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Multiparticle correlations in quaternionic quantum systems
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We investigate the outcome of measurements on correlated, few-body quantum systems described
by a quaternionic quantum mechanics that allows for regions of quaternionic curvature. We find
that a multiparticle interferometry experiment using a correlated system of four nonrelativistic,
spin-half particles has the potential to detect the presence of quaternionic curvature. Two-body
systems, however, are shown to give predictions identical to those of standard quantum mechanics
when relative angles are used in the construction of the operators corresponding to measurements
of particle spin components.

PACS number(s): 03.65.Bz

X. INTRODUCTION

Quaternionic quantum mechanics (QQM) was raised
as a possibility by BirkhofF and von Neumann [1] in 1936,
and has been elaborated since then by a variety of au-
thors using difFerent theoretical approaches [2—10]. In
particular, Finkelstein et al. [2] have presented a general-
ization of standard complex quantum mechanics (CQM)
which uses the mathematics of QQM to introduce space-
time dependence into the quantum dynamics. They do
this by choosing to replace the imaginary unit i of stan-
dard CQM with what in effect is a nonintegrable, al-
most complex structure on the space-time manifold [11],
which is representable by the introduction of a Geld of
pure imaginary unit quaternions throughout space-time.
In order to relate the complex algebras &om point to
point, use is made of concepts &om differential geoxnetry;
gauge connections, covariant derivatives, and curvature
have their quaternionic analogues in Q connections, Q
covariant derivatives, and Q curvature. In the following,
we refer to this general theory as GQQM.

To date, however, the absence of clear experimental
evidence has meant that researchers have constructed
models with a concern to ensure that the quaternionic
aspects are hidden in situations where CQM is success-
ful. Fully quaternionic interactions are permitted, but
the higher quaternionic components of the wave func-
tions in these models exponentially decay in the absence
of quaternionic-dissipative potentials [7]. Further, it is
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customary to work in what Finkelstein et al. [2] have
classified as the Q-flat limit of their theory, thereby ne-
glecting much of the geometrical content of the full the-
ory.

Our contention is that within GQQM the quaternionic
nature of the states can manifest itself in collective, non-
local effects. In particular, there emerges a possibility
of testing the prediction of GQQM that the i of CQM
becomes a Geld of quaternions on space-time, by the si-
multaneous measurement at remote points of the intrinsic
spin of particles in entangled states.

To treat many-body systems in their nonmutually in-
teracting state (i.e. , to construct Fock spaces of parti-
cles), we use the tensor product of quaternionic Hilbert
modules developed by Razon and Horwitz [10]. This per-
mits the deGnition of a scalar product of quaternionic
multiparticle wave functions, by abandoning linearity in
each factor of the tensor product in favor of a quotient-
group structure (we present a summary in the Appendix).

In the next section, we examine the predictions of
GQQM for the archetypal experimental test (Bohm)
[12] of the Einstein-Podolsky-Rosen (EPR) program [13].
This was also the situation Bell [14] used in his famous
demonstration that CQM could not be completed in ac-
cord with the EPR paper's assumptions. This case raises
a number of foundational questions about how physical
information is encoded in the mathematical operators
chosen to represent particular measurements.

We then consider a similar experiment on a correlated
four-electron state proposed by Greenberger et al. [15].
It is in this situation that we expect manifestations of
quaternionic behavior.

Given the enormous importance of the results engen-
dered by Bell's work for exploring the foundations of
CQM, we view the results of our paper as a preliminary
contribution to locating their signiGcance for exploring
the foundations of QQM.
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II. TWO BODY CORRELATIONS ment, at position w, of internal spin of a single particle,
along a spatial unit vector

Bohm's gedankenexperiment consists of simultaneous
spin component measurements on a system of two spin-
half particles prepared in an entangled state

n = (sin 8 cos (t, sin 0 sin P, cos 8), (2)

I@) = ~(I+)~ I
—)2 —

I

—)~ I+)2).
where the angles are defined with respect to some labo-
ratory frame of reference, is

The preparation procedure, which is visualized as the
decay out of a two-body S state, results in a state which
is rotationally invariant. That is, the complete entangled
state is invariant under the group of rotations (g Csg! g E
SU(2)), where SU(2) is the covering group of Os. This
is equivalent to stating that the measurement of internal
spins of both particles along the same spatial axis, is
independent of the orientation of that axis. (Note that
this use of the quaternions, related to the spin-half nature
of fundamental fermions, is located wholly within the
domain of CQM. ) It is this invariance which essentially
means we cannot ascribe any physical reality to definite
spin components prior to their measurement.

The entangled character of the state is also invariant
under this group, which implies that under linear, con-
tinuous evolution in free space, the state remains entan-
gled and does not collapse into a trivial product of wave
functions at distinct points. In addition, this invariance
means that when we measure spin components along dif-
ferent spatial directions, it is only the relative angular
displacements of the analyzing directions that are physi-
cally significant.

In CQM, this state can be multiplied by an additional
arbitrary phase factor which does not change the physical
system (i.e. , we actually deal with an equivalence class
of states, of which the above is merely representative,
the class relation being multiplication by a phase factor).
This enables us to choose the initial state Eq. (1) to be
real, and. in particular, to choose each factor to be real.

Now at each point of space-time GQQM singles out a
complex slice of the operator algebra on the quaternionic
Hilbert space Q~. All of the local physical observables
are restricted to this slice, and so the theory specifies a
complete and distinct CQM at each point of space-time,
related to each other through the Q connection. Hence,
GQQM retains the property of local phase invariance of
states. In this case, the choice of a real initial state corre-
sponds to nulling the phase factors associated with each
single particle wave function separately.

The 03 invariance of the quaternionic system, in
the sense of spin measurements along the same spatial
axis being independent of the orientation of that axis,
is assured by the local equivalence between CQM and
GQQM. Hence the rotational invariance of the state still
holds within GQQM with the theory therefore still imply-
ing that individual particle spins fail to have any physical
reality prior to their experimental resolution.

The Hermitian operator corresponding to the measure-

( cos 0 sin 9en. o =
!(singe&~ -cose )

Here, g is the quaternionic generalization of the imag-
inary unit of CQM which, expanded with respect to a
Fixed basis of imaginary units, is

rI = g(x) = ) h„(x)i„,

Z~( ,n)n=(e! n ~(,)
en' ~(,)!e),

which is equivalent to calculating

E@(n,n') = 2(P++ + P —P+ —P +).

Here, the subscripts of P match the labels of the left most
elements in the tensor products of bras and kets, e.g. ,

P++ = (+I (—I (n ~(~) n'. ~(2)) I+) I

—) (7)

and we retain the usual definition of tensor products of
operators action on tensor products of states. That is,
V!@), [P) C &~, the Hilbert space of quaternionic sin-
gle particle states, and VA, B 6 H('R~), the algebra of
linear operators on 'R~, we define

(&&) I@) [4) = (&14)) (&I&)). (8)

With the detectors at x.z and w2, respectively, without
loss of generality we set q(xq) = iq and drop the position
label Rom g(x2).

where V x, h(x) 6 R, !!h[[ = 1. That is, GQQM is a
theory in which the observables have an additional space
dependence due to the phenomenon of Q curvature. We
now explore the significance of this feature for experi-
ments on this two-body correlated system (we examine a
four-body system in the following section).

(We remark in passing that we only deal with a static
Q curvature; the processes by which the Q curvature is
generated and evolves have still to be conjectured. Nev-
ertheless, we expect that a mathematical exposition of
this problem will involve quaternionic gauge fields, the
fundamental theory of which has been investigated by
Adler [8].)

The expectation value of the product of a component
of each particles' spin is given by

P+- = ). ([(+I( —Ij[(»nge "I+))~, (»nt)'e ~ "l-))..1}(111 I~(~) 4, ip, 1. 1~(~))~.
(~)&&'
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For the reasons given previously, we consider the basis
spin states I+& to be real. Then we can identify them
with their formally real 0th components (in the sense of

(I+&)- =
4 ) i-(I+&i:)i = I+&b-p.

Hence

P+ ——sin0sin0') (e ~ ")~
p+Z

x [cos P (la(ys), 1 az 1 la(ys))
+ s111$ (la(yS), i1 (3 i& 1 ~ la(yS)) ].

Applying the recursive de6nition to the inner product
of tensor producted quaternionic algebras (given in the
Appendix), we have

(la(ss), 1 (3 i~ 1 la(ys)) = s~i~ + sb~p,

(la(ys), x1 1'~ (3 1 la(ys)) = —bpoz1 —
s b~1. (13)

Therefore, we have the (real) expectation value,

E@(n, n') = —cos 0 cos 0'

—sin 0 sin 0'(cos P cos P' + s h1 sin P sin P') .
(17)

The 6nal term in this sum represents the manifestation
of QQM in this nonrelativistic, correlated quantum sys-
tem. It is a specialization of the Euclidean inner prod-
uct h(x1) h(x2), arising from the natural inner product
structure imposed upon the quaternionic algebra.

As stated before, rotational invariance of the initial
entangled state Eq. (1) requires the use of relative angles
for the phases P, P', i e , P ~. P„~ = P —gV, (b' = 0, so
n' = (sin 8', 0, cos 0') and

n . n' = cos (b„1sin 0 sin 0' + cos 0 cos 0'.

Hence, we retrieve the CQM result,

E@(n,n') = —cos0cos0' —sin0sin0'cos$„1 = —n. n'.

Hence

P+ ——sin 0 sin 0' [cos P cos P' + s sin P sin (b'h1

+s sinPcos(b'i1 —
s cosPsinP'ri].

Similarly,

P-+ =
&
—

I &+I (n. ~(1) n'. ~(2)) I+) I

—
&

= sin0sin0'(&
I &+I e +"I+) e+ "I ))ss

= P+—(4 -+ —4» 4' -+ —4'')

so that in combination, we obtain the real result

P+ + P + ——2sin0sin0'(cos(icos/'+ s sin/sin(t'h1).

(14)

Now

P++ = &+I &
—

I (n ~(1) n'. ~(2)) I+& I

—
& (15)

P = P++ ———cos icos 8'. (16)
I

The fact that GQQM hides itself at this level of two-
body systems is an interesting result, especially as it
tends to imply that GQQM might not manifest itself in
models neglecting & three-body interactions. This would
suggest that the present lack of experimental evidence for
GQQM may be due to the subtlety of the theory.

III. FOUR-BODY CORRELATIONS

We now consider a four-particle correlated system de-
scribed by Greenberger et al. [15].

l@GHSZ& = ~(l+&1 I+)2 I

—)s I

—
&4

-I-& I-). I+&. I+&.)

We carry out simultaneous (or at least, spacelike sep-
arated) measurements of a component of spin of each
particle, and consider the product of these values. The
quantum mechanical expectation value is, thus,

EGHsz((n(j)]') —(@GHszl &3n(j) ~(j) l@GHsz& (2O)

4

I'+- = (+I @(+I @ (—I @(—I («(~). «(i)) I

—) @
I

—) @ I+) @ I+) (21)

4

s, =( sin8~ e~'" '
z, e '" ' z, e ~'"( '~, e '"( ' z, lD(~), i(p) 1 - 1D(~) ~,

(p) @+4
(22)

where (0~, Pz) are the polar and azimuthal angles specifying the direction nz along which a measurement is made on
the jth particle.

We now simplify this expression by considering the special configuration Vj, 0~ = vr/2 and without loss of generality
take gs ——i1 Further, we .use relative angles: Vj, pz -+ p~ —p4.

Hence,



MULTIPARTICLE CORRELATIONS IN QUATERNIONIC. . . 979

P+ —— ) (e '""'
)~, (e '""'

)~, costs(ID(~), i(p) 818181 1~(yg))~
(~)&2

—sings (1Li(yg)) l(p) 8 'il 8 1 8 1 l~(~))yz

Using the recursive definition for the inner product of quaternion algebras, we obtain from Eqs. (19)—(23),

E«» ((n(i) )) =
z (P+—+ —+)

= —cos Qi cos Q2 cos Qs —s hi(xi) slil gi cos Qz sings —shi(x2) cos Pi sin /2 slil gs

+ sh(xi) h(xz) sin Pi sin Pz cos Ps.

(23)

(24)

Hence, we find that GQQM efFects are manifest in ex-
periments on this four-body correlated system. More-
over, we expect GQQM to give difFerent predictions from
CQM for all N & 2 body systems. (On this point, we
mention that Razon and Horwitz [10] have suggested
that as N —+ oo, with their definition of a multiparticle
inner product, we recover the quantized field commutator
relations of complex quantum field theory. )

The CQM expectation value is

EGHsz((n( ') )) = —cos(4 1 + 4'2 4'3) (25)

h(x) h(x') w 1, V x, x,' (26)

The recursive definition of the scalar product of Razon
and Horwitz [10] has introduced numerical factors which
depend on the number of subsystems, but the occurrence
of h(x) h(x') coefficients to the relative-orientation de-
pendent terms in the expectation value might be char-
acteristic of GQQM, whatever our choice of scalar prod-
uct (the same terms arise in the simplest approaches to
this calculation [16]). If QQM does extend CQM, then
it must be hoped that there are definitions of tensor
and inner products which reach CQM via some natu-
ral limiting process, such as nulling of the Q curvature in
GQQM. Alternatively, it may be that QQM theories deal-
ing with composite objects cannot support tensor prod-
ucts and we must look for alternative mathematical tools
of description (e.g. , composition of quaternionic Hilbert
spaces could be viewed as a lattice theoretic problem [6]).
For the moment, we are content to regard Eq. (24) as be-
ing a useful example of the type of prediction made by a
class of almost complex extensions of quantum mechan-
ics, in the sense that it demonstrates how QQM efFects
can be uncovered in correlated systems.

Note that if instead, we considered an experiment
which made use of plane polarized photons, in the man-
ner described by [15), then because photons possess a sin-
gle quantum of angular momentum, the operator corre-
sponding to a polarization filter has real components [17]
and GQQM has no opportunity to manifest itself. This
situation is changed by the use of circularly polarized
photons, in which case the quantum mechanical prescrip-
tion for calculating the expectation values necessarily
uses complex numbers, giving the quaternionic entangled

Comparing this with Eq. (24), we see that the CQM
limit is not reached by simply nulling the Q curvature,
i.e. ,

state a probability distribution sensitive to a changing g
field (hence, not predicted by CQM).

IV. CONCLUSION

We see that it is a special result of particle number
which hides GQQM in two-body situations. For more
complicated systems, GQQM gives expectation values
that difFer formally from those of CQM. The importance
of particle number in this situation is analogous to that
pertaining to correlations in CQM. As Greenberger et
al. [15] have shown, Bell type inequalities which per-
mit local realistic hidden variable theories to agree with
quantum mechanical predictions in certain regions of pa-
rameter space (though not in all regions) only occur for
two-particle entangled states. For more complicated sys-
tems, however, CQM predicts correlations for entangled
systems which are unable to be described by local hidden
variable theories.

Our result in Eq. (24) indicates that experimental tests
of four-particle correlations have either the potential to
reveal quaternionic components or to set limits on their
values. Our prediction of quaternionic terms in multi-
particle correlation experiments provides a further mo-
tivation to the reasons given by Greenberger et al. to
undertake such experiments.

If such an experimental test of GQQM were carried
out and no quaternionic correction terms were discov-
ered, and given that the universe we inhabit is observed
to be complex to a high degree, then in some clear sense
we would have evidence against what we would main-
tain is the most natural interpretation and implementa-
tion of the suggestion of BirkhoK and von Neumann that
does not relegate QQM to presently inaccessible sectors
of physics (e.g. , physics at the subquark level [8]). In
this case, until there occurs a situation where QQM pro-
vides an explanation analogous in significance to general
relativity's explanation of the anomalous precession of
mercury, or to the quark model's solution of the hadron
classification puzzle, the theory will remain tentative.

A more modest perspective would be to sidestep for the
moment questions as to whether or not QQM is the "real"
theory of quantum phenoinena, and simply to view QQM
in a phenomenological sense as a theory whose extra pa-
rameters aKords a way of better capturing experiment
results that have defied analysis by other means. The re-
sults of the type we present in Sec. III indicate the man-
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ner in which this parametrization can occur. Naturally
any success on this score invites a deeper consideration
of the viability of QQM.

Depending on the outcomes of these possibilities, QQM
may tell us something crucial about the necessity of both
q numbers and c numbers in the correct description of
physical phenomena as we know them. Quaternionic
quantum mechanics exists as a potential alternative the-
ory because of the correspondence we set up between
experimentally observable quantities and Hermitian op-
erators (which necessarily possess real eigenvalues). If ex-
periments fail to support QQM, then we have found out
something about the physical standing of non-Hermitian
operators and unobservable properties of a system.

We await experimental clarification of these concerns.

1
(q)g = ~ [(qiqiv . qiv —i)gN+1

+ . +(qi. . q~ .q~)g.
+2(q~)p(q, ~ ~ q~, ),].

With these conventions in place, we now define an in-
ner product on the quaternionic quotient space,

3

(qi . 1D(H), q2 . 1D(H))H = ) (qi [i&]Hq2) g i~. (A5)

For each g C a Hilbert Hmodu'le 'RH, the formally
real coinponents of @ are defined at each point x by

(g)H = ) g Igni*(x) i (x) (A6)
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APPENDIX: TENSOR PRODUCT OF
QUATERNION ALGEBRAS

The algebra of quaternions H can be considered to be
the real linear span of a set of four abstract basis elements
1, ii, i2, is with the multiplication rule Vr, s E (1, 2, 3),

c' 3
1zv = zr 1 = zr y &r La ——or8 + t—] ~rstzt (Al)

qr = (qi ~" e q~)(» ~ . ~ rH)
= (qiri Im. S q~rH).

Let [q]~ = 1 . . 3q . 1 F D, withqinthe jth
place.

The requirement of linearity in each factor of the ten-
sor product is now to be weakened [10]. To this end,
we consider instead the quotient space D(H) = D/AH,
AH = g„~i H Az, where A„ is a left ideal of D gener-
ated by the set ([rl]i —[r)]z . 2 & j & N). The identity
element of this space is 1D~~~

——1~ + A~.
(q) g is defined inductively for q p D by

(qi) g = (qi)p =—Reqi, (A3)

and for N ) 1,

We designate the set of pure imaginary quaternions by
ImH=(&= E,

Let 2' be the index set (0, 1, 2, 3), and define (p) =
(pi, . . . , piv), which lies in the Cartesian K-product X

We denote the tensor product of N quaternionic alge-
bras by D = H (3 . (3 H, which has the product basis

(i(~) = i~, . i~ ) (where ip = 1), and identity ele-
ment 1D ——1 (3 -. (3 1. Multiplication in D is defined in
a pairwise sense,

= ) @"i (x).
cr+2

(A7)

We now choose to decompose each tetrad i (x) as a ro-
tation from a standard basis iq (the rotation being an
element of the group Ii Os).

(@)» = ) () Q"0 p(x))ip ——) /ping.
p&Z cr QX p6&

(A8)

We can now form the quaternion tensor product of N
single particle systems, which is itself a left module over
the quaternionic algebra:

@q = @' . (3 g~ q c 'Rg e H. '

(A9)

As usual, for an interacting system, the states of the
N-body interacting quantum system can be decomposed
in the basis formed by the N-tensor product of a basis
8('RH) for 'RH.

Using the decomposition into formally real components
of each single particle wave function,

) (g i~, ) II . . S (@ iq ) 1 lD(H)
(p) qgN

(@ @.. g ) (i( ) @1.1D(H)),
(p) &&N

(Alo)

). (4,', 0, ".]4.', "4.".)
(p) (~)&&

x (~(p) 1 1D(H) ) ~(cr) 1 ' 1D(H))H.
(All)

where we have taken the formally real components and
formed them into a correspondingly ordered N tuple of
functions.

Thus, O' C [l:H(R )]~D(~+i)(H), where ZH(H ) is
the set of quaternion valued, Lebesgue square-integrable
funct, ions on d-dimensional Euclidean space (for particles
in a box, these functions are of finite support).

We can now define a scalar product of N-body wave
functions:
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