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The Vlasov kinetic equation can be viewed as the dynamical equivalent of the static Thomas-Fermi
theory. By exploiting this analogy, the closed-orbit theory of the level density, which has been used by
various authors for evaluating quantum corrections to the Thomas-Fermi level density, is generalized for
calculating quantum corrections to the semiclassical propagator given by the Vlasov method. It is
shown that the Vlasov strength function obeys a sum rule analogous to the well-known quantum
energy-weighted sum rule. Explicit calculations of quantum corrections are performed for a simplified
model of a large metal cluster (electrons in a spherical cavity).

PACS number(s): 03.65.Sq

I. INTRODUCTION

The Vlasov equation has long been known to give a
classical version of the random-phase approximation (see,
for example, [1], p. 71). The linearized Vlasov equation
gives an integral equation for the classical limit of the
particle-hole propagator that is analogous to the RPA in-
tegral equation; symbolically

D=D +D uD .

Here D is the classical limit of the RPA propagator, D
the classical propagator in the static mean field, and u the
two-body interaction between constituents of the many-
body system being studied. Generally, Eq. (1.1) is an in-
tegral equation; it becomes an algebraic equation only for
infinite homogeneous systems. The solution of (1.1) is a
numerical problem that requires the zero-order propaga-
tor D as an input. An important feature of the Vlasov
equation is that it yields an explicit expression for the
zero-order propagator D . Being entirely expressed in
terms of classical quantities, this form of D is more in-
tuitive than the corresponding quantum propagator.

Bertsch [2] has pointed out that, since the Vlasov equa-
tion is just the Liouville equation of classical statistical
mechanics with a self-consistent mean field, it can be ap-
plied also to quantum many-fermion systems because the
Liouville theorem ensures that the Pauli principle can be
respected within this classical theory. Thus the Vlasov
theory is a reasonable starting point for the study of the
dynamics of Fermi systems in the semiclassical regime.

Kirzhnitz, Lozovik, and Shpatakovskaya [3] have ap-
plied the Vlasov theory to nonhomogeneous systems [in
this case Eq. (1.1) is an integral equation]. The expres-

D (q', q, co)=(2m. )'g fdIF'(ho(I))
Il al I co + I 'g

X Q„' (q', I)Q„(q,I ) . (1.2)

Here I denotes the action variables associated with the
equilibrium Hamiltonian ho(I); they are related to the ac-
tion variables J used in [4] by I=J/(2m. ). The canonical-
ly conjugate angle variables 4 take values in the interval
[0,2']. The Fourier coefficients Q„(q, I) are defined as

Q„(q,I)= f d%e '"' e'q'1

(2Ir )
(1.3)

and they replace the quantum matrix elements of e'q' [5].
In Eq. (1.2) the vector n has integer components

n =0, +1,+2, . . . , while the vector co(I), defined as

co( I ) =Vt

ho�

( I), (1.4)

gives the proper frequencies of the system. Generally,
the value of these frequencies depends on the action vari-

sion that they derived for the classical zero-order propa-
gator D requires integrating the single-particle motion
over an infinite time; hence it is not convenient for practi-
cal calculations.

In [4] it was pointed out that there is a whole class of
systems for which the solution of the linearized Vlasov
equation has a relatively simple form: all the systems for
which the equilibrium mean-field Hamiltonian ho(r, p) is

separable. In this case it is convenient to use angle-action
variables for describing the single-particle motion and the
zero-order propagator can be written explicitly as [4] (in
momentum space)

1050-2947/95/51(2)/914(9)/$0{j. 00 1995 The American Physical Society



51 CLOSED ORBITS AND SHELL EFFECTS IN SEMICLASSICAL. . . 915

ables so that the integration over I in Eq. (1.2) gives a
spreading of the strength as co changes with I. Since the
parameter 7} in (1.2) is infinitesimally small, the imaginary
part of D contains 5 functions of the type 5(co —n r0(I)).
If g is given a small but finite value, these 5 functions are
smeared out into I.orentzians of width q and the single-
particle strength function becomes smoother.

The function F'(ho(I)) is related to the equilibrium
distribution of particles in phase space. For zero-
temperature electrons we take [4]

The question of possible quantum corrections to the
classical response has received some attention in the
literature [3,4, 10—14]. Here we study this problem from
the point of view of the closed-orbit theory of the level
density [15—17] (see also [18], p. 579, and [19], pp. 257
and 266). As we shall see, it is possible to establish a
close analogy between the quantum corrections to Eq.
(1.2) and the corrections to the Thomas-Fermi semiclassi-
cal level density.

f,(r, p) =—F(h, )= 8(E,—h, ),2

(2M)3

so that

(1.5a)
II. SEMICLASSICAL PROPAGATOR

The retarded quantum propagator describing the
single-particle response to an external field g(r) can be
written as [20]

F'(ho)= 5(E~—ho) .
(2iriri)

(1.5b)

J drdp 8(E~ —ho(r, p))=N,2

(2M)
(1.6)

EF is the Fermi energy, which, in a first approximation,
must be determined from the normalization condition

[1 8(E—~ Ei, ) ]8—(E~ E,)—
lloR( ) fico+E —Eb+i q

8(Ep Es )[1—8(E~ E—, )]-
Aco+E, —Eh+i r)

x I & alg Ib & I', (2.1)
and X is the total number of electrons.

Equation (1.2) for the zero-order propagator is reminis-
cent of the classical dispersion formula of the days before
quantum mechanics (see [6], p. 31, and the references cit-
ed therein). The minor differences between the two for-
mulas come from the different physical situation to which
they are applied (here we deal with a distribution of parti-
cles in the ground state of a many-body system, while the
dispersion formula usually refers to a single particle in a
hydrogenic orbit).

Before concluding this section we write explicitly the
RPA integral equation (1.1) in momentum space:

D(q', q, co)=D (q', q, oi)

+
3 JdkD ( q k', o)i, u( k) D(,k qco) .

(2m. )

where a and 1 are the sets of quantum numbers required
in order to identify the single-particle states. By combin-
ing the two terms in (2.1), II can be written in a form
that involves the difference between occupation probabili-
ties of states E, and Eb.

8(EJ; E, ) 8—(E~ Ei—,}—
II"(~)=g '

. I{alg b}l . (2.2)
b Aco+E —Eb+ t g

In a semiclassical situation the matrix element {alg lb}
depends mainly on the difference of quantum numbers a
and b [21]. In the limit of large quantum numbers the
WKB approximation to the quantum matrix element
{alg Ib } becomes the Fourier coefficient (1.3), with g(r)
replacing e' ' (see [22], p. 167, and [10]).

Now we set

(1.7)

Here u(k) is the Fourier transform of the two-body in-
teraction u(lxi —xil).

The strength function describing the collective
response of the system is given by

Ib =I, +nA,

and write (2.2) as

(2.3)

F(ho(I, +niri)) —F(ho(I, ) }

ho(I, +niii) —ho(I, ) (fico+iri)—
1

S(q, co)= ——ImD(q, q, co) .
x lg.«.}I'.

Moreover, using ([18],p. 579)

(2.4)

In situations where exact quantum calculations are not
possible (for example, if the system is too large), Eq. (1.7)
offers an interesting alternative to the fully quantum
RPA calculations. Moreover, the physical insight al-
lowed us by this classical approach would be difficult to
gain in a quantum RPA calculation.

Equation (1.7) has been applied to the study of giant
resonances in nuclei [7], surface plasmon in atomic clus-
ters [8], and also to the search for possible collective exci-
tations of the electrons in heavy atoms [9]. On the whole,
the agreement with quantum RPA calculations is rather
good, even when the quantum numbers involved are not
particularly large.

"o(I +n&) "o(I )=&n'(~who)i=i. (2.5)

Thus we have proved that, in the limit of very large quan-

F(ho(I, +niii) }—F(ho(I, ))=F'(ho)itin V~ho, (2.6)

we have

F'(ho(I, ))n ro(I, )
'

II"(~)=(2~)'jdI. y ' '
.
' Ig.(I.)l'.
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turn numbers, the retarded quantum single-particle prop-
agator (2.1) equals the classical propagator (1.2) given by
the Vlasov equation. In what follows we are concerned
with the problem of evaluating quantum corrections to
(2.7) when shell effects are not completely negligible.

III. CLOSED-ORBIT THEORY

n(E) =+5(E E), — (3.1)

is first transformed into an infinite sum of integrals by
means of the Poisson sum formula ([25], p. 52). The ex-
pression given by Berry and Tabor reads

The closed-orbit theory of the level density [15—19] has
recently scored a remarkable success when its prediction
[23] of supershell effects in atomic clusters has been
confirmed experimentally [24] by an analysis of the mass
spectrum of sodium clusters. Here we follow closely Ber-
ry and Tabor [17] in order to establish a parallel between
the calculation of quantum corrections to the semiclassi-
cal Thomas-Fermi level density and the problem of
evaluating quantum corrections to the semiclassical
Vlasov propagator (1.2). Thus we first briefiy recall the
approach of [17] to the quantum corrections of the level
density. The quantum level density, defined as

y e
—i(w /2)a M dI 5(E—h (I) )e((2m/fi)M I1

M +

(3.2)

Approximate semiclassical values of the quantum ener-
gy levels are

E„( ho(A--, =(l+ —,')R, I„=(n„+a„/4)A), (3.4)

where k is the classical angular momentum and I„ the ra-
dial action. For a cavity, the Maslov index a„=3, while
for a smooth potential such as a harmonic oscillator or ~

Saxon-Woods, a„=2. Using the Poisson formula twice,
the level density (3.3) can be written as

with the integral extending over the positive quadrant in
I space.

This is a general formula that requires some further
specifications for a central potential. Because of rotation
symmetry, the quantum levels of a spherical potential can
be classified according to the two quantum numbers
n„=0, 1,2, . . . and l=0, 1,2, . . . ; thus

n(E)= g 5(E E„&—)=g (2l+1)5(E E„&)—.
n„, l, m n„, l

(3.3)

M = —oo MS

(3.5)

If we use the action variables (Al), this expression can be
put in the form (3.2), provided that the first component of
the vector M vanishes: M=(O, M2, M3). In other words
we only need to quantize the "proper" actions I2 and I3
(or I„)([26], p. 383). The term with M=(0, 0,0) gives the
semiclassical Thomas-Fermi result

nT„(E)= J dI5(E —ho(I)},1

$3
(3.6)

while the remaining terms give quantum corrections to
(3.6) [27]. Because of the 5 function in the integrand, the
oscillatory integrals

( I ) )e l(2n/A')M t1
M 0 (3.7)

are of the kind J dag(a)e'~' ' and can be evaluated by
using the stationary phase approximation ([25], p. 192).
The integration in (3.6) and (3.7) is an integration over all
possible classical orbits with energy E. Within the
stationary-phase approximation the main contribution to
the integrals (3.7) comes from closed classical orbits, that
is, orbits for which the components of the frequency vec-
tor (1.4) are in the ratio of two integers. These orbits cor-
respond to particular values IM of the action vector.
Then, within the stationary-phase approximation, Eq.
(3.2) gives the following expansion for the level density of

a separable Hamiltonian:

n(E)=nTF(E)+g' AMe
M

(3.8)

f(I ~)= —2 g . I Q„(I)I' .
n r0 I —co+i' (3.10)

(the prime on the summation means that it must exclude
the term M=O; for spherically symmetric systems, the
sum is only over M2 and M3 ). The Thomas-Fermi densi-
ty nr„(E) gives a smooth background that does not con-
tribute to the shell structure, while the additional terms
are oscillating functions of' E that give rise to the shell
and supershell structures in n (E ). The factors A M give
the amplitude of these contributions, while the phases yM
contain both the Maslov indices and a contribution com-
ing from the stationary-phase formula.

The closed-orbit theory of the level density can be ex-
tended to the response function of a system of zero-
temperature electrons. In fact, using Eqs. (2.7) and
(1.5b), we have, for the zero-order propagator,

II (co)= ye ' "~ dI5(E —h (I))=1
F 0

M

~f ( I ~ )e ((2m/R)M. I (3 9)

with, from Eq. (1.2},
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Again, for spherically symmetric systems, we only need
to quantize the proper actions I2 and I3. The term with
M=O in (3.9), which is analogous to the volume term of
the Thomas-Fermi level density, is just the Vlasov propa-
gator (1.2), while the remaining terms represent quantum
corrections to the classical propagator given by the
Vlasov equation.

Now, however, we are not allowed to use immediately
the stationary-phase approximation in order to evaluate
the oscillatory integrals in (3.9) because f(I,co) is not a
smooth function of I. If we give a finite value to the pa-
rameter il in (3.10), then f(I,co, rl) is smooth; We can fol-
low all the steps that lead to Eq. (3.8) and get, for the
zero-order propagator,

d A'co %co Svi
0

f2 f drdp fo(r, p)IQ*, Iho(r, p), Q] ]„ (4.3)

with Poisson brackets replacing the commutators in (4.2)
and the averaging over the equilibrium distribution (1.5a)
replacing the ground-state expectation value.

Because we are dealing with separable systems, we use
angle-action variables on the right-hand side of (4.3)

fdr dpfo(r, p)I Q', Ih{)(r,p), Q] J „

= f d I d @F(ho(I) ) ( Q *,
I ho(I), Q ] ] I q, (4.4)

11oii(co ) Do(co )+g g e
( M &M)

M

Xf(IM, co, il) . (3.11)

and the expansion

Q(r)=pe'" Q„(I) . (4.5)

Here D (co, i)) is the Vlasov propagator (1.2), evaluated
with a small but finite value of q. In practice A'g should
be of the order of the energy difference between two
neighboring levels of the quantum system at the Fermi
surface. The smoothing factor g, which is necessary in
order to be allowed to apply the stationary phase approx-
imation to the oscillatory integrals in (3.9), should not be
confused with the smoothing factor y introduced by Bali-
an and Bloch [16] in order to damp the contribution of
longer orbits.

Equation (3.11) is the main result of the present paper.
It has several interesting features. First, the Vlasov prop-
agator (1.2) gives a classical approximation to the (retard-
ed) quantum single-particle propagator II, which is
analogous to the Thomas-Fermi approximation for the
quantum level density. Hence the Vlasov theory can be
viewed as a dynamical generalization of the static
Thomas-Fermi approach [29]. Second, in the case of
zero-temperature fermions, quantum corrections to the
Vlasov propagator can be evaluated by using the closed-
orbit theory developed for the level density, but only if a
sufficiently large smoothing factor q is introduced into
(3.10). The last point worth noting is that the function
f(IM, co, i)) in (3.11) depends only on the topology of a
given closed orbit and not on repetitions of the same or-
bit.

Since h0 depends only on the action variables

I ho, g]l z,
= i g—(n co)e'" Q„(I), (4.6)

where co is the frequency vector defined in (1.4).
Working out the second Poisson bracket, with the help

of Eq. (4.5), of its complex conjugate and of the ortho-
gonality relation

dC) e{{n—m).4 (2ir)3$
7

(4.7)

we get

f d I d N F(h{)(I)) I Q*, I h{)(I),Q ] J

= fdIF(ho(I))V, gn[n co(I)]lg„(I)l (4.8)

The integration on the right-hand side can be performed
by parts and, under the reasonable assumption that
F(ho(I) ) vanishes for very large values of I, we get

which is proportional to the Vlasov energy-weighted
strength function since, from (1.2),

fdId4 F'(h{)(I))f Q*,(I),Q] II @

= —g fdIF'(h{))(n co) lg„(I), (4.9)

IV. SUM RULE

The quantum strength function

S (co)= ——ImII (co)
1

(4.1)

d fico %co ——Ima q, q, co

=i)i g fdIF'(h{))(n co) lg„l (4.10)

satisfies the well-known energy weighted sum rule

f d fico( Aco )S ( co ) =g (E„—E{)) l ( n l Q l
0 ) l

n

=-,'&Ol[Q", [ho, g]]10& . (4.2)

For the dipole operator, the right-hand side of Eqs.
(4.2) and (4.3) are identical so that the Vlasov strength
function satisfies the same sum rule as the quantum
strength function. Then it is reasonable to expect that
the quantum corrections to the Vlasov strength function
should preserve the dipole sum rule.

In order to determine the constraints on the quantum
corrections due to this sum rule, we prove that the classi-
cal strength function given by the Vlasov propagator (1.2)
satisfies a sum rule that is the classical version of (4.2):

V. SPHERICAL CAVITY

As an illustration of the theory discussed in the previ-
ous sections, we study here a simplified model for a sodi-
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(5.1)

with rs=4ao for sodium (ao is the Bohr radius). The
quantum energy levels are

En I kn )=+n ) X0.0212 eV,
2m

(5.2)

where X„& is the n„th zero of the spherical Bessel func-
r

tion j&(x), excluding the origin. The highest occupied
state is a 2h level (n„=2,1=5), at an energy E25 =3.564
eV. The sequence of levels near the Fermi surface is
shown in Fig. 1.

The quantum single-particle strength function is a sum
of 6 functions corresponding to transitions between the
various quantum levels. The main contributions to the
dipole single-particle strength function come from transi-
tions An„=0, El =1 between the states shown in Fig. 1.
These transitions exhaust about 76% of the energy-
weighted sum rule. In Fig. 2 we show the quantum di-
pole single-particle strength function, smoothed accord-
ing to the replacement

um cluster. We consider a gas of X=254 electrons occu-
pying the lowest quantum levels of a spherical cavity of
radius

requires the determination of the Fermi energy as a pre-
liminary step. A first estimate of the Fermi energy is ob-
tained using Eq. (1.6), which is equivalent to taking the
approximate level density

1n(E ) =nTF(E) = x
3~E (5.4)

0.8

with x =—(1/A)&2mER Th. e Vlasov strength function
shown in Fig. 2 (dotted line) has been obtained with the
Fermi energy calculated in this way. However, since we
want to include quantum corrections into the Vlasov
propagator, in view of the parallel established in Sec. III,
it seems desirable to keep the same degree of approxima-
tion in both the level density and the semiclassical propa-
gator. This is because quantum corrections affect the
Vlasov propagator in at least two ways: through the ad-
ditional terms in (3.8), which modify the Fermi energy
evaluated using (5.4), as well as more directly through the
additional terms in (3.11). Thus we need to define more
explicitly the degree of approximation that we intend to
keep in both (3.8) and (3.11).

In a cavity the term (2m/fi)M IM in the exponent of

5(E E„)~ ——I—m
1 1

E —E„+ig
(5.3)

Also shown in Fig. 2 is the corresponding Vlasov
strength function, smoothed in the same way.

The calculation of the Vlasov zero-order propagator
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FIG. 1. Highest occupied (solid lines) and lowest unoccupied
{dashed lines) levels in a spherical cavity containing 254 zero-
temperature electrons. The dotted line shows the value of the
Fermi energy given by Eq. (5.7).

FIG. 2. Dipole component of a single-particle response func-
tion of electrons in a spherical cavity in various approximations:
smoothed quantum response (solid line), pure Vlasov response
(dotted line), and Vlasov plus closed-orbit corrections (dashed
line). The dotted curve has been obtained with the Fermi ener-

gy EF=3.318 eV, given by Eq. (1.6) or (5.4). In (a) the dashed
curve does include the oscillatory closed-orbit corrections, but
not the smooth surface and curvature corrections. In (b) the
dashed strength function is renormalized by the smooth correc-
tions according to Eq. (5.17).
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n(E) =nr„(E)+ A3(E) cos(3V'3x+ —,'~)

+ A4(E) cos(4v'2x+ —,'m), (5.5a)

(3.8) equals k(E )L~, where k(E ) =(1/iri)v'2mE and L~
is the length of the closed orbit specified by the vector M.
By considering a smoothed level density, obtained by re-
placing the 5 functions in (3.1) with Lorentzians of width

y (this is a way of accounting for finite-temperature
effects), Balian and Bloch [16] give arguments in favor of
keeping only the shortest orbits contributing to (3.8); they
also argue that the contribution from orbits along the di-
ameter are less important and can be neglected in a first
approximation. Thus the most important contributions
to the sum in (3.8) come from orbits of triangular and
square shapes. Since these orbits have similar lengths,
the interference between these two terms is sufficient to
reproduce the supershell structure experimentally ob-
served in sodium clusters containing a few thousand
atoms [23,24].

Then, for a spherical cavity (infinite square-well poten-
tial), Eq. (3.8) gives

II (co,g)=g f da G(E~,a, co, ri)e™~),
M

with M=(O, ML, Ms),

~s
g~(a) =2nx MI cosa+ (sina —a cosa)

(5.8)

—m.M ——', mMI 2 S ~ (5.9)

and G(E~, a, co, ri) is determined from the condition that
the term M =0 must give the Vlasov propagator

D (Ez, co, g)= f da G(E+,a, co, g) . (5.10)
0

(the factor 2 in front of the integral accounts for the spin
degeneracy). Then we obtain E+=3.907 eV (x =13.575).
This value of the Fermi energy is shown in Fig. 1 by a
dotted line and is seen to lie in the gap between the last
occupied and first unoccupied level. We turn now to the
single-particle propagator and evaluate it in the same ap-
proximation as (5.5a). From Eq. (3.9), making the re-
placement I2 =Ax cosa, we have

with

A3(E)= x3 2&
3V'3x

1/2

(5.5b)

For spherical systems it is convenient to expand in
multipoles, as in Eq. (A16). For the dipole component
(L =1, QL =r ), Eq. (A17) gives

5

2'
4v'Zx

A4(E)= x312mE.
1/2

(5.5c)

3
Gr =)(Ep, a, co, g) = nTp(Ep)a cosa

4m

sina

and nT„(E) is given in (5.4). However, for a spherical
cavity, this is a poor approximation [28]. The smooth
surface and curvature corrections [16] are essential in or-
der to get a reasonable value of the Fermi energy (these
smooth corrections might be less important for other
kinds of potentials [28]), so we use instead

Ra(re+i g) . co—z
sina

(5.1 1)

where co~=u~/R and u~ is the Fermi velocity. We have
used the following explicit expressions of the v"rious
quantities appearing in (A17):

with

n(E)=nT„(E)+ A3(E) cos(3V'3x+ —,'m)

+ A4(E) cos(4V'2x+ —,
'm. ),

1 2 1
nTP(E)=nrem(E) — x + x,

(5.6a)

(5.6b)

nNi")
( 1 )nR

T u„(r)

2R sinaT a
UF

= 2~
c03(a) =

sinu
n m. +Xcz

2

(5.12)

(5.13)

(5.14)

2f dE n(E)=254,
0

(5.7)

including the smooth surface and curvature corrections
to the volume Thomas-Fermi term nT„[16].

To summarize, we determine the Fermi energy through
the requirement

aco2(a)= . co~ .
sina

(5.15)

Moreover, since the transitions shown in Fig. 2 are of the
kind b,n„=O and b,l= 1, we have taken only the terms
n =0 and N= 1 in (A17).

Then, the approximation analogous to Eq. (5.5a) for
the dipole propagator is

II,(co, g) =D, (E,co,g)+G, (E,n /3, co, g)OR 0 2~
1/2

2 cos(3V'3x+ —', m)

277+GL )(E~,m/4, co, ri)
4 2x

1/2

2c so(4 V2 x+,'n). —. (5.16)
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All the quantities on the right-hand side of (5.16) are
evaluated at the Fermi energy, which is determined from
the normalization condition (5.7).

Equation (5.16) includes the corrections due to triangu-
lar and square orbits; however, there remains the prob-
lem of the smooth, surface and curvature, corrections.
They can be included in a somewhat empirical fashion.
It can be noticed from Eq. (5.11) that the Vlasov propa-
gator is proportional to the Thomas-Fermi level density.
It is reasonable to replace nT„ in (5.11) with nT„, which
includes the surface and curvature corrections. Then the
propagator (5.16) is renormalized by the smooth correc-
tions

nT„(EF )IIL, (co, r)) = IIL,(co, g) .
nTF(EF )

(5.17)

Equations (5.5a) and (5.16) include only contributions
due to triangular and square orbits. However, Nishioka,
Hansen, and Mottelson [23] find that these are sufficient
to generate the most important shell effects in a wide
range of electron number.

The results of including the periodic orbit contribu-
tions are shown in Fig. 2 and are compared with the sim-
ple Vlasov response function and the exact (smoothed)
quantum result. The dashed curve in Fig. 2(a) is obtained
from the imaginary part of the propagator (5.16), while
the dashed curve in Fig. 2(b) is obtained from Eq. (5.17).
Thus Fig. 2(b) includes renormalization due to surface
and curvature effects. The smoothing parameter g used
in Fig. 2 is A'g=0. 04 eV, which is about one-third of the
distance between two successive peaks in the quantum
response function.

The quantum corrections modify the Vlasov results
shown by the dotted curve in Fig. 2 in the following
ways.

(i) The Fermi energy calculated from Eq. (5.7) is
affected by the surface and curvature corrections in (5.6b)
and by the contribution of periodic orbits in (5.6a). The
calculations presented here include both these effects and
give an upward shift of the Fermi energy by about 0.6 eV
compared with the pure volume Thomas-Fermi value.
This shift of the Fermi energy also changes the Fermi ve-
locity v„and the frequency ~F.

(ii) The quantum corrections introduce additional
terms in the propagator (5.16), coming from the periodic
orbits.

(iii) There is a question as to which expression should
be used for the density of states nT„(E~) in Eq. (5.11).
One possibility is to use the volume Thomas-Fermi value
(5.4). The dashed curve in Fig. 2(a) is calculated in this
way. Another possibility is to use nTF given by Eq.
(5.6b), which includes the smooth surface and curvature
corrections. This does not change the position of the
peak, but reduces the overall strength and is in better
agreement with the exact quantal result [see Fig. 2(b)]. A
further possibility would be to replace nTF in Eq. (5.11)
with rT given by Eq. (5.6a), but in this case there is a possi-
bility of double counting and it would also lead to a very
critical dependence on the position of the Fermi energy.

Even if we do not make this last replacement, because

of the relatively large value of the parameter x, the shape
of the semiclassical response function depends rather crit-
ically on the value of the Fermi energy. In the present
case (x = 13.575) the contribution of triangular orbits is
negative and is responsible for the dip around 0.7 eV,
while square orbits give a positive contribution that adds
to the large peak around 0.6 eV.

VI. CONCLUSION

APPENDIX

In this appendix we show that, for spherical systems,
Eqs. (1.2) and (1.3) give the same propagator obtained in
[4]. A spherically symmetric Hamiltonian ho(r, p)
=p /2m+ Uo(r) is always separable in polar coordi-
nates; however, the choice of action-angle variables is not
unique. For our purpose it is convenient to choose the
components of the vector I to be ([26], p. 476)

Ij =A, ,

I2 =X,

I3=A, +I„=A,+ )dr p„,1

(A la)

(A lb)

(A lc)

where A., is the z component of the particle angular
momentum, A. the magnitude of the angular momentum
vector, and p„ the radial component of the particle
momentum. In a central potential the Hamiltonian does
not depend on I„so that. AD =ho(Ip I3); consequently,

ah,

1

Bho

(A2a)

(A2b)

(A2c)

We have established a parallel between the problem of
evaluating shell effects in the level density and in the
single-particle response function of large quantum sys-
tems. The level density is not the only quantity where an
interesting connection can be made between quantum
shell effects and a property of classical orbits. Closed
classical orbits play exactly the same role in determining
shell effects in the linear response function. Quantum
corrections affect the Vlasov propagator in different
ways: through the value of the Fermi energy parameter,
through the additional terms that can be related to closed
classical orbits, and also through the renormalization due
to the surface and curvature corrections, which have
been included somewhat empirically.

The results obtained here extend the possibility of ap-
plying the semiclassical theory of linear response based
on the Vlasov equation to systems in which shell correc-
tions are not completely negligible. A most interesting
result of the closed-orbit theory is the possibility of relat-
ing features of the excitation spectrum of quantum sys-
tems to a simple property of classical orbits.
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The frequency co3 (denoted by coo in [4]) is just the fre-
quency of radial motion in the effective potential
U,s(r, l.)=Uo(r)+A/2mr T. he frequency co2 instead is
the precession frequency of the periapsis in the plane of
the orbit ([26], p. 509) and it was denoted by coo/vr in [4].
The angle variable P, is a constant of the motion, it is the
longitude of the ascending node ([26], p. 479). The vari-
ables $2 and $3 are linear functions of time

and can be expressed in terms of r as (taking $3=0)

$3(r )=co3r(r )

$3(r ) =P3+cozr(r ),
with

7(r)—:f dr'
U„(r') '

(A48)

(A4b)

(A5)

$2( t ) =p2+ co2t,

$3(t )=$3+co3t

(A38)

(A3b)

the time required for the particle to move from the inner
turning point r, to the generic point r (U„ is the radial ve-
locity). Then, since co, =0, Eq. (1.2) gives

D (q', q, co)=(2n. ) g f dI3 fdI2F' ho(I2, I3) . g f d I&Q„*(q',&)Q„(q,&) .
rl 3 co3 + 71 2 co2 ( co +i rl )

(A6)

It is convenient to expand D in partial waves. This is achieved by means of the expansion

e' '= g QL(qr)YLM(6, qr)YLM(q),
L, M

with

(A7a)

QL(qr)=4rri jL(qr) .

Then the Fourier coefficients (1.3) become

Q„= y Y,*M(q)Q™(q),
L, M

with

(A7b)

(AS)

(2~)3 o o o
(A9)

In order to evaluate these integrals, it is useful to perform
the same rotation of the reference frame considered in
[4]. The frame is rotated so that the z axis is aligned with
the vector A, and the y axis with the radius vector r. Then
the spherical harmonics become

I

coefficients (A9) become

Q'. '(q)=g YLN 2
0 dMN(p+M,

N

YLM(~ q ) rf DMN(a p y ) YI.N
N

(A10)
qrT U„(r)

T is the period of radial motion and

(A13)

a=
cosp=A, , /A, ,

y =P,+y(r ) rr/2=/, co,r(r—)+y(r ) r—r/2, —

with

(Al la)

(A 1 lb)

(Al lc)

y(r)= f dr'
mr'

where DMN are the rotation matrices and (a,p, y ) are the
Euler angles that specify the new position of the reference
frame. It is easy to realize that

s„N(r ) =n3co, r(r )+N [co2r(r ) y(r)]—(A14)

coincides with the definition (5.18) of [4]. The integral in
(A13) (divided by T) is the classical limit of the radial
matrix element for the operator QL(qr) [10], while the
factors in front of it are classical limits of Clebsh-Gordan
coefficients. The whole Eq. (A13) is the classical version
of the following quantum relation between the full and
radial matrix elements of a multipole operator in a cen-
tral potential:

(n~, lb, mb IQL(qr) YLM(r)ln„l„m. &

Thus, by writing the rotation matrices as ~ (I,Lm, MIlbmb )(1,LOOIlb0)

X drubr Lqru r (A15)
DMN(a, p, y)=e '

dMN(p)e (A12)

the integration over p, and $3 can be performed and the
The rotation matrix dMN is the classical limit of the
Clebsh-Gordan coefficient ( l,Lm, M

I ibm& ), while
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YL~(m/2, 0) is the classical limit of (1,LOO~l&)).
Finally, by using that fdI, =Af d cosP and the ortho-

gonality of the rotation matrices, the propagator (A6) be-
comes

D (q', q, co) = g DI (q', q, co) YLM(q') YLM(q), (A16)
L,M

with

g 2 +oo L

DL (q', q, co) =
n = —oo N= —I.

7T
Yl.x —,02'

2

X — e ""
Q (qr)T v„r

(A17)

in agreement with Eq. (5.22) of [4].
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