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Maintaining coherence in quantum computers
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The effects of the inevitable coupling to external degrees of freedom of a quantum computer are
examined. It is found that for quantum calculations (in which the maintenance of coherence over
a large number of states is important), not only inust the coupling be small, but the time taken
in the quantum calculation must be less than the thermal time scale h/k&T For. longer times the
condition on the strength of the coupling to the external world becomes much more stringent.

PACS number(s): 03.65.—w

I. INTRODUCTION

Quantum computers have recently raised a lot of in-
terest. A number of papers [I] have argued that quan-
tum computers can solve certain problems much more
eKciently than can classical computers. Shor [2] has
shown that a quantum computer could solve the prob-
lem of finding discrete logarithms (modN) and of find-
ing the factors of a large number N in a time which
is a polynomial function of the length I (number of
bits) of the number. For factoring the best-known al-
gorithm, the number field sieve [3] takes a time of or-
der exp(c(L)[ln(2)L] ~ (in[in(2)L]) ~s), where c(L) is
roughly constant and believed to be approximately equal
to 1.9 for large L. Although this is subexponential, it is
worse than any polynomial for large ¹ A crucial fea-
ture of the ability of quantum computers to be more ef-
ficient in certain problems involves having the computer
placed in the coherent superposition of a very large num-
ber (exponential in L) of "classical states" and having
the outputs interfere in such a way that there is a very
high probability that on the appropriate reading of the
output, one would obtain the required answer. One is
replacing the exponential in time with the exponential in
quantum coherence. This requires that the computer be
able to maintain the coherence during the course of the
calculation. This paper examines this requirement and
the constraints placed on the ability to maintain this co-
herence in the face of coupling to external heat baths.
Landauer [4] has long emphasized the necessity of exam-
ining the effect of both imperfections and the coupling to
the external world of any realistic device on the ability of
quantum computers to realize their promise. This paper
is thus a first step in that direction.

II. DECOHEKING NOISE

I will look at only the simplest model, in which I
ask about the maintenance of coherence in a memory

of length I. This does not take into account the effect
that the course of the computation itself would have on
the rate of loss of coherence, but I would expect that only
to increase the problem. Thus let us assume that that
the number is represented in the computer as a string of
binary digits of length I = log2(N). The memory cells
will each be taken to be two-level systems, with each of
the two levels having the same energy. The two states
will be taken to be the eigenstates of a "spin" operator
Oz.

In a conventional computer, the way in which the cal-
culation is "kept on track" is by including dissipation in
order to damp out any attempt by the system to make a
transition (except of course those driven by the compu-
tation) [5]. In a quantum computer, dissipation cannot
be used and the accuracy of the computation must be
built in. However, some interaction with the dissipative
environment will always be present. As a first look at
the effect that this coupling to the environment has on
the course of the quantum computation, I will assume
that the interaction with the environment has the two
desired eigenstates of the memory; the eigenstates of the
interaction represent the bit values of a number. This
means that the environment will not cause bit Hips to
occur. Such bit Hips would be sources of error even for
the classical calculation. Later I will argue that even bit
Gipping interactions with the environment will behave
in the same way as the bit conserving interactions I am
looking at here.

Obviously, the effect that the environment has on the
system will depend on the details of the environment and
on the details of the interaction between the computer
and its environment. In any engineering of a quantum
computer, one would have to take into account all of the
details of that interaction. As a first examination of the
problem, in this paper I will choose a specific model for
the environment and for the interaction with the envi-
ronment. I thus choose the environment to be modeled
by a massless scalar field [7] derivatively coupled to the
memory cell, so that the full Hamiltonian is

H = -([m.(x) + eh(x)o.,]' + [0 p(x)]'Idz .
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pling form

I = — [((9tg) —(0 P) —2eh(x)Otter)(x)rT,
]dx . (2)

2

Here h(x) is some interaction range function and vr is
the momentum conjugate to P. This scalar field model
is completely equivalent to the so-called Caldera-Leggett
model [6], a common model for an environment in which
it is represented by an array of simple harmonic oscilla-
tors.

The Heisenberg equations of motion are

+=(9 P,
P = 7r + eh(x)o, .

(3)

(4)

The exact solutions for the Heisenberg equations of mo-
tion for P are (assuming that cr, is a function of time)

1( a+t
P(t, x) = —

I $(0, x —t) + $(0, x + t) + a(0, y)dy I2 -t )
[~.(t —I* —yl) —~.(—I* —y —tI)

x 8(x —y —t) —t7, (—Ix —y + tI)
xO( —(x —y+ t))]h(y)dy, (5)

where

( )
0 ifx(0
1 ifx&0.

Since, in the model I am using, o, is a constant of mo-
tion (recall that I am not taking into account the effects
of the operation of the computer), the solution for (t is
thus

1( x+t
P(t, x) = —

I P(o, x —t) + P(o, x+ t) + 7r(o, y)dy I

z —t )
(6)

E
[1 —0(*—y —t) —o-( —(*—y+ t))]

2
'

xh(y)dyh(y)dy . (7)

thermal density matrix R~ with temperature T and the
initial state of the spin is a density matrix p(0). The total
state is assumed to be a product state of these two initial
states. The reduced state of the spin system at any time
t after tracing out over the state of the environment is a
density matrix given by

1
p(t) =-[I+K(t). ]

where p(t) is a time-dependent vector of length less than
or equal to unity. p(t) is given by

p(t) = Tr[cre' 'p(0)BT e ' '],
where the trace is over all of the degrees of freedom of
spin system and bath.

We can write H as

i f ph(p:)$(O, x)dao» ~ i f p—h(x)$(O, x)daope

since e' f '"( )~( )" * is just the translation operator
taking m(0, x) to m (0, x) + e jh(x)P(0, x)dxo, and since
o commutes with Hp. Thus

~(t) T [
~ i f »)r(0) phdxcr» i f Q(t) phdxcr» ~—

(0)
iHpt~ —iHpt i f P(t)phdxo» —i f P(0)phdxo~e e e

(11)

where P(t) = e' "P(0,x)e ' ' is the time development
of the free field with the same initial conditions ())(0) and
m(0), i.e. ,

++t
p(t, x) = —

I
p(0, x —t) + p(0, x+ t) + ~(0, x')dx'

I
.

a —t

(12)

Using 02 = 1 and the fact that RT is diagonal in the
energy representation, we can write p(t) as

T (
~ i f [»)r(0) p(t)]phdao, —

~(0)
i f [d (t) P(0)]phd—acr,

)

I will, however, be working in the Schrodinger represen-
tation in the following.

I assume that the initial state of the environment is a

(Note that the extra terms from the Cambell-Baker-
Hausdorf formula cancel out. ) This can further be writ-
ten as

p(t) = TrI tT[p(0)] (T — 1 —cosI [y(t) —y(0)]ehdx I (7.e. + i
I [&(t) &( )]0h"eIx e, x rrRT

I

l
[,

J(t) = Tc Rrcccl f[4(f) 4'(P))c~f)»
l

—
2 Tr(R~(f [r)r(t) r)r(0)]phd') l— (15)

We are thus left; with

where e is the unit vector in the z direction. Because
Bz is symmetric in P and m, the sin term is zero and

p, (t) = p, (0),
-(t) = J(t) *(o)

(t) = J(t) (o) .

(16)
(17)
(18)

Since J(t) will play an important role in what follows,
it is worthwhile discussing its physical significance. As
we see above, J(t) controls the rate at which a general su-
perposition of the spin states loses coherence for a single
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ln[J(t)] = ——
I

coth
I [1 —cos(kt)]e "

I

dk .
t'1 (k)

2 ivrk i2T)

We will approxiinate coth(z) = 1+ e ( —+ . ). This
gives us

&1.2+ t2)
ln[J(t)] = ———ln

I I

——in[1+ (2Tt)']
2~ 2 q I'

y 2

(1 —i2Tt 5—iTt ln i1+x2Tt) (2o)

There are essentially three regimes for the time depen-
dence of J(t) given by the conditions t ( I', I' ( t ( 1/T,
and t ) 1/T. In the first regime t ( I', we have approxi-
mately

spin. In magnetic resonance studies, one excites a whole
ensemble of single spins into some given superposition
state and watches the time development of the resultant
total magnetization. The total magnetization is just the
sum of the individual magnetic moments which are pro-
portional to the individual spins. The off-diagonal terms
(perpendicular to the applied magnetic field) of the Bloch
vector decay. In most resonance experiments, this decay
is dominated by inhomogeneities in the local magnetic
fields. This source of decay is reversible and can be com-
pensated by variations of the spin-echo experiment. How-
ever, for the irreversible component of that off-diagonal
decay, it is J(t) that determines the rate at which those
off-diagonal terms in the recurrent spin-echo signal are
lost. If J(t) is exponential in t, then J(T2) = 1/e defines
T2 in the NMR literature [8].

For later use, let us examine J(t) in various regimes.
l,et us take h(x) such that h(k), the Fourier transform of

—-'rA:h(x), is of the form e ~ ". I' is a cutoff parameter typical
of interactions with the environment. I will assume that
I' « 1/T. We then get

Kt)
ln[J(t)] ——ln I—

2 pl') (22)

Finally, for the long time regime t )) 1/T, the thermal
regime, we have

ln[J(t)] = —e Tt . (23)

The important feature of these asymptotic formula is
that for the intermediate regime, which I call the quan-
tum regime since the behavior is dominated by the vac-
uum state of the environment, ln(J) increases only log-
arithmically with t. In contrast, the third regime, the
thermal regime, increases linearly with t. This will be
important in determining the ultimate size of a number
that can be, say, factored with a quantum computer be-
cause of the dependence of the computing time on the
length of the number being factored.

This was for the most familiar case of an "Ohmic"
coupling to the heat bath. In the case of super-Ohmic
coupling (h[k(w)] = tu'e( —I'ur) for s ) 0), the function
ln[J(t)] is essentially constant for times less than 1/T and
grows as t ' in the thermal regime for 8 ( 1. For s ) 1,
J is constant in both regimes, although it is smaller in
the thermal regime than in the quantum regime (and is
essentially constant even for such times if s ) 1). In the
sub-Ohmic case, —1 ( s ( 0, on the other hand, ln[J(t)]
grows roughly as t ' in the quantum regime and as t
in the thermal regime. Again, in the thermal regime the
growth in decoherence is a factor of t larger than in the
quantum regime.

The above analysis was carried out for a single bit in
the memory of the quantum computer. Let us examine
the situation in which our memory has some large num-
ber I. of bits. Each bit is assumed to couple to its own
heat bath of exactly the above type. The question now
is, What is the rate of loss of coherence of a coherent sum
of numbers stored in the memory'7 In other words, define
the state In) = InL, i)lnL, 2) Ino), where n, is the ith
bit of n. Consider a coherent state

242
ln[J(t)] = (21) I@) = ).~-l~) . (24)

For the intermediate regime I' ( t ( 1/T, the quantum
regime, we have

The probability that after time t the memory remains in
the state Q is given by

(@IT,„„;,„exp i) H;t l@)lo)(ol(@lexp i) II;t lg)—(

) Qn&n' ~irn~irnl Trenviron; (('fbi
I
e *

Iraqi) (~~ I
e '

I &~) )
A jA )m)mI I

J,(t)~"'"'l (25)

where (n; n', ) is the XOR of the ith bits of n and n'

(XOR is 0 if both bits are the same and 1 if they are
different. )

This expression tells us how the coherent sum over the

various states of the memory representing various num-
bers decoheres as a function of time. As an example, let
us choose the completely coherent state in which each of
the numbers of length I has an equal probability. This
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LI
2

—2L) ) ' Jr
r!(L —r)!

A r

=2 ' ).(1+J)' =
I

KJ+1
&2) (27)

If we assume that 1 —J is very small (which is the only
case in which the system has any hope at all of acting
like a quantum computer), this is well approximated by

—-'L(1—J)P~c (28)

as long as L(1 —J) ( 1/(1 —J).
The strength of the quantum computer is that the time

required to perform the calculation is a polynomial in
the length L of the number. This time is designated by
r(L). Since the quantum calculation is polynomial in I
we can write r(L) —L for a ) 1. We thus have that
the probability of maintaining coherence over the time of
the calculation is of the order of

ln(P) — O(1)Le in[&—(N)] = O(l )e L ln(L—) (29)

in the quantum regime, while it is of order

ln(P) = O(1)L + e—

with a smooth transition between the two regimes. In
order to have a reasonable probability of obtaining the
correct answer, one needs the probability of obtaining the
quantum coherent answer to be of order 1. This implies
that one must have a sufficiently small e2, the coupling
parameter between the heat bath and the system. As
long as one is in the quantum regime, the relation be-
tween the coupling e2 and the maximum length of the
number one can handle is essentially inversely linear, no
matter what the polynomial dependence of the calcula-
tion. However, once one has entered the thermal regime,
a decrease in the coupling buys one only a small increase
in the length of the number L that one can use. In other
words, in the presence of a coupling to the heat bath,
the thermal time scale &

=
&

"& plays a crucial role. AsT kgyT
long as the calculation can be completed in a time less
than this, one can imagine decreasing the coupling to the
heat bath for the memory cells so as to achieve the maxi-
mum L. If, however, the time for the calculation is longer
than the thermal time scale, it becomes very difficult to

state is typical of the state required in performing quan-
tum calculations of the sort in which a quantum com-
puter is much faster than a classical computer. In other
words, I choose ~o.„~ = 2 . Furthermore, let me assume
that each bit is coupled to the environment in exactly the
same way so that J;(t) = J(t). Then we have the proba-
bility P that the coherence will be maintained over time
t as

(26)
Tl 7A

To evaluate this, 6rst 6x the number n. The number of
numbers n' that difFer &om n in 1 bit is L, the number
that difFers in 2 bits is L(L —1)/2, and the number that
difFers in r bits is,

&&

'
1, . Thus the above becomes

decrease the coupling to the bath sufficiently to achieve
the necessary coherence.

Is it possible to use the computer even if the quantum
state loses coherence? I cannot answer this in general,
but can show that one strategy does not work. One could
imagine trying to make up for the loss of coherence by in-
creasing the number of times the program is run. (This is
in fact a crucial factor in the Shor algorithm for factoring,
not because of decoherence, but because the calculation
itself has a 6nite probability of not giving the correct out-
come. ) After a sufficient number of attempts, one should
by chance have a system which has maintained coher-
ence. In the factoring problem, one can test ones answer
(does it give the factors of the number?) and simply keep
repeating the experiment until one gets the right answer.
However, in M trials, the probability of never finding a
coherent outcome is (1 —P)M = e™.The number of
trials required to make this small (i.e. , so that one has a
high probability of having had a coherent run) is thus the
required number of attempts M 1/P e+!~~~'"!~l in
the quantum regime, which is exponential in the length.
In the thermal regime, this time scale is even worse. One
will thus have lost all advantages of the quantum nature
of the computer. We see that one must make sure that
coherence is maintained during the calculation.

In order to maintain coherence, one must have a small
value for e . At 6rst, as one decreases e, the gain in
the maximum length number one can factor is roughly
inversely proportional to the value of e2. However, once
e is sufficiently small that the time scale of computation
for the maximum length which can maintain coherence
approaches the inverse thermal time 1/T, one reaches a
bottleneck. Further reductions in e now have little effect
on the maximum length. The decoherence due to the
rapidly increasing time spent in computation cancels out
the effect of the smaller e . Thus the thermal time scale
1/T sets an effective limit to the time of the calculation
and thus a weak limit on the maximum length of the
numbers one can compute with.

If one imagines factoring a 1000 bit number and one
assumes that the quantum factoring time can be made
to be of order I2 (probably the slowest rate imaginable),
we 6nd that one must carry out at least 10 calculation
in the thermal time scale. Since the thermal time scale
for a temperature of 1 K is of the order of 10 sec, this
would imply that one would have to use a computer that
runs at optical frequencies.

III. OTHER NOISE

The above coupling to the heat bath is "error &ee"
in the sense that if one is in a number eigenstate (i.e.,
is in a state ~n)), the system will remain in that state
throughout. The environment does not cause spin flips.
What about the situation in which there is also some
probability of a state flip, i.e., of the system making a
transition between the two eigenstates of o.,? One could
approximate this by assuming that the coupling to the
heat bath is via, say,
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O.g = cos(8)o., + sin(8)o. ,

with small 0.
The above analysis is exactly the same for this case,

where we replace o. everywhere by o.g. Writing the num-
ber eigenstates with respect to og so that

(3i)

we have

In) = ) cos(8) ' * sin(8)

( g)(n, ;)yen, )n;
I (32)

The probability of remaining in the state In) under the
coupling to the heat bath is then

fore look at the alternative situation in which the single
bit Hamiltonian is of the form

—([~i —cih(z)0, ] + (Begs) + [~2 —e2h(z)oe]

+(l9 Q2) + [7r3 E 2h(z)oy] 2+ (Q ps)2) . (35)

Since we want the single bit decoherence and bit Hip
probabilities to be small (or else the quantum computer
is useless from the start), I will assume that the ei, are
all suKciently small. Furthermore, for simplicity I will
take ~~ ——~3, so that the spin Hip processes are of equal
strength. I cannot solve this problem exactly, but since
the probabilities are assumed to be very small, one can
calculate the transition probability to lowest order in the
various e. The Hamiltonian can. be written as

P = ) ) cos(8) ~ ' l[Jsin(8) ][L —S(n, m)],

(33)

where S(n, m) is the number of bits in which n and m
are the same. Again using the arguments above as to the
number of terms where the S has a given value, we get

~ = ~0 —) I e;7'(z)o;h(x)dz+ — h(x)'dz

(36)

where o; = (o„cr,0&). The reduced density vector p(t)
is given by

P = [cos(8) + J sin(8) ] p(t) = Tr[o.e' p{0) oRze '
] .

For small 8 this gives

P = [1 —(1 —J)8 ]
—e {34)

Thus 0 must be kept very small in order to ensure that the
probability of error remains small. However, we note that
the probability of error is vastly suppressed with respect
to the decoherence probability, which is in accord with
the observation that the decoherence effects are in general
much larger and more rapid than transition eKects.

This has assumed that the process causing spin Hips
is the same as the one causing loss of coherence in a
superposition of the two spin states. In general, the en-
vironmental degrees of &eedom which cause decoherence
are not the same as those causing bit Hips. I will there-

[

To zeroth order, since H = Ho is independent of o. , we
have p(t) = p(0). To first order, one obtains terms that
are linear in the 7r's and the P's. However, in the thermal
state, all of these are zero, because the thermal state (of
Hp) is symmetric in the fields. To second order the re-
sults are nonzero. However, all of the cross terms e;e~ for
i g j will again be zero because the fields are, by assump-
tion, independent and thus the cross correlations between
terms linear in each of the fields will again be zero. Thus
the only terms surviving will be the terms proportional
to ~; . But each of these terms is independent of the other
~'s, i.e., each of these terms is the same as those obtained
by setting the other two e to zero. These are, however,
just the same as the second-order terms calculated above
in the first part. We thus get

P{')' = ). V I

——). i. ~I [4i (t) —4k(0)]hdz
I

( ~ . , (
)

+2)."hT R~l [&~(t) —0 (0)]hd I ~'h~, ~ p, (0) .
) (38)

Note that since all of the fields are of the same form and
at the same temperature, the Tr{Rz [J' P;(t)—P;(0)]hdz)
are the same for all i.

The probability of bit Qip then becomes

(oily(t) —&(0)1'lo)

while the probability of decoherence for a state which is
the coherent sum over all the integers of length L is given
by

Paecoher = ~
I

-(&, + e, ) 1(01[&(t)—&(0)] Io) . (4o)
(i
(2

If e~ )& e2, the decoherence will again be much more
rapid than the probability of "error" due to bit Qip.

IV. CONCLUSION

The above analysis has given a preliminary look at the
efFects of decoherence on quantum computers. It suggests
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that this problem is going to require some serious thought
in order to design systems to avoid the disastrous efFects
that the loss of coherence due to the coupling to the
environment can cause.

Quantum computation places the demand on the sys-
tem that the coherence of the initial state be maintained
throughout the computation. In order to maintain this
coherence in the presence of a heat bath, the reduction
in the coupling to the heat bath results in a proportional
increase in the size of the computation only if the compu-
tation can be completed within a thermal time scale. For
computation times longer than the thermal time scale, a
decrease in the coupling causes relatively little change in
the size of the possible coherent computation. The ther-
mal time scale thus sets a (weak) limit on the length of
time that a quantum calculation can take.

There are a number of areas in which further research
is required. One assumption of the above calculation
which, as emphasized by Ekert and Lloyd [9], may lead to
conclusions more pessimistic than strictly required is the
assumption of separate and independent environments
for each spin. Especially for the low-frequency compo-
nents of the real environment (which also have long wave-

lengths) one might have a number of the spins interact-
ing with the same modes on the environment. This could
well lead to a reduction of the effect of the environment
on the coherence of the system. However, while I would
expect this to be of some help in reducing the effect of
the loss of coherence to the environment, I do not expect
it to change the above conclusions about the exponential
dependence of the loss of coherence on the length of the
memory. It could reduce the effective length L by some
factor, which would thus reduce the effective size of the
coupling e. It would, however, do nothing to change the
effect of L on the loss of coherence through the time of

the computation t. However, this clearly is an area for
further research in the engineering of a quantum com-
puter able to resist the effects studied here.

An assumption which I believe makes the above re-
sults more optimistic than is warranted is the assump-
tion that during the course of the computation, the bit
fiipping produced by the course of the computation has
no impact on the decoherence rate. In particular the log-
arithmic dependence of J(t) on time during the quantum
regime is, I suspect, an artifact of this assumption. The
very act of allowing the computation to fiip a bit will, I
suspect, create disturbances in the environment, which
will lead to additional loss of coherence. In addition I
would expect this to disrupt the long-range coherences in
the environment [which lead to the logarithmic growth of
J(t)1 [10].

Quantum computing has now come of age in the sense
of demonstration that it is potentially more than just a
toy and could have exciting implications for the solution
of interesting mathematical or computational problems.
However, it now becomes important to examine closely
the impediments to the realization of the promise of this
new technique. It is only through the recognition of the
various impediments, whether in the implementation of
reversibility as raised by Landauer or in the loss of co-
herence as raised here, that those impediments will be
overcome.
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