PHYSICAL REVIEW A

VOLUME 51, NUMBER 2

FEBRUARY 1995

Unitary transformations for the time-dependent quantum oscillator

Alla N. Seleznyova
Department of Physics, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
(Received 10 August 1994)

An approach to study the time-dependent quantum oscillator with the Schrédinger operator
S(Q(1)=1[p*+0%1)x*]—i(3/d¢t) is presented. A family of unitary operators {W,(¢)} is found such
that S(Q(t))=le(t)S(w)WL(t), where z=2z(t) is a certain function and o is a positive number. Wave
vectors, the boson creation and destruction operators, the evolution operator, and invariants for the
time-dependent oscillator are obtained by means of {W,(¢)}. The approach is applied to calculate tran-
sition probabilities, Berry phases, and to study coherent states of the time-dependent oscillator.

PACS number(s): 03.65.Bz, 03.65.Ca

I. INTRODUCTION

Oscillator models are widely used in quantum optics
and atomic, molecular, and solid-state physics. Here an
approach to study the time-dependent harmonic oscilla-
tor is developed. A family of unitary operators {W,,(#)}
acting on an abstract Hilbert space A is found that trans-
forms the Schrédinger operator

“ar

of a time-independent oscillator (the reference system),
where

H,=L(p’+o’x?), )

x and p are the coordinate and momentum operators on
R, ®> 0, into the Schrédinger operator

— . d
Sl(t)=H1(t)—zE (3)
of the parametrically excited oscillator, where
H,(n)=1[p*+Q%1)x’], @)

Q(t) 20, namely,
S|()=W_()Ss(tyW (2) . (5)

In this paper we use #i=m =1; the case m =m (t) can be
reduced to the case m=1 [1]. The family {W,(¢)} de-
pends upon a family of complex functions {z(#)} [see (17)
and (18) below]. The use of {W,(¢)} provides a uniform
treatment of a number of problems related to the parame-
trically excited harmonic oscillator. It gives insight into
the problems previously discussed in the literature, such
as finding a general form of solutions of the Schrodinger
equation (Sec. V), finding a general form of the density
operator (Sec. VI) and its P representation (Sec. VI), cal-
culation of matrix elements of operators (Sec. V), calcula-
tion of transition probabilities for the oscillator subjected
to perturbation finite in time (Sec. VIII), and properties
of exact time-dependent invariants (Sec. II). It also pro-
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vides a number of new results: a family of expressions for
the evolution operator (Sec. IV); properties of a wider set
of families of generalized coherent states of the time-
dependent oscillator, including a description in terms of
the expectation values {(x) and {p), the resolution of
unity, and the diagonal representation of operators (Sec.
VI); the Floquet form of the evolution operator and Berry
phases of cyclic states in the cases of evolution finite in
time and evolution under a T-periodic parametric excita-
tion (Sec. VII); a general expression for the amplitude of a
transition from a number state into a quasienergy state
under a periodic perturbation and an example of pertur-
bation for which the amplitude of transition equals §,,,
(Sec. VIII).

The time-dependent oscillator has been studied in a
number of papers. Explicit expressions for the Green’s
function and for the transition probabilities were ob-
tained by Husimi [2]. A thorough study of the oscillator
was undertaken by Popov and Perelomov [1,3,4]. They
have obtained an explicit form of a general solution of the
Schrodinger equation in the x representation, an analyti-
cal expression for coherent states, the P representation
for the density operator, and an explicit form of the
Wigner function for the case

Qt) ——o_ . (6)
t—>— o0

Popov and Perelomov have also obtained the quasienergy
states of the oscillator under a periodic perturbation and
transition probabilities for the oscillator subjected to a
perturbation finite in time. The importance of exact in-
variants for description of time-dependent quantum sys-
tems was pointed out by Lewis and Riesenfeld [5], who
considered a certain class of exact quadratic invariants to
obtain solutions of the Schrodinger equation of the oscil-
lator. Linear invariants and the invariant displacement
operator were used by Malkin, Man’ko and Trifonov [6]
to obtain coherent states of the oscillator. An explicit
form of the propagator was obtained by Khandekar and
Lawande [7] and Farina de Sousa [8]. Generalized
canonical transformations for the time-dependent oscilla-
tor were considered by Leach; see [9] and references
therein. Note that all these papers deal with an analyti-
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cal description of the time-dependent harmonic oscillator
in the x representation, which has proven to be rather
complicated in form. Lie algebraic techniques were ap-
plied to study coherent states by Perelomov [10,11], to
study Noether invariants of the oscillator by Profilo and
Soliana [12], and to study the evolution operator by
Magnus [13], Wei and Norman [14], Cheng and Fung
[15], and Lo [16-21]. The expressions for the evolution
operator obtained by the Lie algebraic method are not al-
ways valid for all moments of time [13,14]. Canonical
transformations for the quantum oscillator with the fre-
quency satisfying (6) were considered by Blaizot and Rip-
ka [22]. The evolution of the density operator and the
Wigner function for the particular case where Q(¢) is a
linear function on [0,7] was considered by Agarwal and
Kumar [23]. In all the papers listed above the problem in
question is reduced to a problem of solving ordinary
differential equations for scalar functions. The above pa-
pers differ by the choice of parametrization, namely, by
the equation, by the particular solution of the equation,
and by the frequency of the reference system w [w=1,
Q(0), or lim,_, _,, Q(2)]. The final form of the results de-
pends dramatically upon the chosen parametrization.

The approach presented here, based upon the family of
unitary operators {W,,(¢#)}, has several distinctive
features. (i) It uses the abstract Hilbert space # rather
than its realization by the x representation; most of the
results are obtained by operator techniques. (ii) It uses
the invariant form of the destruction, creation, and dis-
placement operators, which provides a natural transition
from the description of the reference system to the
description of the time-dependent oscillator. (iii) The
time dependence of Q(?) is arbitrary. (iv) The frequency
of the reference system w is not necessarily unity or the
initial value of Q(¢). The frequency (¢) may have no
limit and, what is more important, the initial value of
Q(t) may have nothing to do with the characteristic fre-
quencies of the system, as in the case of a T-periodic
parametric excitation. (v) It is flexible in the choice of
z(t). An appropriate parametrization produces the re-
sults in a compact and physically clear form. (vi) The re-
sults obtained by this method are valid for all moments of
time.

II. INVARIANTS OF A TIME-DEPENDENT
QUANTUM SYSTEM

In this section we obtain some properties of exact in-
variants which are essential for the present approach.
Let H(¢) be the Hamiltonian of the system and
S(t)=H(t)—i(3/9t) its Schrodinger operator. An
operator A(z)is called an exact invariant of the system if

[ A(2),S(2)]=0. (7)

It follows from (7) that action of an invariant on a solu-
tion of the Schrodinger equation of the system produces
another solution. Since the inner product of any two ex-
act solutions does not depend on time [24], all the matrix
elements of the invariant between the states of the system
are time independent. The general solution of Eq. (7) in
the set of operator-valued functions of time acting on R

is A(2)=U(s0) AOUT(t,O), where U(¢,0) is the evolution
operator of the system and A, is an operator on Z. Let
|@o? ER be an eigenvector of A, associated with an ei-
genvalue A; then |@(2)) =U(¢,0)|@,) is an eigenvector of
A(t) associated with the eigenvalue A. Thus the eigen-
vectors of the invariants that are operator-valued func-
tions acting on 7 can be chosen in such a way that they
satisfy the Schrddinger equation of the system. This is a
generalization of the result obtained by Lewis and
Riesenfeld [5] for Hermitian invariants which have a
discrete spectrum of nondegenerate eigenvalues. It is
easy to see that the uncertainty of the invariant in an ar-
bitrary state of the system,

(AAD)?=([ AP —(A())?, (8)

does not depend on time.
In the following we shall use the invariant destruction
and creation operators ao(t),a(’;(t) [6],

a(t)=e“a(w), al(t)=e “a'(w), 9
[ag(2),al(0)]=1, (10)
where

a(0)=Q20) "Hwx+ip) , an
a'(0)=2w) "wx—ip) .

The operators (9) are invariants of the reference system
linear in x and p. We shall also need the following quad-
ratic invariants:

— 2 — 12
K+"’l ! y K_.'—%ao,

1 Ko=L(afa,+agal), (12)

(Ko, Ki]=+K,, [K_,K,]=2K,. (13)

Here the time argument in ag, ag, Ky K_, and K, is
omitted.
Let A(t) be an invariant of the reference system; then

A=W, (1) A(OW] (1) (14)

is an invariant of the time-dependent oscillator (4). The
invariant A(z) has the same spectrum as A(z) and its
eigenvectors are obtained by action of W,,(#) on the
eigenvectors of A(?).

III. EXPLICIT FORMS OF W,,(?)

It can be verified by substitution that

le(t)=-—lrei“"2e_i""pei(t_y/m)ﬂo , (15)
Vr
where
_ __F@)
r()=lz(s), w( ()’
(16)
He)=Inr (), y(t)=argz(t),
and z (¢) satisfies the classical equation
Z2()+QX1)z(1)=0 (17)

and the condition
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2()z*(t)—z *(t)z () =2iw . (18)

Another expression for W, (¢) is given by

§K+—~§*K_e —2ip, K,

W, (t)=e , (19)
where
E=l&le’, |ul=coshlél, o=@,—q, , (20)
uElulei¢”=e;im z(t)—%(fl ,
(21
vE]vlei‘pV=T z(t)+i-z.;()t—)

Formula (19) can be verified by substitution into (5), ex-
pressing the Hamiltonians H, and H,(¢) in K;,K_,K |
and using (13). Using (14) we obtain linear invariants

a,(z,8)=(20) " —iz(t)x+iz(t)p] ,

(22)
al(z,0)=(2w) " V[iz*(t)x—iz*(t)p]

and quadratic invariants
K =4al’, K,_=1la}, K,;=1(afa,+aja]) (23)

of the time-dependent oscillator (4). The linear invariants
(22) are equivalent to the invariants obtained by Malkin,
Man’ko, and Trifonov [6], who used a different
parametrization. Using  the  identity W, (z)
=le(t)le(t)WL(t), the operator W,(¢) can also be
expressed in terms of K, K, _, and K

* .
e§K1+_§ Kl—e —2¢p,Kp

W, ()= (24)

Thus we have obtained three families of expressions for
{W.(2)}. The families (19) and (24) are useful for treat-
ment of coherent states of the parametrically excited os-
cillator and of the forced oscillator, respectively, while
(15) is especially convenient for the x representation.

IV. EVOLUTION OPERATOR

The evolution operator U(#,0) of a quantum system is
defined as

20,00 =H(1)U(1,0),
ot

where I is the identity transformation. In this section we

will use {W_(7)} to obtain expressions for the evolution

operator of the parametrically excited oscillator U,(¢,0).

It is easy to see that

U,(1,0)=W,(:)Uy(£,00W](0)

U(0,0)=1I, (25)

=le(t)WL(0)e —2iatK (0) ’ 26)

where Uy t,0)=eniH°tEe etk is the evolution opera-
tor of the reference system. For z,(¢), such that z,(0)=1
and 2,(0)=iw, we have Wi, (0)=Iand

—‘iHOt

Ul(t,O)=W120(t)e 27)

Substitution of (15) and (19) into (27) gives

o2 P
Uy (1,0)= —L o 0% 1200, ~2i7oKo (28)
To

% .
e50K+_5o K‘e —2ip,0Ky

U,(2,0)= ) (29)

where the time-dependent parameters correspond to
z(t)=zy(t). Note that the expression similar to (29),
which can be found in Lo [16-21] (see, for example, Egs.
72-74 of [18]), is incorrect because it fails to satisfy the
necessary condition

U,(£,0)=Uy(2,0) if Q(t)=ow .
V. SOLUTIONS OF THE SCHRODINGER EQUATION

It follows from (5) that if |Wy(¢)) is a state of the refer-
ence system

So()[W(2)) =0, (30)
then
[W,(2)) =W, (6)|¥(2)) (31
is a state of the time-dependent oscillator
S(0)|¥,(1))=0 . (32)
The action of W, (¢) on {|ny(w,))},
Ino(a),t))=e_iE"t|n(w)), E,=(n+1o, (33)
1 1721172
(x|n(w))= @
2"n! | T
wx? —
X exp — ]H,,(\/a)x) , (34)

where H, is a Hermite polynomial, gives the eigenvectors
of K

[n ()Y =W, ()|ny(w,t)) . (35)

It is important to use states (33) satisfying the
Schrodinger equation (30) because the expansion
coefficients of any exact solution of (30) in the basis (33)
do not depend on time. The invariants (9) are lowering
and raising operators for the states (33). The states
{In,(#))} have the same properties: they satisfy the cor-
responding Schrodinger equation (32), any solution of
(32) has time-independent coefficients in {|n,(¢))}, and
the invariants (22) are lowering and raising operators for
{In(£))}. Using (31) one can reduce matrix elements of
operators between the states {|n,(¢))} to matrix elements
between the states {|ny(w,?))}. For example,

(ny(OH((D]n7(2)

E
Sz L2+ QX028

+ﬁ%’la;__ll[z'2+ﬂz(t)zz]8n,n'+z
+ YD) ey g2, L (36)

4w
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The uncertainties Ax and Ap in the state |n,(¢)) are
given by

2 s |2
(Ax)2=|ia£—(n +1), (Ap)2=i?w—(n +1). 37

The x representation of {|n(¢))} can be obtained from
(35) by taking into account that

e P (x) = W(x), e IPW(x)=W(x/r). (38)

We have
(x|n () ={x|W,()|nylew,1))
:—‘}_;elpx2<x 0 [a),-}%t)- ]> . (39)

The right-hand side of (39) can be reduced to the expres-
sion for the eigenfunctions of the quadratic invariant a;a,
obtained in [6] in a different form. The advantage of (39)
is that it provides a general relation between the sets of
wave functions {(W,(x,)={(x|¥,(2))} and
{Wo(x,t)={(x|W,(t))}. The expansion coefficients of
Wy(x,t)in {{x|ny(¢))} are time independent; therefore

\Ill(x,t)=%ei“"z\llo %,—% (40)

The family of relations (40) is determined by the family
{z(t)} satisfying (17) and (18). A particular case of (40)
was obtained in [3] for

Q(t)

- W_
t— —

and a particular solution
z(t) — e’ ,
t— —
o=w_. If Q(t)=0, then (40) gives a family of relations
between the wave functions of a free particle and the
wave functions of the oscillator. A particular solution
zo(t)=iwt +1 gives the relation between the wave func-
tions having the same initial conditions. The fact that in
order to obtain a wave function of a free particle for
O0<wt= o we need to know the corresponding wave
function of the oscillator only for 0<wt <7 /2 can be
useful for computations.

VI. COHERENT STATES

Coherent states were first introduced by Schrodinger
[25] to describe nonspreading wave packets of an oscilla-
tor with a constant frequency and were later employed by
Glauber [26] for a quantal description of laser light
beams. The properties of the coherent states in both the
cases are most similar to those of classical states. At
present the concept of coherence is widely used in various
domains of physics and mathematics and the notion of
coherent states is generalized and applied to families of
quantum-mechanical states quite different from the
Glauber states [10,11,26,27]. In this section we use
{W,,(2)} to obtain a description of coherent states of the
time-dependent oscillator parallel to the description of

coherent states of the reference system. Most of the re-
sults are obtained by operator techniques. The expecta-
tion values of the coordinate, momentum, and energy in
the coherent states are obtained in terms of the corre-
sponding real solutions of the classical equation (17). The
description is illustrated by the example of coherent
states of the free particle.
In terms of the invariant displacement operator

D(ay(1),a)=exp{aal(t)—a*ay(t)} 41)

and the evolving basis states (33) a coherent state of the
reference system with a starting vector |ny(w,t)) and am-
plitude a is given by

la,ny) =D(ay(t),a)|ny(w,t)) . (42)

In this representation a state |a,n,) satisfies the
Schrodinger equation (30) and its amplitude a is con-
stant. The states (42) with n=0 are just Schrodinger’s
states [25]; they are often called the standard [11] or the
canonical [26] coherent states. The states with n> 0 were
considered by Ro 1y and Singh [27] in terms of
U(a(t))=exp{a(t)a’ —a*(¢)a} and the time-independent
basis {|n(w))} under the name of generalized coherent
states. It is shown in [27] that many of the properties of
the states Ia,no) with n>0 are similar to these of the
standard coherent states. For example, for any given n
the set {|a,nq?,aE€C}, where C is the complex plane, is
overcomplete.
Consider now

W, (t)la,ny)=D(a,(t),a)|n ()} =|a,n;) ,  (43)
where
aﬂT —a*a
W, ()D(ay(1), )W, (1) =™~ " =D(a,(1),a)
(44)

is the displacement operator corresponding to al(t),a;r(t)
[6]. States of this type with n=0, often called squeezed
states, were intensively studied in a number of references
[1,4,6,10,11,28,29].

Since D(a,(t),a) is a unitary operator the set {|a,n,),
n is an integer} is a complete orthonormal set for any
given a. A state |a,n,) is an eigenvector of the Hermi-
tian invariant (a;r(t)—a*)(al(t)—-a) associated with the
eigenvalue n:

(al()—a*)a,()—a)la,n,)
=D(a,(1),@)al(t)a,(t)|n (1)) =nla,n,) . (45)

The expansion of |a,n, ) in the basis {|m ()} },

_ _lal?
la,n, ) =exp 5
. L2
> [{r‘l—' mnLm = al2) | m o (8)
m =0 :

(46)

where L)(x) are Laguerre polynomials [30,31], can be ob-
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tained by W,,(¢) acting on the corresponding expansion
for |a,ny ) given in [27]. It is known that the state |a,0,)
is an eigenstate of the invariant a,(z) [6]. This property
does not hold for the states |a,n;) with n>0; neverthe-
less

(a,nla;(Dla,n;Y=a, (a,n,|al(t)a,n,)=a*. @7

Using (43) we obtain the expectation values of x and p in
the state |a, 1)

172
(x)=(a,n,|xla,n,)= ‘%J Re(z* (D) =x,(1) ,
(48)

172
Re(z*(Ha)=x (1),

(p)=(a,n,Ipla,n,)= {—2~
(0]

(49)

which, as expected, satisfy the classical equations of
motion of the force-free oscillator. The function x,(¢) is
the real solution of the equation (17) corresponding to the
state |a,n, ); this solution is defined uniquely by the ini-
tial values of (x) and (p). Using the expression for
D(a(t),a) in terms of x,=X,(1),

D(a,(t),a)=exp(ix¥,—ipX,) » (50)
we get
XoXa .
(x|a,n,)=exp |—i oX Fixyy |{x —xqln (), (51

which is similar to the corresponding relation for the
reference system. Note that the displacement operator
conserves the uncertainties of the coordinate and momen-
tum operators (see [11], p. 16); therefore (Ax)? and (Ap)?
for the state |a,n,) are given by (37). The expectation
value of the energy in the state |a,n, ) can be found using
(43). After some rearrangements we get

(ayn [ H(D)|a,n, ) ={(n, () H,(t)|n,(£))
+1XAD+QXxAD] . (52)

It is interesting that {a,n,|H,(#)|la,n,) is a sum of a
“quantum” term and a ‘““classical” term. The first term is
an expectation value of the energy in the starting basis
state |n,(¢)) given by (36). The second term is the classi-
cal energy of an oscillator with the coordinate y,(¢) and
the momentum Y,(¢). Equations (48)—(52) give a descrip-
tion of coherent states in terms of the corresponding solu-
tions of the classical equation (17).

Thus the expectation values of the operators
aI(t),al(t),x,p and the classical part of the energy in the
state |a,n;) depend only on @ and z(t), but do not de-
pend on the number of the starting vector, n. Therefore
these quantities for the state |a,n; ) are equal to the cor-
responding quantities for the coherent state |a,0,). The
uncertainty magnitude and the quantum part of the ener-
gy in the state |@,n,) depend on n and are equal to the

corresponding quantities for the starting basis state
l n, (¢ ) > .

For any given n the set {|a,n,),a EC] is given by the
unitary transformation of {|a,n,),aEC]}; therefore,

1 2, —
17_‘f‘Ioz,nl)(oz,nﬂd a=1I, (53)

where a=a,+ia,, d’a=da,da,, and
FH o (a,B)=(a,n,|B,n,)
=L, (la—B*exp[ — L(|a|*+|BI>)+Ba*] .
(54)

Equations (53) and (54) establish overcompleteness of
{layn, ),aEC}. For n=0 these equations are obtained
in [6]. For arbitrary solution of (32), |¥,(¢)), we have the
set of integral equations

Yy(a,n)= [ #,(a,B)¥(B,n)d%a , (55)
where
\I’l(a,n)E(a,nll‘P,(t)> . (56)

Note that the reproducing kernel % ,(c,3) and the wave
function in the coherent states representation, ¥,(a,n),
do not depend on time.

Let B be a bounded operator or a polynomial in a,(¢)
and aJ{(t). Then B is uniquely determined by its diagonal

matrix elements
B,(a)=(a,0,|B|a,0,) . (57)

The diagonal or P representation of B is given by
1
=1 ,0.){a,0,/d % , 58
B=— [b,(a)la,0,)(a,0,ld% (58)
where b, (a) is defined by
B(a)=— [b,(Ble~le=Bla%g . (59)
m

The P representation of B (57)-(59) can be obtained by
introducing A=WL(t)BW12(t). The operator A is a
bounded operator or a polynomial in ay(z) and ag(t);
therefore it admit a diagonal representation in standard
coherent states {|a,0,),a EC} [26]. We have

Agla)=(a,00| Ala,00) =B,(a), ay(a)=b(a). (60)

In particular, it follows from (5) that the density operator
for the time-dependent oscillator is given by

p)=W,(£)poW1,(£) . (61)

Po is the density operator of the reference system. There-
fore p; admits a diagonal representation in
{la,0,),a€C} and its weight function P(a) coincides
with the weight function of p, in {|a,0,),a €C}. The di-
agonal representation of the density operator in a partic-
ular set of coherent states which at £=0 coincide with the
standard coherent states of the reference system was con-
sidered in [1]. The expectation value of B in an arbitrary
state with the density operator p,(¢) is given by
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(B)=Tr{p,()B} = [ P(a)B,(a)d’
= [P(a)Ao(a)d?a . (62)

Let us consider a free particle Q(#)=0. It is well
known that its Hamiltonian H, =%p2 has no eigenvectors
which belong to . Using the approach of the present
paper we can obtain complete sets of classical-like states
of the free particle which belong to /2. Let

zp()=iot +1 . (63)

The states {|n,(8))=|n., (1)), |ng(0))=|n(w))} are
eigenvectors of the quadratic invariant of a free particle

Hy(t)=1[p*+oX(x—pt)], (64)
Hy(Dlng, () =(n+Dolng, 1) . (65)

The corresponding invariant destruction and creation
operators are

afp(t)=(2a))_’/z[a)(x—pt)+ip] ,
t —1/2 ; (66)
ag (1)=Qw) [o(x—pt)—ip] .

The Hermitian invariant x—p? can be interpreted as the
operator of the initial coordinate of the particle. The
wave packets of the states |n,,(¢)) are spreading in the x
representation (39) and keeping their shapes in the p rep-
resentation. We have

*?+1

(Ax)?= (n+1), (ApP=ow(n+1). (67)

2

The parameter @ can be chosen to obtain desirable initial
squeezing of the states |n;,(2)). The set |ng(s)) has
equally spaced expectation values of the energies

2n +1
(npp (O Hy gy (1)) = 22712 (68)
The real solution of the classical equation, X, corre-
sponding to the coherent state |a,n fp ), is given by
172

Xfpa: a,+\/-fa—)a2t . (69)

Thus the amplitude of the coherent state a defines expec-
tation values of the momentum and coordinate in this
state at t=0. The expectation value of the energy is
given by

(2n + 1o

2 +wa3, (70)

(a,ng,Hyla,ng, )=
where the first term can be omitted if we use a set
{la,ng, >,aE€C} corresponding to fixed n. The families
of orthonormal sets {|n (1)} and overcomplete sets of
coherent states {|a,ng, },aEC} can be useful in the
quantum-mechanical description of the free particle.

Thus utilization of invariant forms of creation, destruc-
tion, and displacement operators together with the choice
of a particular class of solutions of the classical equation
(17) satisfying (18), {z(¢)}, proved to be most suitable for
the description of coherent states of the time-dependent

oscillator. It enables the presentation of properties of
these states in a compact and physically clear form.

VII. THE CASE OF A PERIODIC FREQUENCY
AND THE CASE OF EVOLUTION FINITE IN TIME

In this section we obtain the Floquet [32] form of the
evolution operator and calculate Berry phases [33] for cy-
clic states of the time-dependent oscillator. Let Q(¢) be
piecewise continuous and

7=27 (1)
w

Q(t +T)=Q(1),
where o' is a positive real number. In this case, accord-
ing to Floquet theory [34,35], there exist solutions of the
classical equation (17) in the form [3,4]

zk(t)=zp(t)ei"’ ,

_i (72)

zX (1) =z, (t)e ™™,
where z,(z +T)=z,(¢), and A is constant. In the stability
domain of (17) A is real and without loss of generality can
be assumed to be positive. In this section we shall consid-
er only T-periodic functions (z), which belong to the
stability domain of Eq. (17). In this case the Schrodinger

equation (32) has a set of quasienergy solutions [3,4] with
the quasienergies

e, =Mn+1). (73)

Wave functions of the quasienergy states of the oscillator
in the x representation are obtained in [4]. Note that the
quasienergy states can be expressed in terms of W‘zk(t)

corresponding to the cyclic solution of the classical equa-
tion (72),

Iny(z3,0)) =W, (D]n(w,1)

=e_"M"+l/2"|n1p(z;~,t)) , (74)

where |n,,(z,,t)) is a T-periodic vector. The destruction
and creation operators (22) for the quasienergy states are
of the form

iAt,

a,(z,,t)=e'Ma,,(1),

. (75)
a’;(zk,t)=e —:).raw;p(t) ,

where a,, (¢ + T)=a,,().

It is known that the evolution operator of a quantum-
mechanical system with a self-adjoint T-periodic Hamil-
tonian can be presented in the Floquet form [32]

U(£,0)=P(z)e "Gt (76)

where G is a time-independent self-adjoint operator and
P(0)=P(kT)=I for k is an integer. The Floquet form of
the evolution operator for the harmonic oscillator with
T-periodic frequency is given by (26) with z,(z) in place
of z(¢t) and w=A. The transformation W, (2) corre-

sponding to @=A is T-periodic. We have

P()=W,, ("W}, (0), G,;=2AK((z;,0) . (77)
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An expression for the evolution operator at the moments
of time ¢, =kT,

—2iAK (z;,

U,(KT,0)=e YT = U100, (78)

where k is an integer, is similar to the expression for the
evolution operator of the reference system. It depends
only on A, z,(0), and 2,(0) and gives the long-term
behavior of the oscillator under a periodic perturbation.
It follows from (74) that Ax and Ap in the basis states
|n,(z,,t)) and in the coherent states |ag,n,) are T-
periodic functions of time. The expectation values of the
energy in the basis states |n,(z,,?)) are also T-periodic.
If A*lw’, where [ is an integer, only the basis states
|n,(z,,t)) are cyclic. The nonadiabatic Berry phase [33]
of a basis state can be easily obtained from (36) and (73)

B([n,(zk,t)))=%(n +g)f0T92(t)lelzdt—7»T(n +3).

(79)

On the other hand, Berry phases of the states |n,(z;,?))
can be calculated using the general relation between the
quasienergy € and the Berry phase of a cyclic state
|W.(2)), continuous with respect to the frequency ' [36],

T L2
_zvas(w,iﬂ })

dw’ ’

B (1)))= (80)

where {Q'¥)} are Fourier coefficients of Q(¢) considered
as independent variables. We have

’ (k)
Bz, 0= =27 MDD 1y gy

If A=Ilw’' for some [/, then the function z,(z) is T-
periodic and all the states of the oscillator are cyclic with
the same phase ¢=I7. Berry phases of the states which
are cyclic only for isolated values of the frequency ' can
be calculated using (36). Taking into account (52) we ob-
tain the Berry phase of a coherent state |a,n; ),

B( |a7n)>:B(ln1(Zk,t)))
+1 [ A+ QA0 A 01dr , mod(2m)

1+(_1)m+n
2

n!
mlu

W, (0|ng(0,))=|n(1))=3
m=0

where P{m 7 "/2(x) are associated Legendre functions

[30] and u and @ are given by (20) and (21). Suppose the
perturbation is turned on for t; <t <¢,,

[@_ fort <t

O(z (84)

= o, fort>t, .

Then for ¢t <t, and t >t, there exist complete sets of

172
] e(i/2)[(<pv+1r)(m——n)—-q:u(m+n)]

where x,(?) is a solution of the classical equation (17) cor-
responding to the coherent state |a,n,) and given by
(48).

Suppose we are interested in an evolution of the oscilla-
tor with a piecewise continuous frequency in a finite time
interval [0,7T] (system I). The results obtained for systems
with T-periodic frequencies can be applied to this case by
considering another system (system II), such that [36]

QH(t)zﬂl(t) for tE[O,T) N
Qult +T)=Qy(t) for any ¢,

(82)

where Q(¢) is the frequency of system I and () is the
frequency of system II [36]. The function Q) is T-
periodic and piecewise continuous. The description of
system I coincides with the description of system II on
the time interval [0,7]. For example, the quasienergy
states of system II taken in the time interval [0,7°] form a
complete basis set of cyclic states for system 1.

Finally, let us note that an expression for the Berry
phase of a cyclic coherent state of the harmonic oscillator
with time-dependent frequency was obtained previously
in [37] in terms of a loop integral over a Cartan form.
However, the question of the existence of cyclic states,
their explicit form, and their relation to solutions of the
classical equation was not considered in [37].

VIII. MATRIX ELEMENTS OF W,,(t)
AND TRANSITION AMPLITUDES

The calculation of transition amplitudes is important
for applications. It is shown in this section that by ap-
propriate choices of z(¢), transition amplitudes for the os-
cillator can be reduced to matrix elements of W ,(¢) be-
tween the basis states (33) corresponding to the same fre-
quencies. The expression for the matrix elements in
terms of the corresponding z (¢), which follows from (83),
is rather simple. There is an analogy between the classi-
cal equation (17) for z(¢) and a certain one-dimensional
Schrodinger equation [1] which can be used to study the
relation between the shape of (¢) and the transition
probabilities. This analogy is illustrated by the case of a
transition from a number state into a quasienergy state.

It can be proved by induction with respect to n that

- 1
PmIn% [m ‘|mo(w,t)> ,

(83)

r

solutions {|ny(w_,t))} and {|my(w+,t))}, respectively.
Suppose the system was in the state |ny(w_,t)) at t <t,.
The amplitude of probability 4,,, to find the system in
the state |my(w,)) at t > ¢, is given by

A ={W(D|W(2)) (85)
where |W,(2)),|W,(¢)) satisfy the Schrodinger equation
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with Q(¢) given by (84) for all ¢t and
W, (8))=|no(w_,t)) fort=<¢,, (86)
Wy(t))=|mglw,,t)) fort>t, . (87)
First let o=w_. One can verify that

|‘P2(t))=W122(t)|m0(a)_,t)) ; (88)

where z,(t) is a solution of (17) with Q(¢) given by (84),
such that

U,eim‘t-f-oze*m't for t <¢,
172 (89)

iw+t
e fort=t, ,

w_

OFS

22(t)=

where the coefficients 0,0, are determined by Q(z) and
the condition (18),

|0'1[2_|0'2l2=1 , (90)
and
u(zy)=oy, vizy)=o, fort=¢, . 91

The inner product of any two exact solutions of the
Schrodinger equation does not depend on time; therefore
it is enough to calculate (85) for any given moment of
time. We have

Anm =<\I/2(t)l‘ljl(t)>|tftl

=(mo(0_,0IW], (Dlnol@_,0),<, . )
On the other hand,
[Wy(1)) =W, (Dng(y,1) (93)

where z,(t) is a particular solution of the equation (17)
satisfying the condition

172
iw_t

w
T e for <y, . 94)

Zl(t): o

This solution corresponds to @ =w . Substitution of (93)
into (85) gives

Anm :(\Ilz(t)l‘l’l(t)HtZtZ
=(mo(a)+,t)|lel(t)|n0(a)+,t)>It212 : 93)

Thus we have obtained two equivalent expressions for the
amplitude of the transition probability 4,, correspond-
ing to two solutions (89) and (94) of Eq. (17). In the par-
ticular case t;— — o and ¢, — + o the expression (95) is
equivalent to the result obtained by Malkin, Man’ko, and
Trifonov [6]. Note that the amplitude 4,,, is given by
just one coefficient of the expansion (83) because it is re-
duced to matrix elements of W, (¢) between number
states corresponding to the same frequency. The ampli-
tude 4,,, can be (up to a phase factor) reduced to a ma-
trix element of the evolution operator U,(z,0) between
the states |n(w_)) and |m (w,)). The explicit form of
this matrix element is rather complicated because

(m(o)n(w_))#S,,, if o, Fo_.
Consider now

Q(t)=w_ fort<t,,

Q(t+T)=Q(z) fort=1¢, .

(96)

In the stability domain of Eq. (17) it has solutions of the
type (72) and the oscillator has a complete set of quasien-
ergy states {|m,(¢))} for t>¢,. The amplitude of the
transition of the system from the basis state |ng(w_,t))
into the quasienergy state |m,(¢)), B,,,, is given by

B, =(mo(m_,t)IWJ{ZJ(t)Ino(w_,t))|,5,] , 97
where o=w_,

io_

iw_t —
o€ +o,e

zp(t)ei)",zp(t+T)=zp(t) for t>1, .

for t =t,

z3(0)= (98)

The parameters 0,0, are determined by the initial con-
ditions for the cyclic solution z,(¢)e i and satisfy (90). It
is interesting that z;(¢) coincides with the wave function
of the one-dimensional Schrodinger equation if we re-
place ¢ by x. The condition (96) corresponds to a spatial-
ly periodic potential barrier. The solution z,(x) describes
propagation of a Bloch-type wave through the semi-
infinite periodic structure (96). The transition probability
|B,,,, |* depends only on the reflection coefficient

o R
=22 1 _i7RE. (99)
oy ul

If o,=1, then 0,=0, R=0, and B,,, =3J,,,. This corre-
sponds to the case where a number state of the oscillator
becomes a quasienergy state at ¢ >¢,. Let us consider a
particular realization of this case. It is not difficult to
verify that a solution

em‘t for t =0
2= 1e®M(c "M% tcre M%) for 0<1, <T, (100)

; ; iw_(t, —T,)
ek Tpipmy 71U for Ty<t,<T,

where p and k are integers, 0=t, =t — kT < T, and

O +to_ Q—w_ prto_(T—T)
‘T o0, 0 2T g, 0 M T
(101)
satisfy (17) and (18) with w=w_ and
o_ fort <0
Q)= 1Q,=pw/T, for 0=t, <T, (102)

w_ for T;=t, <T.

For 0 =¢ the frequency (102) is T-periodic and
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z,(t + T)=z,(t)e*T . (103)

The basis states of the oscillator corresponding to the
solution (100) coincide with the number states of the
reference system with ®=w _ for t =0 and are quasiener-
gy states for 0<¢. The quasienergies of the states are
given by (73) together with (101). If A=lw'=27l/T,
which is equivalent to w (T —T,)=m(2] —p), all states
of the system are T periodic for 0 =t.

IX. CONCLUDING REMARKS

Canonical transformations (transformations that
preserve the commutation relations between the canoni-
cal variables) are widely used in classical and quantum
mechanics. For instance, Leach (see [9] and references
therein) has applied a generalized canonical transforma-
tion

{¢,p,t,H(q,p,t)} —{Q,P,T,H(Q,P)} ,

where g, p, O, and P are classical canonical variables;
H(q,p,t) and H(Q,P) are classical Hamiltonian functions
of the time-dependent oscillator and of the reference sys-
tem with o =1, respectively, to relate solutions of the cor-
responding Schrodinger equations and to relate matrix
elements of observables! for the two systems. In the
present paper a description of the time-dependent har-

(104)

INondiagonal matrix elements of operators g2, p? and H ob-
tained in [9] are incorrect because the time-dependent phase
factors of the evolving basis states, Eq. (3.5) of [9], are not taken
into account.

monic oscillator parallel to the description of the time-
independent reference system has been presented in terms
of the family of the unitary operators {W,(¢)}. The uni-
tary operator W, (z) transforms the Schrodinger opera-
tor of the reference system (5) and, consequently, its
Schrédinger equation. However, the observables x and p
and the variable ¢ are the same for both the reference sys-
tem and the time-dependent oscillator. The consistent
quantum-mechanical approach of the present method
gives not only the transformation of the states (31) and
(40), but also the corresponding transformation of invari-
ants (14) and their eigenvectors, the transformation of the
evolution operator (26), and a straightforward method of
calculation of matrix elements using (31). Use of the
evolving number states (33) and the corresponding invari-
ant lowering and raising operators (9) immediately gives
the evolving number states (35), invariant lowering and
raising and displacement operators for the time-
dependent oscillator (22), and a general form of solution
of the Schrodinger equation (40). The parametrization
(17) and (18) is well suited for the description of coherent
states. The flexibility of the choice of parametrization is
very important for applications. One can see from the re-
sults of Secs. VII and VIII that it is the appropriate
choice of the parametrization which provides a descrip-
tion of quasienergy states, a calculation of Berry phases,
and a reduction of transition probabilities to matrix ele-
ments of W, (¢).
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