

d"
(2)

Thus the generating function Z(X) contains all the relevant
statistical information about the system in state p, but it
makes no reference to the apparatus employed in an actual
measurement of the observable A and its moments. To begin
with, Z(X) is a purely theoretical quantity; it is what would
be measured in an ideal noise-free measurement.
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There are, however, numerous examples in the literature
of measurements that require realistic detecting devices. To
name just a few, we mention the quantum-mechanical mod-
els of the "pointer" introduced by von Neumann [3] and
Arthurs and Kelly [4], their extension and refinement by
Lamb [5], the operational approach to the Heisenberg micro-
scope [6], the quantum Zeno effect [7], the operational
phase-space in quantum mechanics [8], or the role of the
apparatus in the decoherence theory [9].

A realistic experiment necessarily involves additional de-
grees of freedom that eventually enable the experimenter to
convert the laboratory records into a probability density, or
rather a propensity density Pr(a) of a classical variable a
[10].For this purpose an analysis of the experimental setup
is required, best perhaps in the spirit of Lamb s operational-
ism [5]. The propensity thus found determines classical av-

erages as exemplified by

a"= da a"Pr(a) .

Pr(a) = k Trip, &~(a)}, (4)

where the coefficient k is chosen in such a way that
fda Pr(a)=1. In view of this linear relation, the require-
ment that

A

hold for all p specifies a unique set of operators A~~,

A~~.
"~ = k da a",W(a),

for the given filter M~

Inasmuch as the experimenter is guided by classical intu-
ition when designing the apparatus, we shaH take for granted

A

that A =A~ holds and that the quantum expectation value

(A") agrees with the classical average a" in the correspon-
dence limit. In other words, a good measurement is charac-
terized by the property that the classical limits [11]of A"
and A~ are the same.

We shall employ the following terminology. We call A an

intrinsic quantum observable (IQO), whereas each A~~.
"~ is an

operational quantum observable (OQO). Thus, from the
point of view that we wish to advance, the measuring device

ineffectively

replaces the powers of IQOs by a set of OQOs.
Rather than determining the generating function Z(k) of Eq.
(1), which refers to the IQO of interest, the experimental
results are compactly summarized in the filter-dependent
generating function

p
n

Z~(k)= g —tr(pA~~"~}= da exp(ka)Pr(a) . (7)fl! Jn=0

The comparison with

In the typical situations that we have in mind, the net effect
of the measuring device can be described by an a-dependent
filter .W, represented by a positive operator W(a), such that

Z(~) = dA (A I plA)exp(~A)

shows that the probability distribution that is associated with
the spectral decomposition of A is effectively replaced by the
propensity da Pr(a), which refers to the filter W of the mea-
suring device. Note that the quantity kda. W~(a) is the
POVM of the experiment in question. From our point of
view, this POVM is not interesting in itself; the filter func-
tion is merely necessary for the identification of the OQOs,
but the IQOs remain the objects of primary interest

There is then the obvious question: What is the relation
between the OQOs and the powers of the IQO'? Two cases
must be distinguished. First, we have the standard situation
in which the IQO is known, so that one just needs to identify
the OQOs corresponding to the filter of the actual measure-
ment. The noise introduced in the course of determining the
propensity density Pr(a) can then be accounted for explic-
itly. In this way, Z(k) can possibly be expressed in terms of
Z@k) whereafter the propensity has served its purpose. We
shall illustrate this standard case at a model of position and
momentum measurements with respect to a reference pointer
in thermal equilibrium.

In the second case one deals with the unusual situation
that the quantum properties of the IQO are largely unknown,
although the IQO has a well known classical analog. The
guidance provided by this classical analog suggests one or
more measurement schemes, each of which specifies a set of
OQOs. While it is clear that the looked-for IQO cannot be
identified uniquely in such an operational approach, the
choice A =Apl is certainly the most natural one for the IQO
associated with the OQOs of one experimental setup. Once
this IQO is identified, its Z(li. ) is available in principle and
can possibly be related to the generating function Z~ (k)
that is determined experimentally. This second case is exem-
plified by the recent measurements of the phase properties of
optical fields by Noh, Fougeres, and Mandel (NFM) [12].
Here the filter W accounts for the beam splitters, mirrors, and

photon counters used in the homodyne detection. We shall
treat this example and identify the intrinsic phase operator
that corresponds most naturally to the OQOs defined by the
NFM apparatus.

As a rule, the algebraic properties of the A~~~ operators

are quite different from those of the powers of A. In particu-
lar, a factorization is typically impossible, so that, for in-

stance, A~l does not equal (A~l) . The operational spread

Ba =(a —a )'t = ((Ag. ) —(Ag- ) )'t is then different from

the quantum uncertainty dA = ((A ) —(A) )" . Indeed,
since the operational spread Ba may refer to expectation val-
ues of two different operators, its physical significance could
be rather murky, in contrast to the quantum uncertainty ~
with its familiar physical meaning. Further, it is clear that the
Heisenberg uncertainty relation obeyed by the product~ b,B for two IQOs need not be equally valid for the prod-
uct Ba 6'b of the corresponding operational spreads.

As an illustration of the general scheme we now turn to
operational measurements of the position and momentum of
a particle in one dimension. In particular, we consider a de-
vice that determines the overlap of the density operator p of
the system with the density operator of a reference oscillator.
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W(q, p) = exp(ipg —iqP) W(0,0) exp(iqP —ipg),

where

/ i
(Q +P 1)/2—

n

(9)

(10)

This reference oscillator is supposed to be in a state of ther-
mal equilibrium with a temperature corresponding to n os-
cillator quanta. The oscillator also supplies natural units for
distances and momenta. Therefore, we shall take as the IQOs
the dimensionless position and momentum operators Q and
P that refer to these oscillator units. Now, in order to probe
the system, the reference oscillator is displaced both in posi-
tion and in momentum by the amounts q and p, respectively.
With these classical variables, the filter function is

As an illustration of the second case we now turn to the
operational phase difference of two monochromatic electro-
magnetic waves determined by measuring its sine and cosine
simultaneously in a fittingly designed interferometer. Such a
device has been used in the recent NFM experiments [12]for
a measurement of the quantum phase properties of a low-
intensity laser, relative to a high intensity classical field (lo-
cal oscillator). The experimental data are summarized in the
so-called "phase distribution, "which is nothing but the pro-
pensity density Pr(y) for the classical phase variable q& that
NFM associate operationally with the phase properties of the
probe field.

By construction, this propensity is periodic, Pr(q)
=Pr(p+2m), and we normalize it such that

dq Pr(q&) =1
a (2m)

(16)

is the density operator of the reference oscillator when it is at
rest and located at the origin.

The propensity Pr(q, p)=k(W(q, p)) is normalized ac-
cording to fdq dp Pr(q, p) = 1. The generating function for
the OQOs, for which

holds, where the integration covers any q interval of
length 2m. The classical average of a periodic function

g(q&) =g(q&+2m) is then given by

Z~ (X,p) = dq dp exp(iraq —i pp)Pr(q, p) (11)
g(v)= d9 g(v)Pr(9).

3 (2~)
(17)

is a convenient choice here, is then given by

(13)

where 0„ is the nth Hermite polynomial. An analogous
equation holds for P~ . These relations can be inverted in
order to express the powers of Q and P in terms of the
OQOs whose expectation values are measured directly, as
exemplified by

g —g(i) (14)

and so forth, and likewise for P". An immediate conse-
quence is the analog of Heisenberg's uncertainty relation for
the operational spreads, viz [13]

Z~ (X,p) = (exp(ikg —ipP)) exp[ —', (2n+ -1)(X + p, )] .

(12)

The first factor can be regarded as a generating function
Z(k, p, ) for expectation values of the intrinsic observables

Q and P, and the second factor accounts for the noise that is
unavoidably introduced during the measurement.

With the generating function Z~ (X,p) at hand we can
proceed to identify the operational observables. Upon ex-
panding Z~ ()i. ,p, ) in powers of X and p„, the OQOs can be
read off in accordance with (5). For example, for those
OQOs that correspond to powers of q only, this produces

exp(in q&) = (E(g-))

for n = 0,~ 1,~ 2, . . . . The reality of the propensity density

Pr(y) implies that E~~,
") is the adjoint of E~~"), and

E~ = 1 is an immediate consequence of the normalization"(o)—

(16).
The members of the phasor basis are the basic OQOs

because all other ones are weighted sums of these fundamen-
tal OQOs. Indeed, a Fourier decomposition,

f
G~ = g E~(") exp( —in')g(&p),

g (2~)277
(19)

establishes the quantum counterpart G~ to any periodic
function g(y). This relation enables one to map classical
trigonometry onto the corresponding quantum trigonometry
associated with the NFM experiment. As an example we
have for the cosine and the (cosine) functions these opera-
tional definitions:

This number equals the quantum expectation value (G~) of
A

g
A

the corresponding operational operator G~ (b,b), which is
a function of b~ and b, the creation and annihilation opera-
tors for photons in the probe field. It is obvious that any
G~ of this kind is an OQO of the NFM experiment with the
filter W denoting the homodyne detection scheme used.

In the terminology of Ref. [14], these OQOs are operators
of the phase phasors. In—analogy to (5), the phasor basis
E~~.

"~ is thus identified by the defining property

Bqkp~n+ 1,

where the equal sign holds only if AQ = Ap= 1/Q2. Owing
to the noise of the measuring device, the lower limit in (15)
is at least twice as large as that for the product of the intrinsic

A A

uncertainties, 6Q 3,P~ —,.

C( ) (E( )+E(—
))

C(&) &(E(&)+2E(o)+E(—&)) (20)

In fact, using relation (19) one can infer the entire quantum
trigonometry from the operational phasors. Note that, due to
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the operational character of these cosine operators, they dif-
fer considerably from the Susskind-Glogower operators [15],
which are intrinsic in character.

The NFM experiment has been analyzed in two different,
and largely independent, ways. One analysis [16,17] found
that the propensity density Pr(tp) is given by

f' oo

Pr(tp) =
2 dI(PlplP), (21)

where p is the density operator of the photon state of the
probe field and ~P) is a normalized eigenstate of b. Here,
P= QIexp(iq&) relates the eigenvalue P to the phase variable
q& and the intensity I. In the jargon of quantum optics [18],
Pr(q&) is the radially integrated Q function of p, and ~P) is a
coherent state or Glauber state.

The other analysis [19]has identified the NFM phasors in
normally ordered form, compactly presented as [20]

because 4 is unknown. It can even be argued [14] that a
unique phase operator does not exist at all. There is a
plethora of acceptable definitions that are all equally good on
general grounds. Nevertheless, the NFM experiment can be
analyzed, of course, and the phasor basis (23) has been iden-
tified as the OQOs.

From this basis one can construct an operational phase
operator @sr. We use relation (19) to calculate the weight
factors of the phasors; these are just the Fourier components
of a periodic function that is equal to the classical phase
variable q& in an interval tpo(tp& q&o+27r [14].The result is

@~——(tpo+ m)E~ + g —(e '" oE " —e'""oE "
) . (24)

n

It is that Hermitian phase operator which is most naturally
associated with the NFM phase propensity, inasmuch as

(n/2)!
Estr) = M(n/'. 2,n+ 1,—btb): b"

n! (22)
I (PO+27T

pp
dV 9Pr(V) (25)

.
( )

(btb+n/2)! .
E~~"~= „„b"for n=0, 1,2, . . . ;(b"b+n)!

(23)

for n=0, 1,2, . . . , where M denotes the conQuent hypergeo-
metric function, and the pair of colons indicates normal or-
dering of the operators b~ and b; that is, all b~'s to the left of
all b's. The connection between (21) and (22) is implicitly
contained in a 1974 paper by Paul [21].A particularly con-
venient form of the basic phasors is [20,21]

P

equates the quantum expectation value of 4~ to the classical
average of the phase variable y. The specific choice made
for the value of the constant yo is without physical signifi-
cance, of course, so that the NFM experiment does not lead
to one single phase operator but rather to a family of closely
related operators labeled by the classical parameter po. The
spectrum of 4~ consists of all y values in said range. The

eigenstates of 4~, however, are unknown as yet and remain
to be found.

it is perhaps best suited for the construction of the OQOs
associated with a classical observable g(tp).

The general procedure for finding the relations between
the operationally defined phasors and the intrinsic phase op-
erator 4 is not applicable to the NFM experiment, simply
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