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Bell's inequality for an entanglement of nonorthogonal states
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Given an entanglement of two systems involving nonorthogonal states, we 6nd the Schmidt
decomposition for the state. The relation between the Schmidt representation and an ideal mea-
surement of the degree of entanglement of the states is discussed, and a Bell inequality is shown
to be violated. The maximal violation of the Bell inequality provides a measurement of the degree
of entanglement. The entangled coherent states are provided as a concrete example of the Bell
inequality for entangled nonorthogonal states.
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A state I@) is entangled provided that there exists the
Schmidt decomposition for the state

Thus two orthonormal Hilbert space vectors, which are
representable as

I@& = ):a'If*&"lg'&
(I)

I o I
and

(ol
I I)l (4)

where A and B refer to diH'erent systems

"(f'If')" = ~'.- = (g'Ig') (2)

can be introduced that span the same subspace and a
similar procedure follows for system B. These states can
be chosen such that

and a, g 0 for at least two distinct values of i Such .a
state cannot be written in any representation as a prod-
uct state and, therefore, violates some Bell inequality [1].
A standard example of entanglement is given by [2—4]
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IP) =
I (~l&)

(5)

where Icr) and Ip) are orthogonal states of system 1
and similarly for IP) and Ih) for system 2. However,
entanglements of nonorthogonal states are important as
well, particularly in the context of entangled coherent
states [5,6]. An entanglement involving nonorthogonal
states, which is expressed in the form (3), would have
the property that the overlaps +(pin)+ and +(Plb) are
nonzero. The entanglement becomes apparent by writ-
ing the state in the Schmidt form, and here we introduce
an explicit algorithm for obtaining the Schmidt form for
entangled nonorthogonal states in general and for an ex-
ample of an entangled coherent state in particular.

Suppose that the overlaps (alp) and (hlP) are
not zero. However, the two nonorthogonal states In)+
and Ip)+ are assumed to be linearly independent and
span a two-dimensional subspace of the Hilbert space.

I - I"(-I~)"I' ~ = I - I~(~IP)~i2

where

(o& ( A'~ & ( A'" )=v
I( I)l I&(~IP&)l

+~I (~l~&)l

o
(o & vA"
l&, )l (w)
~ = t (~l&) + ~(~l~)

(6)

in the new basis (4). In this basis the state (3) can be
written as
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and the superscripts A and B are ignored for cases where
ambiguity does not arise. Also normalization of Eq. (7)
requires that
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The state (7) is a pure state whose density matrix
is p = @ g t. The reduced density matrices for
each system A and B are

la+ I
PN=I(-~ ~

I
~

I +I~I
I
phf~ I2 p,JV

+I~I
respectively, and t;he determinants

A~ = -', + —,
'e-"/'V'2 —e-". (i9)

The Schmidt basis states can be expressed as

o
Q2 —e-" + e-"/'g2 —e—"-

n/—2 2
—1/2 im'/—4 —n/2 ~ g2 e n—

plicity n = In] is introduced and we set P = 0. The
eigenvalues of the reduced density matrices p and p
are

are equal. The two eigenvalues of p, given by

A~ =
2 + 2/1 —4detp+ =

~ + 2 1 —4IpvlV+A'+I2,

(»)
are identical to the two eigenvalues of p . The corre-
sponding eigenvectors of p are I+) and the correspond-
ing eigenvectors of p are designated as I+& . The gen-
eral theory of the Schmidt decomposition [7,8] implies
that the state (7) can be expressed in the Schmidt form

+ c+I+&"I+&

with le+ I' = A+ le+ I'+ lc- I' = 1.
The two-system entangled state (13) violates a Bell

inequality. More speci6cally, we choose Hermitian oper-
ators P for each system A, B such that the eigenvalues
are +1. The general form for such an operator is

O = cos A [I+&(+ I

—I-)(-I]
+sinA e'~l+)( —I+ e '~l —)(+I (14)

Each two-state system is being treated as a spin-1/2 sys-
tem and the operator P then corresponds to the compo-
nent of a "spin" operator along the axis determined by
the angles A and p.

The Bell operator is defined as [9]

g pA pB + pA pfB + p&ApB p&A p&B

For the choices

A =0, A' =~/2,
A = —A' = cos ' 1+ I2c+c

+V' =V' +'P =P+ —8—
~

~ = &@l~l@& = 2v'1+ I2c+c-I' » (17)

the degree of violation depends on the values of c~, but
a violation always occurs.

For the case that (3) is an entangled coherent state, the
expectation value of the Bell operator can be determined.
The example of the entangled coherent state [5]

l~; && = 2 "[l~&"IP& + il'&&"I —i~& j (18)

is used where ( ln), IP) ) are coherent states. For sim-

where y~ are the phases of c~, the expectation value of
the Bell operator for the state (13) is

x In)~,

e—i~/4

Q2 —e—"y e —"/'g2 —e—"-
—n/2 2

—1/2 i~/4 e n/2 +—g2

xl —in&~ (20)

and the coefficients cg can be determined. The coeffi-
cients depend explicitly on n and this dependence indi-
cates that the appropriate measurement for observing a
violation of a Bell inequality itself depends on n.

The expectation value of the Bell operator for the en-
tangled coherent state In;0) is given by

8 = 2/1+ (1 —e ")2 (2i)
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which is strictly greater than 2 for all n ) 0. [At n = 0,
entanglement no longer holds as the state (18) can be
expressed as a product state and we see that 8 m 2
as n -+ 0+.] The value of 8 increases monotonically with
increasing n and asymptotically approaches 2~2 very
rapidly as the overlap between Ia& and IO) becomes negli-
gible. In contrast to the use of the quadrature phase Bell
inequality [10] for the entangled coherent state, which is
violated only for sufficiently large overlap of Io.&

and lo)
[5], the ideal Bell inequality treated here produces an in-
creased violation as the overlap is decreased. The quadra-
ture phase Bell inequality becomes less useful as the pho-
t;on number becomes more macroscopic whereas the ideal
Bell inequality provides a good measure of the degree of
entanglement.

In summary we have determined the Schmidt decom-
position for the entangled nonorthogonal state (3) and
this representation corresponds to an abstract spin-1/2
system for each of the systems A and B. The violation
of Bell's inequality then follows by using the standard
analysis [1,9] and we show in particular that Bell's in-
equality is violated in principle for entangled coherent
states. Other entangled nonorthogonal states can be con-
sidered using this technique. For example, a Schrodinger
cat state [11] which has been developed for SU(2) co-
herent states [12] could be extended to an entanglement
of nonorthogonal SU(2) coherent states and the analysis
above applies to this case as well.
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