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A mathematical representation of measurements on geometric excitations is given for the geometric
unified theory. Application to excitations generated by rotations results in quantum numbers n#i/2 for a
geometric angular-momentum current. Excitations generated by the other compact subgroup result in
quantum numbers ge for the geometric electric charge. The method is compatible with quantum
mechanics but additionally gives the quantum of electric charge.
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I. INTRODUCTION

It is possible to give a geometrical representation to the
postulates of quantum mechanics. In most cases this is
only a geometrical superstructure that may not contain
new physical ideas. On the contrary, it may be possible
to start from a geometrical physical theory, and try to ob-
tain its quantum implications. In this manner new physi-
cal phenomena may arise. This is the object of this pa-
per. Similar aims originally guided Dreschler in discuss-
ing extended objects as functions on homogeneous de Sit-
ter fiber bundles within a geometric theory of hadrons
[1,2].

A geometrical relativistic unified theory of gravitation
and electromagnetism unexpectedly leads to equations of
relativistic quantum mechanics [3]. The theory consid-
ers physical matter as representations of the structure
group of the geometrical theory. From this idea it fol-
lows that there are certain discrete numbers associated
with the states of matter. It was shown that these num-
bers may be interpreted as quanta of spin, charge, and
magnetic flux, providing a plausible explanation to the
fractional quantum Hall effect (FQHE) [4]. Furthermore,
the theory also leads to a geometrical model for the pro-
cess of field quantization [5], implying the existence of
fermionic and bosonic operators and their rules of quanti-
zation. It should be clear that a process of physical mea-
surement should display these discrete numbers as experi-
mental quanta, leading to a particle (atomic) description
of matter. It is necessary, therefore, to discuss measure-
ments within the geometrical theory.

We may wonder whether these results are accidental or
the consequence of a deep fundamental relation of the
geometrical structure of the unified field with the stan-
dard quantum structure. Here we pursue the second al-
ternative. In particular, we consider the following ques-
tions: Can we define, within our theory, a geometric
operation representing the process of physical measure-
ment with results compatible with well known facts of ex-
perimental physics? Can we define geometric angular
momentum and charge? First we shall review the geome-
trical theory.

In order to understand the ideas and calculations in-
volved, some knowledge of the geometry of principal
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fiber bundles, universal Clifford algebras, and their corre-
lated spinor bundles is required. These subjects were
covered in previous publications, and due to their exten-
siveness we find it inconvenient to repeat them here ex-
cept for a few necessary facts.

Recently, Drechsler incorporated electromagnetism in
his theory by using a modified Weyl geometry in the con-
struction of the homogeneous de Sitter bundles and relat-
ing the full curvature to quantized matter currents [6,7].
Our approach has been different. Originally our aim was
to unify gravitation and electromagnetism by means of
the connection. To avoid contradictions we had to intro-
duce groups acting on the Clifford algebra of space and
time, forcing a geometrical structure that implies quan-
tum aspects.

In geometric terms, our unified interaction is
represented by a connection on a principal bundle, and
matter by sections in the principal bundle. Because of
Infeld’s and Van der Waerden’s work [8—-10], we used a
group that contains SL(2,C) rather than SO(3.1), the re-
lated Lorentz group. A gravitation theory based on
SL(2,C) was discussed by Carmeli [11]. To obtain a gen-
eralization the simplest choice, apparently, was the group
U(1)XSL(2,C), which is the group that preserves the
metric associated with a tetrad induced from a spinor
base. By using the integrability conditions of the field
equations of the theory, it was shown that the predicted
motion of charges is incorrect, and that it is false to as-
sume that any structure group that has SL(2,C) X U(1) as
a subgroup gives a unified theory without contradicting
the Lorentz equation of motion. The correct classical
motion is a fundamental requirement of a unified theory.

We require the use of the group of automorphisms of
the universal Clifford algebra associated to flat four-
dimensional space time or equivalently its highest-
dimensional simple subgroup SL(4,R). This implies an
extension of relativity. The connection, which represents
the interaction, not only unifies gravitation with elec-
tromagnetism including the correct motion but actually
gives a gravitational theory that differs in principle with
Einstein’s theory and resembles Yang’s [12] theory. This
may be seen from the field equation of the theory, which
relates the derivatives of the Ehresmann curvature to a
current source J:
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D*Q=kJ . (1.1)

Because of the geometrical structure of the theory the
source current must be a geometrical object compatible
with the field equation and the geometry. The field equa-
tion implies integrability conditions in terms of J. To-
gether with the geometric structure of J, these conditions
imply a generalized Dirac equation which, therefore, is
not required to be separately postulated as is normally
done in nonunified theories. Actually, the nonlinear field
equation for the connection and the simplest geometric
structure of the current are sufficient to predict this gen-
eralized Dirac equation. The structure of J, of course, is
given in terms of geometric objects acted upon by the
connection:

kJ*=ke(t%uk)e , (1.2)

in terms of the frame e, an orthonormal set of the algebra
t, the correlation on the spinor spaces ~, and a space-
time tetrad u.

The three compact generators k;, ks, and Kk,k; are
equivalent as electromagnetic generators within the
theory because there are automorphisms that transform
any one of them into any other. It follows that the set (*
that enters in the current is defined up to an algebra auto-
morphism. This allows us to take the (° element as any of
the three electromagnetic generators without changing
the physical content of the theory.

II. MEASUREMENT OF GEOMETRY CURRENTS

It is possible to study the properties of fluctuations or
excitations of the geometric elements of the unified
theory. Furthermore, if, as suggested before [4], a parti-
cle may be represented as an excitation of the geometry,
its physical properties may be determined by its associat-
ed fluctuations. These fluctuations may be characterized
mathematically by a variational problem. From a varia-
tional principle, if the equations of motion hold, it is pos-
sible to define the generator of the variation. There is a
canonical geometric current associated with this genera-
tor which geometrically represents the excitation, and
should be considered the subject of a physical measure-
ment (observable).

The Lagrangian density, in general, has units of energy
per volume and the action has units of energy time. In
the natural units defined by the connection
(c=1,7i=1,e=1), the action is dimensionless. In the
standard relativistic units (c =1), the constant 7 arises as
a factor in the action W.

It is well known that the variation of an action integral
along a transformation of the variable y with parameter A
is

sw=[ %f—ﬁy d'x+ [ 5Qdo, @.1)
where the canonical current &, and the conjugate
momentum IT are

sgr =i [ 1182 |, 22

oL
W,

M#= (2.3)
The current J is a geometrical object field that
represents an observable property of a physical excita-
tion, e.g., angular-momentum density. In general, a mea-
surement is not a point process but rather it is an interac-
tion with an apparatus over a space-time region. In the
geometric theory, the results of a physical measurement
should be a number depending on a variational current &
about a background section e, over a region R around a
characteristic point m on the base space M, with some in-
strumental averaging procedure over the region. Then
we shall make the hypothesis that a measurement on a
geometrical excitation is represented mathematically by a
functional of the observable geometric current defined by
the associated variation,
MPH= [ MIdo, . 2.4)
3R
In some cases, excitations may be approximated as
point excitations with no extended structure. In order to
show the relation of our geometric theory to other
theories, without using any knowledge about the struc-
ture of excitations, we shall define a geometric measure-
ment of a point excitation property by a process of
shrinking the region R (m) of the current to the point m.
With this procedure, the local sections representing the
excitation shrink to singular sections at m. We may ex-
press this mathematically by

imM(F)=8,,(F) , (2.5
R(m)—m

where the functional §,, is the Dirac functional
8, (F)=dF(m) . (2.6)

This process shrinks the current to a timelike world
line. We may visualize the boundary 3R of region R as
an infinitesimal cylindrical pillbox pierced by the current
at the bottom and top spacelike surfaces =. As the
pillbox is shrunken to point m, the functionals of the
current §,,(&#) at the top and bottom surfaces are equal,
if the current is continuous. The functional §,, (&) on ei-
ther of the spacelike surfaces X is the geometric measure-
ment

8, ()= [ 8, Fdo,= [ 8%x —m)F(x)u,(x)d
2.7

=o’“‘uu(m) , (2.8)

where u is the timelike velocity, orthogonal to =, of the
space-time observer.

From the Lagrangian given for the theory [1], the
geometric current of an arbitrary matter excitation has
the general form

F=eXe (2.9)

in terms of the frame e, an orthonormal set of the algebra
i, the correlation on the spinor spaces ~, and the group
generator X of the variation.



946 GUSTAVO GONZALEZ-MARTIN 51

It should be noted that the frame e is associated with
the set of states of an irreducible representation of the
geometric field. It does not represent a single physical
state, but a collection of physical states. For any opera-
tor A in the algebra, as the column vectors of the frame e,
we may select the eigenvectors ¢ corresponding to A.
Then we may write

Ae=A(¢, 5. . . )=()~1¢1:A2¢2» .

where A is the diagonal matrix formed by the eigenvalues
A’i .

Accordingly, the results of the measurement given by
Eq. (2.8), in coordinates adapted to the four-velocity u, is

8,,(F)=F=eXe=2Ae , 2.11)

D=ed, (2.10)

which defines an associated operator A.

In this expression, we should note that € is the group
inverse of e, and the correlated product in the spinor
space is a scalar. The product @e gives a unit matrix of
scalars, and the measurement values of the current &
coincide with the diagonal matrix formed with its eigen-
values,

A

5, (F)=eeA=A= (2.12)

A;

This result agrees with one of the postulates of quan-
tum mechanics. The mathematical content of Eq. (2.12)
is truly independent of a physical interpretation of the
frame e. In particular, it does not require, but allows,
that e is a probability amplitude.

The result of the measurement essentially equals the
value of the current at the representative point m.
Equivalently it is the average over a characteristic
three-volume V of X,

1lrd@, _1r u
(A= [ Sdou= [ o, 2.13)
This averaging, indicated by ( ), is similar to the opera-
tion of taking the expectation value of an operator in
wave mechanics.

The different generators of the group produce excita-
tions whose properties may be investigated by measuring
the associated geometric currents. In particular, we are
interested here in currents associated with generators of
the compact subgroups, which were used to characterize
the induced representations.

III. GEOMETRIC SPIN

The concept of spin is related to rotations. In
geometric theory the compact even generators form an
su(2) subalgebra which is related to the rotation algebra.
The group homomorphism between this SU(2) subgroup
and rotations is

R;=%tr<g"a,,go“> , (3.1)

where g €SU(2) and R €SO(3). The isomorphism be-
tween this SU(2) and the compact even subgroup of

SL(4,R) is the well-known isomorphism between the com-
plex numbers and a subalgebra of the real 2 X2 matrices,

10
o 1

0 —1

i

The isomorphism given by Eq. (3.2) is not accidental,
but is part of the conceptual definition of the geometric
Clifford algebras as a generalization of the complex num-
bers and the quaternions. These algebras, and the spinor
spaces on which they act, have well-defined complex
structures.

If we consider that the generators x'k’/ that belong to
su(2) are the rotation generators, the associated geometric
current is the angular momentum. For example, the re-
sult of the measurement of this current in a preferred
direction &, using as illustration Eq. (2.13) for the ex-
pectation value,

dx*
dA

(Fy=— fd H"—+L , (3.3)

where the variational 8e is generated by k!x%. Then, for a

flat metric,

(F)= fda e u"———~—fd3 é‘LO de . (3.4)

“dA

Since (° commutes with k'x? and (%°
Eq. (3.2) to identify

is —1, we may use

O—il , k'k?—io?, (3.5)
and express the variation generated by k!k* as the
differential of Eq. (3.1),

S8RE= %—tr(aba30“—a3aba“) . (3.6)
The only nonzero elements are

8R)=—6R?=2)1=0, (3.7

which represents a rotation by angle 0 in the 1-2 plane.
This rotation induces a change in the functions on three-
space, giving a total variation for e of

Se= %o3e+(xay—y8x)e SA, (3.8)

which leads to

1 .
<J3>=——I;fd3x e{io’—i(xd,—yd,)}e (3.9)

The factor 1 indicates, of course, that the SU(2) param-
eter A is half the angular rotation, due to the 2-1
homomorphism between the two groups.

This calculation was done, for simplicity, with only one
component. It is clear that if we use the three spatial
components we get

<4°)=ind3x {10 —ie™(x,d, e (3.10)
where the expression in parentheses is the angular-

momentum operator A in quantum mechanics. If e is an
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eigenframe of this operator, we obtain the values of the
components of the angular momentum associated with a
fluctuation related to the spin- representation.
The result is
-1 3. =1 3

<A)—VfaAedx—7faexdx. (3.11)
As before, the product @e gives a unit matrix of scalars,
and we may construct the integral in the base space

Jeedx=1v, (3.12)

where I is the identity and V is the characteristic volume.
It is clear that we may introduce a volume-normalized e
by dividing by V. The measured value of the operator A
coincides with the diagonal matrix formed with its eigen-
values, as indicated above:

A

(A)= N
A

(3.13)

In the case described, the frame states are pure (quan-
tum terminology) with respect to the angular momentum.
Both the frame and operator may be diagonalized simul-
taneously, or equivalently they commute with each other.

In general, the frame is not pure with respect to the
operator. Thus the result of the measurements is not the
diagonal elements of the operator (eigenvalues). If we
designate the columns of e by ®, and the files of # by & 7,
for the measurements we have the matrix

pg=iV [BPr0d% , (3.14)
which corresponds to the density matrix (for the observ-
able operators A).

The frame sections play the role of wave functions and
the group generators play the role of quantum operators.
These similarities between our geometric theory and
quantum mechanics provide essentially equivalent re-
sults. There are differences; in particular, wave functions
have a complex structure and our frame sections have a
Clifford structure. Rather than a contradiction, this
difference is a generalization, since there are complex
structures in different subspaces of the geometric Clifford
algebra. It is possible to introduce spaces of sections, but
they certainly may have a structure more general than a
Hilbert space. The geometrical and groupal elements in
the theory actually determine many of its physical
features.

IV. GEOMETRIC CHARGE

The geometric source current J is a generalization of
electric current. The three compact generators kg, Ks,
and «k,k;3 are equivalent as electromagnetic generators
within the theory because there are automorphisms that
transform any one of them into any other. It follows that
the set 1%, that enters into the current, is defined up to an
algebra automorphism. This allows us to take the :° ele-
ment as any of three electromagnetic generators without

changing the physical content of the theory.

The generalized source current J is the canonical
current & corresponding to a variation generated by an
electromagnetic generator. In order to see this, we
choose the set «* for «#, and look for a variation genera-
tor that results in an automorphism of the current. In
other words, we look for a generator that gives a set
equivalent to the set k* by right multiplication. A gen-
erator that accomplishes this is «°. For a different choice,
the automorphism would be a different one, but it would
lie in the electromagnetic sector. Thus it is clear that the
current J corresponds to variations generated by the elec-
tromagnetic sector.

When we make a measurement of this canonical
current &, we are measuring the charge associated with
the fluctuation of e related to a fundamental irreducible
representation of the group. If we neglect the gravita-
tional part, the metric is flat, and the expression for the
measurement is

1 1 r oo
<J)=?fd"d0”=7f exubédo,

=—.1I; f zi%%e d3x 4.1)
where it is understood that we are working in the bundle
SM which is the Whitney sum of the associated spinor
vector bundle VM and its conjugate. Explicitly, in terms
of elements of VM the last equation is written as

e ! K3 e
= =1

e

_1
(Y= [d%

—KkK
4.2)

It should be emphasized that the matrices in the last
equation are 8 X8 real matrices, the double-dimensional
representation used in the SM bundle, as indicated in the
Appendix. A more complete discussion is given in previ-
ous publications. The even generators may be written as
4X4 complex matrices using the isomorphisms of Eq.
(3.2).

In Eq. (4.2), it is possible to substitute any equivalent
generator for k%”>. It is possible, to choose a frame sec-
tion e corresponding to eigenvectors of the fundamental
representation of SU(2). In fact, since k> commutes with
k2, it is also possible to choose a frame corresponding
to common eigenvectors of these two anti-Hermitian gen-
erators belonging to the two su(2) subalgebras in sl(4,R).
The eigenvalues correspond to the quanta of spin and
charge, as follows:

(4.3)

K= . , (4.4)
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which is precisely the explicit form of these matrices
when working on the bundle SM. Of course it is usual to
work with the associated Hermitian operators obtained
by multiplication by i, with real eigenvalues +1. Never-
theless the use of the anti-Hermitian expression is natural
since they are generators of the two compact su(2)
subalgebras.
If e is an eigenframe of the generator, we get

(J)Y==i . (4.5)

In other words, the resuit of this measurement for the
fundamental representation is a quantum number equal
to =1. This conserved number may be interpreted as the
quantum of charge. It is known that the electron charge
plays two roles, one as the quantum of charge and the
other as the square root of the fine-structure coupling
constant a.

In order to be able to reduce the theory to elec-
tromagnetism we must account for Coulomb’s coupling
constant k/4w. This k may be absorbed into the
definition of the current in Eq. (1.1), but at the end it
must be identified. It is better to show it explicitly and to
keep the frame e separate, as a section in the principal
bundle, so that the conjugate € is the dual inverse of e,
and the product @e is the unit matrix. The units of k are
mi3t ~2g % The dimensionless fine-structure constant a
is given by ke2/4wfic. If we set k =4, the units corre-
spond to the Gaussian system, where Coulomb’s constant
is 1. If we set k =1, we obtain the Heaviside-Lorentz sys-
tem where Coulomb’s constant is 1/47. In these cases,
the connection I'" corresponds to e 4, in terms of the po-
tential A4 and the electron charge e. On the other hand, it
seems better to consider that the geometric theory intro-
duces a natural unit of charge by defining the electromag-
netic potential equal to the connection. In this form the
new geometric unit of charge (the “electron”) equals e
coulombs, and Coulomb’s constant becomes the fine-
structure constant . With our definition of current and
coupling constant (47a) the calculated charge of the elec-
tron is £:1. In arbitrary units, the calculated quantum of
charge g is +(4matic /k)!/2.

In other words, when there is only a U(1) electromag-
netic field in flat space, our field equations reduce to

d*d T'=4rwal . (4.6)

A particular solution for a static spherically symmetric
connection I is

r,=%4 , 4.7)

where g is the charge in electrons. If we now change our
units to the Gaussian system (1 electron =e coulombs),
where a=e?,

Cy/e=b=24=49¢ (4.8)
er r
which is Coulomb’s law in terms of the charge ge in
coulombs.
The expression for the frame section in SM indicates
that the charge eigenvalues corresponding to ¢ ~!, which

occupy the lower right submatrix, are the negative of
those of e, which occupy the upper left submatrix. The
frame section e in VM represents charged matter, and its
conjugate frame section represents matter with an oppo-
site charge. We may conjecture that charge conjugation
is represented by the involution  ~!. The source current
may be generalized to include opposite charges by adding
a term depending on the involuted fields (conjugation):

Jh=g%le —BT"ULE . (4.9)

V. CONCLUSIONS

We have shown that it is possible to introduce, in the
geometric unified theory, a hypothesis concerning the
mathematical representations of measurable properties of
geometric excitations. Accordingly, the measurement
process of an excitation property around a geometric
matter section is defined as a functional of the geometric
current that is the generator of the excitation. For point-
like excitations (point particles) the functional reduces to
the Dirac functional, leading to the expression for expec-
tation values. Because of the properties of the sections e,
the results of the measurement are the eigenvalues of the
generators (operators) of the excitation.

The angular momentum is the canonical geometric
current associated with a variation of the sections gen-
erated by a rotation. This leads to the expression of total
angular momentum as the differential and matricial
operator of quantum mechanics. Similarly, the electric
charge is represented by the canonical current associated
with a variation of sections generated by the electromag-
netic sector.

The measurement of the angular-momentum current of
an excitation of a section (the fundamental representa-
tion) results in a quantum number *J [+(#/2) in other
units]. Similarly, since electromagnetism is related to
other SU(2) contained in SL(4,R), using its generators the
measurement of charge is +1. [(4mafic /k)!/? in other
units.] We should emphasize again that the natural unit
of electric charge is the one that makes the electromag-
netic potential coincide with a component of the
geometric connection (e disappears for minimal cou-
pling).

Of course, these ideas apply to the fundamental repre-
sentation of the group which corresponds to spin #/2 and
charge e. This representation forms a building block
from which higher-dimensional irreducible representa-
tions may be constructed. For such fields the matrices
are of higher dimensions and should have eigenvalues of
n#i/2 and ge.

The picture that is emerging from this theory is that
differential geometry is the germ of quantum physics.
Through nonlinear field equations, matter determines the
geometry and must obey integrability equations of
motion. The equations imply a generalized Dirac equa-
tion for the sections e which play the role of wave func-
tions representing matter. An irreducible fluctuation
(particle) is an irreducible representation of the group
carrying certain discrete numbers. In this manner the
discreteness of quantum theory arises in compatibility
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with the continuity of differential geometry. The
response to a microscopic measurements reveals these
discrete numbers.

In summary, we have shown that measurements in our
theory are not only compatible with some results of stan-
dard quantum mechanics, but that additionally they im-
ply the existence of the quantum e of the electric charge.
Any geometric measurement of charge gives an integer
multiple of e.

APPENDIX

The structure group G acts naturally on the double spi-
nor space S by a representation p:

p: GG, (A1)

(A2)

The map p induces its derivative map at the identity

Pur: A4 (A3)

a

p*](a): ’ aEA ’ (A4)

which has an inverse.
The Clifford product in 4 induces a product in > 4,

a b 5
—zl° _5lm4 (A5)
by means of the expression, for a’,b’' € 24,
a'b’'=p,(p. @) p b)), (A6)
which explicitly gives
a b ab
_zl° 5= —5al- (A7)

If we represent the matrices a’ €24 by their 4 com-
ponent a, the o product may be indicated by the Clifford
product in 4,

a'ob'=ab . (A8)

This convention is used throughout the paper. Practical-
ly this means that all calculations may be made using ele-
ments a € A. At the end, the other component in 24
may be obtained by conjugation —a:

a'b'=p,lpaf(a’) pad)], (A9)
which explicitly gives
a b _ ab ALO)
—al° —-b| —-ba (
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