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Time profile of harmonics generated by a single atom in a strong electromagnetic field
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We show that the time profile of the harmonics emitted by a single atom exposed to a strong electromagnetic
field may be obtained through a wavelet or a Gabor analysis of the acceleration of the atomic dipole. This
analysis is extremely sensitive to the details of the dynamics and sheds some light on the competition between
the atomic excitation or ionization processes and photon emission. For illustration we study the interaction of

atomic hydrogen with an intense laser pulse.

PACS number(s): 32.80.Rm, 42.50.Hz

It is now well established that an atom exposed to an
intense laser pulse can emit high order harmonics of the driv-
ing force. At high field intensity and for a wide range of
frequencies, all harmonic spectra share the same qualitative
behavior characterized by the existence of a plateau. Until
now, the main effort has focused on the study of the overall
behavior of the harmonics spectra at high intensity and low
frequency, where most of the experiments have been per-
formed. It has been surmised by means of a semiclassical
model that in this regime, the highest harmonics of the pla-
teau are produced by electrons which, after tunneling out,
return to the vicinity of the ion with a very high kinetic
energy [1].

So far, however, no attempt has been made to analyze
systematically the dynamical aspects of the harmonic emis-
sion process [2]. It is indeed natural to wonder when the
emission of a given harmonic occurs during the interaction
of the atom with the pulse and whether or not there is a time
interval (which corresponds to some intensity range) in
which a given harmonic is preferably emitted. The answer to
these questions may be obtained by means of a so-called
time-frequency analysis (either Gabor’s or wavelet) of the
acceleration of the atomic dipole. As we show, this type of
analysis reveals itself to be extremely useful; it provides new
information not only about the fundamental mechanism that
leads to harmonic generation, but also about the competition
between the process of photon emission and the process of
excitation or ionization.

In this paper, we study the time profile of the harmonics
emitted by atomic hydrogen exposed to a strong laser pulse.
For the sake of illustration, we consider two cases corre-
sponding to two distinct physical situations. In the first case,
which corresponds to a low frequency regime, hydrogen ini-
tially in its ground state interacts with a strong laser field
whose frequency is such that five photons are necessary to
ionize the atom. In the second case, hydrogen initially in the
2s state interacts with the same laser field. Hence, two pho-
tons are enough to ionize the atom; this corresponds to a
somewhat higher frequency regime.

In order to study the interactions of atomic hydrogen with
an intense laser pulse, we solve numerically the Schrodinger
equation:
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i o W(r,t)=[Hy+A(t) -p]l¥(r,1), 1

where H, is the atomic Hamiltonian and A(¢) the vector
potential associated with the field:

A()=A,f(t)sin(wt)e, ; 2

Ay is the amplitude of the potential, e, is the unit vector
along the z axis, w is the frequency of the laser field, and
f(2) is a slowly varying envelope assumed here to be Gauss-
ian. The numerical procedure is the following: we first ex-
pand the wave function W(r,?) of the system in a basis of
Coulomb-Sturmian functions [3] in the radial coordinate and
spherical harmonics in the angular coordinates. As a result,
we obtain a set of coupled first order differential equations in
time for the expansion coefficients. These equations are then
solved by means of a fully implicit Runge-Kutta method of
order 7 [4]. Knowing the wave function W(r,?), it is then a
simple matter to evaluate the acceleration a(¢) of the atomic
dipole d(t) along the z axis by means of Ehrenfest’s theo-
rem. The power spectrum is obtained by calculating the
modulus square of the Fourier transform a(w) of a(#).

By contrast to this standard Fourier method, a time-
frequency analysis provides information about the time lo-
calization of a given frequency. This type of analysis consists
of introducing a time-frequency transform, which depends
on two adjustable parameters denoted by a and S; a refers
to the frequency of the transform and S to its position in the
signal. A general time-frequency transform has the following
form:

a())—i(a)= | TogDatar, ®

where T ,4(t) is a window function oscillating at a frequency
depending on « and centered around time B3;7 ,5(¢) denotes
the complex conjugate of T',4(?).

Among all time-frequency methods, two particular ones
turn out to be very efficient in the present case: Gabor’s
transform and the wavelet transform [5]. The main difference
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between the two is in the way the parameter « is used (in
both cases, B is simply a time translation). In the Gabor
analysis,

Top(t)=€"*G (1= p), 4)

where G(¢) is a window function which, in the present case,
. —2pg?
is a Gaussian e /290, 1/a defines the frequency of the
modulation, whereas the width of the analyzing function
o and, therefore, the frequency width Aw are fixed. In the

case of a wavelet analysis,

1 (-8
Top(t)= \/—ZW(——-—> ®)

where W(¢) is a windowed oscillating function. The action
of @ on T,4(t) is a dilation when @>1 or a contraction
when a<{1 so that the relative bandwidth Aw/w of T ,p is
fixed. In other words, the shape of the analyzing function
stays unchanged—it is simply spread out or squeezed. A
usual choice for the oscillating function W(t¢) is (Morlet’s
wavelet) [6]:

W(t) — eiwote —t2/2, (6)

where w is a fixed parameter.

Basically, the time-frequency transform is significantly
nonzero at a given time, when, at that time, the signal oscil-
lates at a frequency close to the frequency of the analyzing
function T,g(¢). So the time-frequency analysis could be
viewed as a filter, both in time and in frequency. Following
the above discussion, we expect the wavelet analysis to be
more adapted than Gabor analysis when the signal contains
very high frequencies that appear during a time interval
which is short as compared to the driving field period.

Let us now consider the interaction of atomic hydrogen
initially in its ground state, with an intense laser pulse whose
frequency is 0.118 in atomic units (3.21 eV) and the dura-
tion, i.e., its full width at half maximum (FWHM) 20 optical
cycles. For a wide range of peak laser intensities /,, the
acceleration of the atomic dipole (not reproduced here) has a
typical behavior as a function of time. It exhibits two distinct
regions of fast oscillations: at the beginning of the interac-
tion, well before the pulse has reached its maximum, and at
the end of the interaction if the atom is not fully ionized. In
fact, this second region of oscillations at the end of the in-
teraction with the pulse occurs when the atom is left in a
superposition of atomic states. Indeed, in the absence of a
decay mechanism (in the present case, the coupling with the
vacuum field), the atomic dipole keeps oscillating at frequen-
cies depending on the populated atomic states. On the other
hand, the fast oscillations of the atomic dipole at the begin-
ning of the interaction with the pulse are at the origin of the
harmonic generation. In Fig. 1, we show the harmonic spec-
tra for two peak laser intensities Io: 2X 10 and 2X10%
W/cm?. We see that except for the first harmonic (the Ray-
leigh component), harmonics of low order are more pro-
nounced in the lowest peak intensity case (210
W/cm?). The situation is different for the harmonics of high
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FIG. 1. Spectrum of harmonics produced by atomic hydrogen
initially in its ground state and exposed to a laser pulse of frequency
®=0.118 a.u. The pulse is Gaussian and has a FWHM of 20 optical
cycles. Two peak laser intensities are considered: B, I;=2X 10"
W/cm?; A, Iy=2X10" W/cm>.

order (11 and 13, corresponding to a photon energy of 35 and
42 eV, respectively) which are more important when the peak
intensity is the highest.

Let us examine the corresponding time profile [given by
a(a,pB), see Eq. (3)] of the harmonics as deduced from a
Gabor time-frequency analysis. We see in Figs. 2(a) and 2(b)
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FIG. 2. Time profile [given by the coefficient a(«,B)] of the
odd harmonics (1-9) for the same cases as in Fig. 1. (a)
I,=2x10" W/cm? and (b) I,=2X10'° W/cm>.
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11th harmonic emitted by atomic hydrogen initially in its ground 0.0005 £ B
state and exposed to a Gaussian pulse of I,=2X10" W/cm?, 3 ]

FWHM=20 optical cycles, and laser frequency w=0.118 a.u.

that high-order harmonics are emitted during a short time
interval which moves toward the beginning of the pulse, well
before its maximum when the peak laser intensity increases.
It is interesting to note that recent experimental data in a
lower frequency regime show the same trend [7]. In fact, we
have checked that the emission process stops when most of
the population is transferred from the ground state toward
excited states (the atom does not need to be ionized). In other
words, the time localization of the emission is associated
with a strong space localization, as expected, since it is only
close to the nucleus that the electron being accelerated is
likely to emit light. In addition, it is clear from Fig. 2 that in
both cases, each harmonic is emitted at a given time corre-
sponding to a given intensity. The possible existence of a
characteristic threshold intensity, associated with the emis-
sion of each harmonic, will be discussed in detail elsewhere.

Another interesting point is that as their order increases,
the harmonics are emitted during shorter time intervals. For
instance, when the peak field intensity is 2X 10 W/cm?[
see Fig. 2(b)], the fifth harmonic is emitted within roughly
800 a.u. (=~19 fs), while the seventh lasts roughly 600 a.u.
(=~14.5 fs). If confirmed, this tendency indicates that the
linewidth of higher harmonics should broaden with their or-
der. This point will be also addressed in a forthcoming paper.

In order to follow the harmonic emission on a finer time
scale, one has to use a wavelet analysis instead of Gabor’s
[8]. The results of such analysis are shown in Fig. 3, where
the time profile of the 11th harmonic is given for the same
pulse as in Fig. 2(b). It clearly appears that during about 450
a.u. (= 11 fs), a train of subfemtosecond pulses of high
frequency light (=35 eV) is emitted. It is interesting to ob-
serve that the emission of these pulses is periodic with fre-
quency 2w.

Let us now consider the interaction of a laser pulse with
atomic hydrogen initially in its metastable state 2s. The
pulse has a duration of 20 optical cycles, its frequency is
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FIG. 4. (a) Time profile of the third harmonic emitted by atomic
hydrogen initially in its 2s state and exposed to a Gaussian pulse of
I,=2%x10" W/cm?, FWHM=20 optical cycles, and laser fre-
quency w=0.118 a.u. (b) 1s population (i.e., the projection of the
full wave function on the bare 1s state of atomic hydrogen) as a
function of time in atomic units for the same case as in (a). The
thick line represents the time average of the 1s population.

0.118 a.u. (3.21 eV), and its peak intensity is 2% 10
W/cm?. At this intensity, ionization is significantly sup-
pressed because the system is coherently excited into a linear
superposition of various Rydberg states (mainly 8p, 9p, and
10p) which is stable against ionization [9]. As a result, the
atomic dipole does not vanish at the end of the interaction
with the pulse.

In addition to the odd harmonics, the spectrum contains in
this case a large amount of hyper-Raman lines [10] whose
origins may be traced back without particular problems. We
refer to [11] for a discussion and, instead, focus our attention
here on the time profile (Gabor analysis) of the third har-
monic, which has a typical behavior. The results are pre-
sented in Fig. 4(a). By contrast to the previous cases, it is
clear that the dynamics of harmonic emission are more com-
plex as a consequence of the excitation of many atomic
states. In particular, we note that the maximum present in
Fig. 4(a) around 1300 a.u. of time is actually due to an
atomic frequency which is quasidegenerate with 3w and
present during the free evolution of the dipole after the in-
teraction with the pulse. More physical insight is gained by
looking at the population dynamics; in Fig. 4(b), we show
the time evolution of the 1s population (i.e., the projection of
the total wave function on the bare atomic state). We observe
that this 1s population is only significant during two distinct
time intervals: first, around 20 optical periods (~1000 a.u.)
before the maximum of the pulse, and again during the sec-
ond part of the pulse. A more detailed analysis indicates that
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the transfer of population towards the 1s state occurs con-
comitantly with a significant exchange of population be-
tween the 2s and the excited p states.

The fast oscillations (at 2w) of the 1s population indicate
that the total wave function oscillates very rapidly in a region
of space very close to the nucleus. In Fig. 4(b), we also show
the time average of the 1s population. The striking similarity
that exists between this curve and the time profile of the third
harmonic [see Fig. 4(a)] clearly demonstrates that the emis-
sion occurs only when the electron is close to the nucleus (as
expected) and gets suppressed when the system is either in
an excited state or in the continuum.

In this paper, we have studied the time dependence of
harmonic generation. We have considered the case of atomic
hydrogen in either the ground or the metastable 2s state in
the presence of short pulses of an intense radiation field. Our
motivation was to consider both low frequency regime
[H(1s), ©®=0.118 a.u.] and a (relatively) higher frequency
regime [H(2s), @=0.118 a.u.], the second case being
known to exhibit dynamical suppression of ionization. Our
results indicate that harmonic generation takes place during a
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short time interval, when the field reaches a critical intensity,
which depends on the harmonic order. At higher intensities,
i.e., when atomic excitation or ionization takes place, har-
monic generation is suppressed. Moreover, the wavelet
analysis indicates that harmonic emission can be periodic in
time at a frequency 2w. A similar analysis for atomic hydro-
gen initially in the 2s state shows that the time profile of
harmonic emission exhibits a more complex behavior. This
results from the fact that the atom is excited into a superpo-
sition of states. More detailed results on the dynamics of
harmonic generation will be presented in a forthcoming pa-
per.
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