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Non-Hermitian techniques of canonical transformations in quantum mechanics
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The quantum-mechanical version of the four kinds of classical canonical transformations is in-

vestigated by using non-Hermitian operator techniques. To help understand the usefulness of this
approach, the eigenvalue problem of a harmonic oscillator is solved in two different types of canoni-
cal transformations. The quantum form of the classical Hamilton-Jacobi theory is also employed to
solve time-dependent Schrodinger wave equations, showing that when one uses the classical action
as a generating function of the quantum canonical transformation of time evolutions of state vectors,
the corresponding propagator can easily be obtained.

PACS number(s): 03.65.Ca, 04.20.Fy, 04.6G.Ds

I. INTRODUCTION

The idea of canonical transformations is one of the
highlights of classical mechanics [I]. It is not only the-
oretically but also practically important, and provides
some clue to the quantization of classical systems. But
the interesting point is that, even though the canonical
transformations and the Hamilton- Jacobi theory are very
helpful for solving classical equations of motions, there
have appeared until now no serious attempts to use these
ideas while solving quantum-mechanical problems. One
of the reasons may be that as long as one restricts oneself
to the unitary forms of canonical transformations there
is no room for nontrivial transformations.

It was Anderson who seriously began to doubt the
usual usage of the unitary canonical transformations, and
he initiated a nonunitary technique of canonical trans-
formations [2]. His idea is that the commutation rela-
tions [q„,p, ] = i8„, [q„,q, ] = [p„,p, ] = 0 are preserved
not only under unitary transformations but also following
similarity transformations

q„= Cq„C-', P. = CP.C-'.

Observing the fact that any canonical transformation
can be decomposed into three basic canonical transfor-
mations, he computed the eigenvalue equation of har-
monic oscillators and also calculated propagators for
some model cases. Even though his idea is quite gen-
eral it lacks clear classical counterparts.

In this paper we follow the traditional "mixed matrix
element technique" of canonical transformations [3]. But
the difFerence is that our mixed matrix elements are not
unitary, thus allowing us to incorporate Anderson's idea
of nonunitary canonical transformations. In fact, it is
shown that quantum versions of canonical transforma-
tions exist and are formally similar to the classical ones.
Using the full classical properties of canonical transfor-

mations we are able to solve the eigenvalue equation of
a harmonic oscillator in a canonically transformed new
space. Even the time-dependent Schrodinger equations
of free particles and harmonic oscillators can be solved by
using the quantum version of the Hamilton-jacobi the-
ory.

This paper is organized in the following way. Nonuni-
tary quantum canonical transformations which have clas-
sical analogies are introduced in Sec. II. In Sec. III, the
quantum version of a classical canonical transformation
is used to solve the energy eigenstates of harmonic oscilla-
tors. The time evolutions of the Schrodinger wave equa-
tions of free particles and harmonic ocillators are also
solved by using the quantum version of the Hamilton-
Jacobi theory. Conclusions and further discussions are
given in Sec. IV.

II. QUANTUM CANONICAL
TRANS FORMATIONS

In classical mechanics there are four difFerent

types of canonical transformations, depending on the
forms of generating functions Fq(q„Q„ t), F2(q, P„t),
Fs(p„, Q„t), and F4(p„P„t). Even though some of them
are related there are transformations which cannot be
described by any other type of transformation. In this
paper the quantum versions of the first and second types
of canonical transformations are presented. The other
two remaining ones can be inferred &om these.

A. Canonical transformations of the Brst kind

Suppose lq') = lqz, . . . , qf) is a simultaneous eigenket
of observables q, r = 1, . . . , f, such that

q-lq') = q.'lq')

(q'lq") = , ~(q' - q")
p(q')

d'q' lq') p(q') (q'I = 1.

' Electronic address: hwleecbucc. chungbuk. ac.kr
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From now on we use the convention that various eigenval-
ues of an observable q„are denoted by attaching primes
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such as q„', q„", etc. Schrodinger equations are some-
times readily solvable in difFerent basis kets IQ t)
IQi, . . . , Q&, t) which are defined with respect to lq') by

(q& IQIt) e'+(~.',Q'. &) (3)
where I" is a function of real numbers q„' and Q', and time
t. Transformations of these kinds were investigated from
the early days of quantum mechanics [3]. One should
note that for an arbitrary function E the completeness
condition of IQ't) is not guaranteed. Transformations
which do not satisfy the completeness condition lose some
information. Here we consider only the generating func-
tions which meet the completeness condition. The gen-
eral case will be considered in Appendix B. Suppose that
for some density function p(Q', t) they are complete, that
is)

(Q'tlQ"t) = $(Q' —Q") (4)

(12)

Applying the usual wave equation to v/r(q„', t) one obtains

.a, &, . a
i—P(Q'„, t) = K Q'„i, t—P(Q'„, t), (13)

where the Q space Hamiltonian K(Q„,P„t) is

vestigation and will be discussed more carefully in the
last part of this section.

We now proceed to get the Schrodinger equation of
motion in the canonically transformed Q space. Let lt)
be a Schrodinger ket whose motion is given by id lt) =
H(q„, p„ t) lt). The Q-space wave function P(Q„', t)
(Q'tlt) in terms of q-space wave function vP(q„', t) = (q'lt)
is given by

d'O' IQ't) p(Q', t)(Q'tl = 1

art
K(Q„P., t) = H (q. , p. , t) + (14)

In this case we are able to define other observables
Q„, r = 1, . . . , f, such that

Q. IQ't) = Q'. IQ't)

If all the vectors IQ't) do not form a complete set, the
right hand side of Eq. (5) is no longer an identity operator
but some projection operator. But as long as this projec-
tion operator commutes with the Hamiltonian operator,
one may restrict one's interest to the invariant subspace
of the projection operator without causing any internal
contradiction. In this subspace completeness equation
(5) is satisfied, and all of our techniques can be applied
even to this case. An example of this kind is presented
in Sec. III.

To get the quantum analogy of classical canonical
transformations let us assume that I' (q„Q„t) is a "well-
ordered" operator in the sense that it is a sum of q func-
tions multiplied by Q functions on the right. In that case
we have

(q'I+(q. Q t)IQ't) = +(q.' Q'. t)(q'IQ't).

After solving (13) the true wave function in q space is
constructed by

4(g, &) = f '" "4'('Q 't)~(Q' ')&.'Q'.
At this point we would like to emphasize that to get the

completeness condition (Bl), oftentimes one is forced to
use "wrong" density functions in the original q space. For
example, in a one-dimensional case the proper density
function p(x) of the Cartesian coordinate x is constant.
But when one uses a generating function of the form
I'(x, Q) = xsQ, one is obliged to employ the wrong den-

sity function p(x) = 2xs. Even more, because of (11), the
Hamiltonian becomes non-Hermitian. These two prob-
lems cancel each other out to resolve the dilemma. This
can be seen in the following way. First rescale the original
basis kets such that

lq') = lq')~(q') '

where

In this case "the non-Hermitian canonical momentum op-
erators" p„and P„, which are defined by

(q'Ip-IQ't) = —& ~, (q'IQ't)

(Q'tlP. lq') = -'~, (Q'tlq')

and p(q) is a new density function. These rescaled kets
satisfy the following completeness conditions:

(q'lq") = —, ~(q' —q")
p(q

can be recast in the familiar forms of classical mechanics

or as t

(9q„' "
(9Q„

Note that even if q„and Q, are observables the cor-
responding canonical momentum operators may not be
Hermitian. In fact, their Hermitian conjugations are

p.'= p(q) 'p. p(q), P.'= p(Q, t) 'P.p(Q, t)

These non-Hermitian properties are essential for our in-

d'q'lq') p(q')(q'I = 1.

The corresponding conjugate momentum operator p„de-
fined by

(q'lp. lq") = —'~, (q'lq")

is related to p„by a similarity transformation

p„= Sp„S
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To investigate how the Schrodinger wave equation
changes under this similarity transformation we make use
of the standard ket ) which is introduced by Dirac in his
famous book on quantum mechanics [4]. For a given set
of basis kets lq ) it, by definition, satisfies

(q'I) =1
The reason why one introduces the standard ket is that
any state ll) such as (q'll) = @(q') can be written as
g(q)), that is, a function g(q) of an observable q oper-
ating on the standard ket ). When one chooses another

set of basis kets lq') one may use another standard ket )
such as (q'I) = 1. From (16) it is clear that

(q'Is. lP't) = —i, (q'IP't)
Oq~

(P'tIQ-lq') = 'zP, (P'tlq')

can be written as

BF
PT

Oq~

The wave equation in P space is

(28)

(3O)

) =~(q)) (22)
where P(P„', t) = (P'tlt) and K = H+ & is a Harnilto-
nian in P space.

Applying this similarity transformation to the original
Schrodinger equation

III. APPLICATIONS OF QUANTUM
CANONICAL TRANSFORMATIONS

(23)

H(q- p. t)@(q. t)) ='z, ). (24)

the following similar non-Hermitian Schrodinger equa-
tion is produced:

As much as the concept of classical canonical trans-
formations is practically helpful for solving equations of
motion, so also is the technique of quantum canonical
transformations. It can be used not only for eigenvalue
problems, but also for the time evolutions of state vectors
including time-dependent perturbations. In this paper
only some ideal physical systems are treated to clarify
this concept.

It means that as long as one uses a p„= —i represen-i9
Bq„

tation one may &eely choose different density functions
while the wave function and the Schrodinger equation
remain intact. The sole requirement is that one should
use a non-Hermitian Hamiltonian, which is tolerable as
far as the wave function is concerned. But the physi-
cally meaningful transition probabilities should be con-
structed by using the original density function at which
the Hamiltonian is Hermitian, and so also for the wave
function normalization. This fact will be explained when
the quantization of the harmonic oscillator is treated.

A. Energy eigenfunctions of a harmonic oscillator

As an application of type 1 canonical transformations,
consider the following Hamiltonian of a harmonic oscil-
lator:

To solve the energy eigenvalue equation one may choose
a generating function F(q, Q) =

2
q2 cot Q which is well

known from classical mechanics. In this case IQ') is de-
fined by

B. Canonical transformations of the second type (q'IQ') ="" '" (32)

I IPIt) iF(q„',P,', t) (25)

where the generating function F(q„', P,', t) is a function
of real variables q„', P,', and t. Since P,' is a continuous
number, the corresponding ket is normalized by

(P'tlP"t) =, b(P' —P").
'I

(26)

Consider a "well-ordered operator" F(q, P, t) such that

Consider two observables q„and P, with corresponding
eigenkets lq') and IP't) which are related by

Since F is an even function of q, any wave function in Q
space becomes an even function in q space whenever Q
space is transformed to q space by using the transition
amplitute (32). In fact one may prove that

«'IQ') p(Q') (Q'I = 1+
0

(33)

where p(Q) = cosec2Q, and 1~ is the even-parity projec-
tion operator in q space. Since the Hamiltonian operator
(31) commutes with 1+ one may push along this line but
only to obtain even-parity wave functions. The quantiza-
tion of energy is very intuitive when a generating function
of this type is used. (See Appendix A for more details. )

To get the complete wave functions the following defi-
nition of Q is employed:

l

(q'IF(q„, P„t)IP't) = F(q„', P,', t)(q'IP't). (27) Q = @+iq.
The operators defined by Assuming that it is a type 1 canonical transformation one
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can write p as p = &l~' l. Substituting this into (34),
F(q, Q) can be solved to give

» (I dl"
@ (q) =&e"

1

—.—
1

e*'~ '~ dQ
qi dqj

F(q, Q) = —-q'+qQ.
2

(35)

Since this generating function contains a bilinear term in
q and Q, there will be no such problem as the one which
we encountered previously. By direct calculations it can
be shown that basis kets 1Q') are in fact complete, and
the corresponding density functions are

p(q) =
2

e ' p(Q) = 1. (36)

The transformed operator P which can be read oE &om
(10) and (35) is

P = —q.

The Hamiltonian K in Q space is

(37)

K =iQP+ —Q + —.
2 2' (38)

This Hamiltonian is non-Hermitian. Even worse, since
p = Q —iq is non-Hermitian, the original Hamiltonian
(31) is non-Hermitian. All these unusual facts are re-
fiected in the "wrong density functions" given by (36).
As we already pointed out in the preceding section, there
would be no problem at all as far as the wave function
is concerned. One may convince oneself by checking the
final wave function (44).

By (38) the time-independent Schrodinger wave equa-
tion in Q space is

This wave function coincides with the usual form con-
structed directly in the cartesian coordinate system.

B. Propagators

H= —p.=12
2

(45)

The classical action for Q to q time evolution during t is

Our technique can also be used to solve the time-
dependent Schrodinger wave equations. In classical me-
chanics there is an elegant way of solving equations of
motion known as the Hamilton-Jacobi theory, which uses
the classical action as the generating function. In that
case the transformed Hamiltonian vanishes. Since the
transformed quantum Hamiltonian (14) looks like the
classical one, one may expect similar results for quantum
mechanics. But, because of the noncommutative prop-
erties of quantum canonical variables, there may arise
terms which are proportional to h which we simply put
equal to 1.

To convince ourselves of the advantage of our quantum
Hamilton-Jacobi theory for solving the time-dependent
Schrodinger equations, we first consider one-dimensional
&ee particles. The corresponding Hamiltonian is

I Q~ + 2Q'+
2 14'(Q) = &4'(Q) .

t' t9 1, 1)
(39) ~( Q, )

(q —Q)'
2t (46)

This 6rst order di8'erential equation can easily be solved,
giving the following wave function:

That means the best well-ordered quantum generator for
this time evolution is

$(Q) = NQ" e (4o)

where v = E —2, and N is a normalization constant1

which must be determined after the wave function in q
space

F(q, Q, t) = —(q' —2qQ+Q ). (47)

Using this generating function the transformed ket 1Q't)
is defined by

d(q) = Ne'e f e*e~ ~ Q dQ (41) t1QIt) iI'(q', Q', &) (48)

is evaluated. It is not dificult to show that this is pro-
portional to D„(~2q), where D„(z) is the parabolic cylin-
drical function defined by [5]

Note that we are using the Schrodinger picture. That is
the reason why the original basis ket 1q ) is time inde-
pendent. By direct calculation we obtain the following
density functions:

D (z) = 2v —
~

v'K 4 v —2x +2'Lxz
Q 1

p(q) =1 p(Q t) = 2, (49)

Re v ) —1. (42)

For noninteger v, it is known that D„(z) diverges as z
goes to —oo [6]. That means the energy of the harmonic
oscillator should be

1E=n+ —, n=o, l, . . .2' (43)

The corresponding wave function is

The canonical momentum p, P, and the Q-space Hamil-
tonian E are given by

q —Q ip=, P=p, K= —.
2t

(5o)

The classical Hamiltonian in Q space vanishes, but in
quantum physics it is propotional to h. The equation of
motion in Q space is
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z

2t
(5I) 0) e~&(q', q",t)

&27ri sin t
(6i)

$(Q, t) = , &(Q). (52)

and the solution with a convenient normalization con-
stant is

where F(q', q", t) is the classical action given by (57).
To see why the quantum generating function which has

the classical analogy is so successful, consider the fol-

lowing classical generating function for in6nitesmal time
evolution:

The true wave equation in q space is therefore F(q„,P, ) = ) q„P„—btH(q„, P, ), (62)

0(q, t) = 4(Q)dQ (53)

(
I II)2

2t
lim

/2m it
= 8(x' —x") (54)

it is clear that P(q) is nothing but @(q,0). This means
that the free particle propagator is, by (53),

To understand the physical meaning of this propaga-
tion equation we investigate the t —+ 0 limit. With the
help of

where II =
2 P P2 + V(q, ) is the usual Hamiltonian.

Using this we define a state ~((P') by (q']P') = e'P~q P ).
Then the density functions in both q and P spaces are
trivial and Q„, which is defined by &p, is Hermitian.
This means that all the eigenkets ~Q') form a complete
set. To get the physical meaning of ~Q') consider (q'~Q').
Using the completeness of eigenkets ~P') one has

(q'lq') =f, (~'~Il")(l" ~IQ')

G(q', tiq", 0) = . (q' —q")
2t

27rit
(55)

~ ~

~

oo dPI i p q„'P„' ibtH(q—„',P') (Pl ~Q/)2' (63)

At this point we would like to emphasize that by a di-
rect path integral it is known that the general form of a
propagator is [7]

G(q', t ~q", 0) = f (t)e's',

where S,~ is the classical action and f (t) is an undeter-
mined function of time. In our approach f(t) is related
to the "wrong" density function p(Q, t) and the h pro-
portional "non-Hermitian" Hamiltonian K in Q space.

Using a similar technique one can solve the time-
dependent Schrodinger equation for harmonic osillators.
The well-ordered generating function would be

Now the term e'« in the last part of this equation
can be written as (Q' +- q'~P'), where [Q' i—q') is an
eigenket of Q, whose eigenvalue is q„'. Using this fact (63)
can be simplified as

(64)

that is, [Q' i—q') = e ' ' ~q'). This means that (62)
is a both classically and quantum mechanically correct
generating function of the infinitesmal time evolutions.

IV. CONCLUSION AND DISCUSSION

F(q, Q, t) = —(q + Q ) cot t —qQcosect,
2

(57)

which is just the classical action for Q to q time evolution
during t [1]. One can prove the completeness condition
for ~Q, t), obtaining simultaneously the following density
functions:

1
I (q) = I I (Q t) =

2 „.„,. (58)

K(Q, P, t) = —cot t.
2

Using this Hamiltonian the Schrodinger equation in Q
space can be solved, giving the following time-dependent
wave function:

If q and Q commute, the tranformed Hamiltonian K van-
ishes. But for quantum theory it does not but is propor-
tional to h, that is,

We would like to emphasize that when the quantum
analogies of classical canonical transformations are se-

riously employed, one obtains useful quantum canoni-
cal transformations which can be used to solve either
time-independent or time-dependent Schrodinger equa-
tions. Furthermore, the generating operators of quan-
tum canonical transformations can be inferred from the
classical generating functions. In this way the classical
canonical transformations have some part in quantum
mechanics. This classical analogy is our strong point
which becomes rather obscure when one uses abstract
similarity transformation formalism. (See Appendix B
for more details. ) We expect that our idea will produce
more fruitful results when applied to the perturbation
theory of quantum mechanics.

Note added. After submission of this paper we received
papers &om Professor T. Curtright which show similar
interests in the quantum canonical transformations [8].

4(Q, &) = 4(Q). (60) ACKNOWLEDGMENTS

With the help of (58) and (54) one obtains the following
propagator of a harmonic oscillator:

This is supported by the Basic Science Research Insti-
tute Program of the Ministry of Education, Korea.
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APPENDIX A: ENERGY QUANTIZATIONS
OF HARMONIC OSCILLATORS

Consider a harmonic oscillator whose Hamiltonian is
given by

II(q P) = 2(q'+P'). (A1)

i( 3+E')vr
(AS)

This together with the positive energy condition yields

E = (2n+ —), n = 0, 1, 2, . . . .

The wave function vP(q') in q space is given by

(A9)

(q') = ~' dQ'p(Q')(q'IQ')v (Q')
0

~It dQI
0 sin ~

To get some insight into the energy quantization of a
harmonic oscillator we introduce the transformation

(q'IQ') = e'" -'~. (A2)

Because of (33) this transformation is complete only for
the even-parity subspace of @(q).The corresponding non-
Hermitian operators p and P are given by

OEp= = qcotQ,
Oq

(A3)

BFt 1P= — = —cosec Qq
BQ 2

From the commutation relation [q, p] = i we have the
equation

[q, cot Q] = iq (A4)

Using this relation the Q-space Hamiltonian K(Q, P) =
H(q, p) can be shown to be

K(Q, P) = P + —i cot Q.
3.
2

(A5)

The eigenvalue equation K(Q, P) p = Ep in Q space is
therefore

. (8 3i
I

——cot—Q I y = E&p.
E&Q

(A6)

It can immediately be solved, giving

rp(Q) = %sin' Qe' (A7)

where N is a normalization constant. Since IQ ) is de-
Bned by (A2) the wave function in Q space should satisfy
p(Q' + vr) = rp(Q'). This means that

APPENDIX B: GENERALIZATIONS
AND RELATION TO SIMILARITY
TRANSFORMATION APPROACH

In Appendix B we generalize some results obtained in
Sec. II and investigate the relation between our method
and the similarity transformation method given by (1).
For simplicity we consider only a one-dimensional case.

Suppose lq') is a set of ket vectors in a Hilbert space

and lq') a new set of ket vectors in the same Hilbert space.
In general, lq') may not form a complete orthogonal set.
One can make lq') complete by introducing a new inner
product in the same Hilbert space, which will be shown
later in this Appendix. In this case the original lq') and

the new lq') will be complete with respect to two different
inner products, that is, with respect to the old and to the
new ones, respectively. Then the dual vector (q'I should
be defined using the new inner product. Suppose that
lq') and lq') are complete with density functions p(q')
and p(q'), respectively. Then one gets

«' lq') p(q')(q'I =1 (B1)

«' lq') P(q') (q'I = 1.

qlq') = q'lq'), qlq') = q'Iq') (B2)

will be Hermitian with respect to the old inner product
and the new one, respectively. It can be shown that the
two density functions together with lq') determine the
new inner product uniquely. To clarify this point, let us
consider the following.

Let us write lq') = C(t)lq'), where C(t) can be re-
garded as a time-dependent similarity transformation.
Then q = CqC . A new dual vector (q'I can be ex-
pressed in terms of the old one as

(q I (q IctM (B3)

where M is an operator defining the new inner product.
In other words, (n, P) = (nlMIP), where (, ) denotes the
new inner product. Using the completeness relation we
can find

For some cases lq') or lq') may be incomplete. In that case
the left hand side of (S) should be replaced by appropriate
projection operators. The operators q and q which are
defined by

x exp
I

—q' cot Q'+ i(2n+ -)Q'
I

. (A10)

%Then we compare this equation with the well known
result for a harmonic oscillator (61)

ctMc = '('),
p(q)

' (B4)

1
/ 1 g ezq cotT) ~.-(q')~:.(0) -'"":"= I'

2mi j sin& T

(A11)

we obtain the correct even-parity wave functions.

and conclude that p, p, and C determine M completely.
In Sec. II we restricted ourselves to the cases where both
lq') and lq') form complete orthogonal sets with respect
to the same inner product. In this case, M = 1 and C is

"almost unitary" in the sense that C ~ is unitary. This
P

is not always true. As shown above, in general cases we
are forced to introduce two different inner products.
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Now we study how the momentum operators trans-
form. Using (84) and the fact that momentum operators
are defined by

8 l — 8—
K q', i—, , t (q'lt) =i (q—'lt) .Bq''

~
Bt

(812)

one can easily prove that

To find K(q, p, t) in terms of q and p, (86) may, in
principle, be used. However as in Sec. II, some interesting
results can be obtained if the transformation is expressed
in the form

p = CpC, q = CqC (86) (q'lq") =" '' " (q"lq') =e ' ' '" (813)

H(q, p, t)lt) = i —„ It).
d

(87)

with C = (CtM) . Next we consider the Schrodinger
equation

where I" and G are some functions obeying the relation

I III i
d rr iF(q', q",t)-( n t)

—iG(q",q'", t) ( )
p(q')

(814)

Multiplying both sides by (q'I, we have

(q'IH(q p t)lt) = ig, (q'lt) —(q'IGlt) (BS)

As in Sec II w. e assume that E(q, q, t) and G(q, q, t) are
"well-ordered" operators in the sense that in F(q, q, t) all
q's are on the left, and in G(q, q, t) all q's are on the right.
Then (10) corresponds to

where G is defined by

(q'IG = i&, (q'I. (89)

t9
p = —E(q, q, t), p = ——G(q, q, t),

and we also have
~ 8

G = —G(q, q, t).

(815)

(816)

G 'C C—1
Ot

Denoting

K(q, p, t) —= H(q, p, t)+G,

(810)

(811)

one can write the Schrodinger equation in q space as

One can express G using the similarity tranformation Equation (815) can be used to get q and p in terms of
q and p. In "almost unitary" cases considered in Sec. II,
we get

G(q, q, t) = E(q, q, t)t.
The two density functions can be absorbed into F and
G, which is obvious Rom (814)—(816). In this case we
have p=1and p=1.
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