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Quantum defects and atomic core radii
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The dynamical origin of the quantum defect 6 of the valence electron of alkali-metal atoms is attribut-
ed solely to an unspecified potential of the inner core, and it is demanded that 5 is stationary with
respect to variation in the values of atomic core radius r*. It is seen that this conjecture, when supple-
mented by a reasonable description of the core interaction, simultaneously produces numbers for r and
6 that help visualize the conceptual aspects of the problem. Corrections to the quantum-defect data due
to core polarization are considered from a slightly different point of view. Problems in extending the
present model for multivalent atoms are discussed.

PACS number(s): 31.10.+z

The quantity 6 is almost constant in a particular series
(constant I and varying n ) of terms and is obtained tradi-
tionally by fitting the experimental binding energy. How-
ever, application of the QDT to atoms and/or computa-
tion of the values for 6 without resorting to use of the ex-
perimental data is an interesting problem [3] to deal with.
The present report is an effort in this direction.

The quantum defect for alkali-metal atoms can be ex-
plained by the use of the WKB approximation method [4]
and for the ground state of a Z-electron atom, 6 is given
by [5]
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The many-body problem in physics is, in general, not
exactly soluble and one such typical example is furnished
by the atomic structure calculation. Thus, over the
years, the ¹ lectron problem has been discussed and
treated within the framework of various approximation
schemes [1]. While the general many-electron problem is
still largely unsolved, the structure and spectra of alkali-
metal atoms can be understood relatively simply because
they are made of closed shells with one valence electron.
The situation is similar to the hydrogen atom except that
the potential on the valence electron is not purely
Coulombic but is shielded by the core electrons resulting
in the removal of I degeneracy. The effect of the inner
screening is well taken care of by the so-called quantum-
defect theory (QDT) [2]. Here the energy eigenspectrum
is still described by a hydrogenic formula with the princi-
pal quantum number n being replaced by an effective
quantum number n * and the quantum defect 6 is written
as

the valence electron is proportional to r ' only for r ) r *

and the unspecified potential inside the core is given by
the Thomas-Fermi model of the atom. The Thomas-
Fermi function y(x), which satisfies the universal
differential equation

d'x(&) [x«)]'"
dx' x'" (4)

is subject to the boundary condition y(0)=1, together
with a suitably chosen initial tangent inclination.

For a given value of the atomic core radius, the quan-
tum defect 5 can be obtained from (2) by means of a sin-
gle quadrature. Different rather arbitrary methods are
adopted to fix the value of r* from the experimentally
measured internuclear distance between two ions in an
ionic crystal. The most widely accepted method is due to
Pauling [6]. However, we feel that, as with quantum de-
fect, a purely theoretical approach in respect of this is
also an equally involved problem with a host of connec-
tions in several areas of physics [7] and [8]. We, there-
fore, ask the following: Can one compute values for both
r and b, by some judicious exploitation of (2)? An
answer to this question appears to call for a relatively
closer look into the dynamics of the alkali-metal atom.

The valence electrons of alkali-metal atoms are s elec-
trons and have a high probability to lie in the immediate
vicinity of the nucleus. In the graphic language of Bohr,
orbits of these electrons constitute the so-called penetrat-
ing orbits such that their wave functions and energy ei-
genvalues are significantly affected due to interactions
with the core. One way of realizing this is to demand
that 6 is a maximum with respect to variation in the core
radius. We thus have
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The upper limit x* of the integral in (2) is related to the
radius r of the core of closed shells by

x *=, with a =0.885 34Z
a ' (3)

In writing (2) we have assumed that the potential field of

Equations (2) and (5) can be combined to write

y(x*)=—,
Z '

which tells us that computation of the numerical result
for x* involves only numerical solutions of the Thomas-
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TABLE I. Core radii and quantum defects for alkali-metal atoms from Li to ' Cs. The numbers in
parentheses are from Kostelecky and Nieto [10],Friedrich [2], and Ham [11].

Element
Core radius (a.u. )

F r*
Quantum defect

Li
Na
K
Rb
Cs

0.838
1.719
2.078
2.518
2.785

0.859
1.831
2.147
2.524
2.794

0.3564
1.3644
2.0080
3.0154
3.7527

0.3477 (0.4000)
1 ~ 3816 (1.3500)
2.0228 (2.2296)
3.0346 (3.1952)
3.7888 (4.1307)

0.0155
0.0138
0.0466
0.0551
0.0700

Fermi equation with a sufficiently closed mesh. Ap-
propriate numerical results for r* and 5 calculated on
the basis of (2) and (6) will be presented in due course.
Meanwhile, we like to deal with a function

f(x)= 1 a=0.536 25
(1+ax)

(7)

and thereby construct closed-form analytical expressions
for x ' and b, . The function g(x) was introduced by Tietz
[9] as a fair approximation to the universal Thomas-
Fermi function y(x) for a neutral atom. From (2), (6),
and (7) we get

(Sa)

and

Z '~ tan '(ax *)'~—2.66
I /2

1/2
ax*
Z (Sb)

Results in (Sa) and (Sb) represent our desired analytical
expressions. %'e have used a tilde over x * and 6 only to
indicate that these quantities refer to the approximate
Thomas-Fermi function introduced in (7). Obviously, the
exact values of core radii and quantum defects will be
determined from (2) and (6) in conjunction with a delicate
numerical solution of (4).

In Table I, we present our results for quantum defects
of the alkali-metal series for both r* and r *. Appropriate
results quoted by earlier workers [2], [10], and [11] are
given in braces. The two sets of data, namely those taken
from the standard literature and new ones, are expected
to provide a useful check on the ansatz of our theoretical
model for the quantum-defect method. Looking closely
into our numbers we see that r *) r * for all Z and except
for Li, an increase in the value of core radius tends to
produce a larger quantum defect. Further, the value of 5
for Li is in variance with that of Kostelecky and Nieto
[10] by 13%%uo. The reason for this may be attributed to
the inadequacy of the Thomas-Fermi model for a small
atom like lithium.

Interestingly, our result for "Na does not differ appre-
ciably from that in Ref. [10]. But as we go to higher
atoms, our 6 values again start deviating from the corre-
sponding quantum defects obtained from experimental
term energies. However, the deviation in question always
remains less than 9%. Note that the reference value for
' K is taken from a relatively recent literature [2] while
the source for the corresponding results of Rb and Cs

1/2
1 (l +1/2)

n2 r2

2+——
n r

1/2
(l +1/2)

2
dT

r
(9)

The expression in (9) is based on the WKB method with
Langer modification. Here l stands for the orbital angu-
lar momentum and

V(r) +Vp(r) . —2
(10)

While the lower limit r, of the integra. l in (9) may con-
veniently be taken near the core radius, the quantities rz
and rz refer to appropriate outer turning points.

To describe the motion of the valence electron in the
alkali-metal atoms, Marinescu, Sadeghpour, and Dalgar-
no [13] have recently derived a parametric model poten-
tial of the form

is the classic work of Ham [11]albeit quite antique. We
feel that relativistic effects may be responsible for the
discrepancy observed in high Z atoms.

From the discussion presented above, it is clear that
despite inadequate treatment of the interaction in the
core region, the present model yields results for 6 that
are not off the mark with regard to numerical accuracy.
An added realism to our theory is that it simultaneously
gives an estimate for the ionic core radii. Significantly,
these results were obtained by a purely theoretical ap-
proach in that we did not require the use of experimental
information to compute our results.

One of the tasks in developing a theory for the
quantum-defect method consists in confronting its conse-
quences with experimental data. This will involve con-
sideration of polarization effects in the atomic potential
V(r). In the presence of the polarization potential V (r),
the atomic potential is not purely Coulombic in some re-
gion beyond the ionic core. Thus, it is rather tricky to
deal with the effects of V (r) within the framework of
QDT. On the other hand, such effects may be quite
significant. For example, the correct description of the
core polarization by the field of valence electron of alkalis
bears considerably on the photospectroscopy of these
atoms [12].

We note that there exists a direct procedure [11]to ap-
proximate the change in quantum defect induced by
V (r). This change is given by
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Zt(r)
Vt(r) = — + V~(r)

with

Zt(r) = 1+(Z —1)e ' —r(a 3+a~r)e

(13)

Here r, and a, stand for the cuto8' radius and the core
polarizability, respectively.

For a fixed value of a„ the parameters in (11) were
determined from a nonlinear fit to alkali-metal atom Ryd-
berg energies. The potential in (11) exhibits appreciable
angular momentum dependence for / ~ 3. This may lead
to new significance'for the dependence of b, on I. Howev-
er, we note that one of the features of the result in (11) is
that it exactly reproduces the experimental polarizabili-
ties for each of the atoms in the alkali series. In view of
this we have used the expression for V (r) by Marinescu,
Sadeghpour, and Dalgarno [13] to compute the change in
quantum defect (M ) due to core polarization. The value
of r; in (9) was fixed exactly at the core radius of the atom
under consideration. The upper limits were however,
determined by the prescription given above.

Values of 5b. for the valence electron in the s state are
given in column six of Table I. These results should be
subtracted from the corresponding data obtained by the

omission of long-range polarization. Our results for 5A
are highly augmented compared to those given in Ham
[11]. The difference between our numbers and those of
Ham are presumably due to different handling of the po-
larization effect. Interestingly, the present choice for
Vz(r) could also produce the results of Ref. [11]provided
we had agreed to work with values for r, quoted there.

In this work we presented a recipe to compute values
for ionic care radii and quantum defects for monovalent
atoms without making use of experimental results. An
extension of the idea developed to deal with multivalent
atoms would be quite interesting. But we feel that this is
a more involved problem. Even for the traditional
quantum-defect method, the task is not as simple as with
monovalent atoms. In the presence of more than one
valence electron, the term values of the neutral atom do
not follow the Ritz law with the accuracy found in the
alkali-metal atoms. In the case of alkali-metal atoms, the
slow variation of quantum defects as a function of energy
can be understood in a relatively simple manner by postu-
lating the existence of an inert core. But rapid variations
occur in systems like the alkaline earth metals and other
atomic systems in which the core can be excited rather
easily. In such cases one is required to perform close-
coupling calculations [14].
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