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Bell’s inequality for an entanglement of nonorthogonal states
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Given an entanglement of two systems involving nonorthogonal states, we find the Schmidt
decomposition for the state. The relation between the Schmidt representation and an ideal mea-
surement of the degree of entanglement of the states is discussed, and a Bell inequality is shown
to be violated. The maximal violation of the Bell inequality provides a measurement of the degree

of entanglement.
inequality for entangled nonorthogonal states.

PACS number(s): 03.65.Bz, 42.50.Dv

A state |¥) is entangled provided that there exists the
Schmidt decomposition for the state

1¥) =Y ailfi)*19:) %, (1)

where A and B refer to different systems
ALl £i)* = 8i5 =B (gilg;) B (2)

and a; # 0 for at least two distinct values of 7. Such a
state cannot be written in any representation as a prod-
uct state and, therefore, violates some Bell inequality [1].
A standard example of entanglement is given by [2—4]

1¥) = ple)?18)Z + vlr)418) ", 3)

where |a)4 and |y)4 are orthogonal states of system 1
and similarly for |3)Z and |6)Z for system 2. However,
entanglements of nonorthogonal states are important as
well, particularly in the context of entangled coherent
states [5,6]. An entanglement involving nonorthogonal
states, which is expressed in the form (3), would have
the property that the overlaps 4(y|a)4 and B(3|6)Z are
nonzero. The entanglement becomes apparent by writ-
ing the state in the Schmidt form, and here we introduce
an explicit algorithm for obtaining the Schmidt form for
entangled nonorthogonal states in general and for an ex-
ample of an entangled coherent state in particular.
Suppose that the overlaps 4a|y)4 and B(§|B8)B are
not zero. However, the two nonorthogonal states |a)#
and |y)4 are assumed to be linearly independent and
span a two-dimensional subspace of the Hilbert space.
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The entangled coherent states are provided as a concrete example of the Bell

Thus two orthonormal Hilbert space vectors, which are
representable as

() = () e

can be introduced that span the same subspace and a
similar procedure follows for system B. These states can
be chosen such that

wi=(3)" = ()

2=(2) wr=(d) e
for

NA = 1—|Aam42,  NB=,/1-|B(8]8)B2,
(6)

in the new basis (4). In this basis the state (3) can be
written as

"’ABI“(?Y@((]‘;?;)B*”((QG;)A

(1)

M = p(8|B) + v{alv) (8)

and the superscripts A and B are ignored for cases where
ambiguity does not arise. Also normalization of Eq. (7)
requires that

|uNB|* + v N4 + M = 1. (9)

~

0
NA

B | (7
M

where
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The state (7) is a pure state whose density matrix
is pAB = AByABt  The reduced density matrices for
each system A and B are

A AB __ lVNA|2 VNAM*

P —rI‘er - (V*NAM | Q(B|2_+_|M|2 )

B _ aB _ [ |uNBJ? uNBM*

p” =Trap = (;L*NBM |UNA|2+|M|2 ,  (10)

respectively, and the determinants

detp? = |uwNANEB|? = detp®

(11)

are equal. The two eigenvalues of p#, given by

A =141\/1"4detpA =1+ .;-\/1 — 4|urNANE|2,
(12)
are identical to the two eigenvalues of pP. The corre-
sponding eigenvectors of p# are |£)4 and the correspond-
ing eigenvectors of p® are designated as |+£)5Z. The gen-
eral theory of the Schmidt decomposition [7,8] implies
that the state (7) can be expressed in the Schmidt form

)P = e[ =) =) + er [ H) 4P, (13)

with [cx|? = Ag, e |2+ =2 = 1.

The two-system entangled state (13) violates a Bell
inequality. More specifically, we choose Hermitian oper-
ators © for each system A, B such that the eigenvalues
are £1. The general form for such an operator is

~

© = cos A[|+) (+] — |-)(~I]
+sin A [e]+) (=] + e =) (+]] . (14)
Each two-state system is being treated as a spin-1/2 sys-
tem and the operator © then corresponds to the compo-
nent of a “spin” operator along the axis determined by
the angles A and ¢.
The Bell operator is defined as [9]

B 6467 + 6AG 4 6'AOF _ 4GB, (15)
For the choices

M=0, MN=n/2

AP = NP —cost [1t fpeye 72, (1)

P+ P ="+ P =0, -0,

where ¢4 are the phases of c+, the expectation value of
the Bell operator for the state (13) is

B = (¥|B|¥) = 24/1 + |2¢c4c_|2 > 2; (17)
the degree of violation depends on the values of c.., but
a violation always occurs.

For the case that (3) is an entangled coherent state, the
expectation value of the Bell operator can be determined.
The example of the entangled coherent state [5]

lo B) = 272 [|ay4|B)® + i]iB)A| — ic) B ] (18)

is used where {|a),|B)} are coherent states. For sim-

plicity # = ||? is introduced and we set 3 = 0. The
eigenvalues of the reduced density matrices p4 and p®
are

Ay =14 1e ™22 —en,

The Schmidt basis states can be expressed as

(19)

) = il (04
V2 —eften/2/2 _en
_ (e—ﬁ/z _ 9—1/2—in/4 [e—ﬁ/z + \/5—__?5])
x|a)4],
)7 = il Ck
V2 —e e /2,27

_ (e—ﬁ/2 _9—1/24im/4 [e—n/z + m])

x| — ia)B] (20)
and the coefficients c4 can be determined. The coeffi-
cients depend explicitly on 72 and this dependence indi-
cates that the appropriate measurement for observing a
violation of a Bell inequality itself depends on 7.

The expectation value of the Bell operator for the en-
tangled coherent state |c; 0) is given by

B=2{1+(1-e")2, (21)

which is strictly greater than 2 for all # > 0. [At 72 = 0,
entanglement no longer holds as the state (18) can be
expressed as a product state and we see that B — 2
as & — 0+.] The value of B increases monotonically with
increasing # and asymptotically approaches 2+v/2 very
rapidly as the overlap between |a) and |0) becomes negli-
gible. In contrast to the use of the quadrature phase Bell
inequality [10] for the entangled coherent state, which is
violated only for sufficiently large overlap of |a) and |0)
[5], the ideal Bell inequality treated here produces an in-
creased violation as the overlap is decreased. The quadra-
ture phase Bell inequality becomes less useful as the pho-
ton number becomes more macroscopic whereas the ideal
Bell inequality provides a good measure of the degree of
entanglement.

In summary we have determined the Schmidt decom-
position for the entangled nonorthogonal state (3) and
this representation corresponds to an abstract spin-1/2
system for each of the systems A and B. The violation
of Bell’s inequality then follows by using the standard
analysis [1,9] and we show in particular that Bell’s in-
equality is violated in principle for entangled coherent
states. Other entangled nonorthogonal states can be con-
sidered using this technique. For example, a Schrodinger
cat state [11] which has been developed for SU(2) co-
herent states [12] could be extended to an entanglement
of nonorthogonal SU(2) coherent states and the analysis
above applies to this case as well.
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