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We derive relationships between canonical and measured phase distributions for quantum-oscillator

states in the semiclassical regime. First, we extend the formalism for the canonical phase to include

external measurement-induced uncertainty. We require that a phase shifter shifts a phase distribution

while a number shifter does not change it. These axioms determine pure canonical phase distributions

uniquely while a noisy distribution can be interpreted as a weighted average of pure phase distributions.
As a second step, we show that measured phase distributions, i.e., s-parametrized phase distributions

fulfil approximately the axioms of noisy canonical phase, and we derive simple analytical expressions for
the corresponding weight functions. Our analysis thus bridges all three conceptions of quantum-optica1

phase (canonical phase, s-parametrized phase, phase from measurements) and provides important physi-

cal insight into the relationship between them.

PACS number(s): 03.65.Bz, 42.50.Dv

I. INTRODUCTION

Although the quantum-optical phase is still a contro-
versial subject [1,2], recently significant progress has been
made in unifying the various different conceptions of
phase [3]. First, the results of different formalisms em-

bodying the concept of phase as an observable canonical-
ly conjugate to the photon number have been shown to be
physically equivalent. In particular, the phase distribu-
tion associated with the Helstrom-Shapiro-Shepard prob-
ability operator measure [4,5] is equivalent to that de-
rived from the Pegg-Barnett formalism [6] for physical
states in the infinite dimensional limit [5,7,8]. Also, the
Newton-Barnett-Pegg formalism [9] where the Hilbert
space has been doubled gives the same physical results as
the formalism mentioned above [10]. Considered purely

mathematically, these approaches are quite distinct.
However, the phase-distribution function for a given
physical state is the same irrespective from which formal-
ism it has been derived. We call this common distribu-
tion a canonical phase distribution since the Pegg-Barnett
formalism [6], for instance, is motivated by the require-
rnent that the physical quantity phase be canonically con-
jugate to the photon number similar to definitions of the
standard variables position and momentum.

A second conception of phase [3] is based on examin-
ing phase properties via s-parametrized quasiprobability
distributions of position and momentum [11]. A phase
distribution is obtained from integrating the quasiproba-
bility distribution over the radial coordinate. This con-
ception is not motivated by the complernentarity of nurn-
ber and phase nor is it free from arbitrariness. Which s-
parametrized phase distribution should be taken? Phase
from the Wigner function [12] has at least the merit of
coinciding with the canonical phase in the limit of very
large intensities [13]. On the other hand, it has the draw-
back of yielding negative distribution functions for some
physical states in the quantum regime [14]. However, it

was recently shown [15,16] that s-parametrized phase dis-
tributions describe experimentally measured phase proba-
bility distributions [17,18] when the parameter s is less or
equal to —1. Thus, the motivation for this concept
comes a posteriori from experiment.

At first glance, the third conception [3], the operation-
al approach to quantum phase [18,19,20] introduces an
element of subjectivity into the definition of a physical
quantity, especially for weak fields in the quantum re-
gime. Possible experiments are different and depend on
the intentions of their designers. So it is highly remark-
able that most of them yield the same results under
reasonable assumptions [21]. The distributions measured
in these experiments [22] can be interpreted as being de-
rived from the Q function [15] or a smoothed Q function
in the case of inefficient detection [16]. We call them
measured phase distributions [23].

As a last step, it remains to be shown how the mea-
sured phase distributions are related to the canonical
phase distribution. It would be very surprising indeed if
there did not exist a deeper relationship between both,
since the experiments are designed as classical phase-
measurement schemes and in the classical limit, mea-
sured and canonical phase coincides. We note that
significant differences occur in the extreme quantum re-
girne of low photon numbers. Here, we are interested in
a semiclassical domain of relatively large photon num-
bers. What would we expect? Since the phase-
measurernent schemes realize simultaneous yet noisy
measurements of position and momentum [24,25], we an-
ticipate that the measured phase distributions should be
somewhat broader than the canonical distribution. A
comparison of phase variances [26] and calculations for
particular states [27] support this assertion. In this pa-
per, we quantify the general asymptotic relationship be-
tween canonical and measured phase distributions. Be-
fore we address this problem, we provide in Sec. II an al-
ternative and more general theoretical approach to
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canonical phase distributions. It is not motivated by a
quantum-estimation problem as in Shapiro's and
Shepard's classic paper [5] nor by requiring the construc-
tion of Hermitian phase operators. Our approach is
based purely on the complementarity of phase and pho-
ton number. It has the merit that it can describe phase as
a variable influenced by external noise. This element of
external statistics and the basic consequences of our ax-
ioms of complementarity will give us the key for relating
canonical phase to measured phase. We will show in Sec.
III that in the semiclassical domain measured phase dis-
tributions are averaged pure canonical distributions with
respect to a distribution function of reference phases.
The latter depends on the mean photon number and the s
parameter in a simple way. In the classical limit, it
reduces to a 5 function, as we would expect. The results
are summarized in Sec. IV.

Here,

W(x,p)—:f e '~~(x —y~p~x +y ), (6)

and

e.g. , the rigged Hilbert space [31]. Another important
point is that a phase state ft(y) can be a mixed state.
This simply means that the measure of y is not precise
and so the probability distribution Pr(y) represents the
results of a noisy measurement of y. For this reason, we
call Pr(y) a noisy phase distribution and ft(y) a mixed
phase state.

The basic expression (1) for a probability distribution
in quantum mechanics can be also expressed as an over-
lap of Wigner functions [32,33],

Pr(y)=2m f dx f dp W(x,p)R'(x, p;y) . (5)

II. CANONICAL PHASE DISTRIBUTIONS

A. Axioms for quantum phase

Preliminaries

ft(y) =ft(y) . (2)

A probability distribution is normalized to unity. Conse-
quently, the set of operators A(q&) must be normalized as
well,

f dyft(y)=1 . (3)

Lastly, a probability distribution is nonnegative

Pr(y) ~0 . (4)

This implies that the eigenvalues of ft(y) must be non-
negative as well. This property together with (2) and (3)
is sufficient to identify ft(y) as a density operator which
is often laxly called a phase state. One important point is,
however, that the operator A(y) might be unnormaliz-
able, as the London phase states [30] are, although we
note that such states can be represented in larger spaces,

In this approach to quantum phase, we consider phase
distributions. Since a probability distribution of phase
contains all statistical information on the phase proper-
ties for a given state it represents the physical quantity
phase completely. Realistic measurements of phase [24]
always involve extra noise beyond that due to the intrin-
sic quantum phase fluctuations described by the canoni-
cal phase distribution [4—6,9]. Consequently, we need a
general method that allows the description of phase in
the presence of noise. For this we use probability operator
measures (POM's) [28], as in Shapiro's and Shepard's
classic paper [5]. Within the POM formalism, we intro-
duce a probability distribution Pr(y), yH ( vr, m ], as [29—]

Pr(y)= Tr[pft(y)], (1)

where p is the density matrix and ft(p) denotes a set of
suitable operators parametrized by the phase variable y.
Since probability distributions are real functions, A(y)
must be Hermitian,

W(x,p;y):—f e '~~(x —
y~ ft(y) ~x +y )

are the Wigner functions of the quantum state p and the
mixed phase state A(tp), respectively [34]. The overlap
relation (5) closely resembles the probability overlap in
classical statistical physics and hence it helps us to under-
stand quantum mechanics more intuitively. In addition,
it is a quite useful tool for finding the semiclassical
asymptotics of a given quantum-mechanical problem.
Later on we will use the overlap relation for understand-
ing the asymptotic relations between measured phase dis-
tributions.

So far, we have briefly summarized the general proper-
ties of POM's. Now, we turn to two specific require-
ments for a noisy quantum-phase distribution. Our goal
is the definition of quantuxn-optical phase as canonically
conjugate variable with respect to photon number. How
can this be achieved? We wish to treat number and phase
similarly to the basic canonically conjugate variables posi-
tion and momentum. We could, for instance, extend the
canonical commutation relation for position and momen-
tum operators q and P,

[q P]=i
to a commutation relation for number 8'=& & and phase

(As usual, a denotes the annihilation operator. ) It is
well known, however, that a Hermitian phase operator p
does not exist on the Fock space. Instead, we are consid-
ering not phase operators but phase distributions. In
defining phase as canonically conjugate to photon number,
we must translate some typical properties of position and
momentum distributions into the language of number
and phase and regard them as being fundamental. We
obtain from the canonical commutation relation that the
operator S(qo)=exp( i oP) shi—fts position eigenstates
by the amount qo while (po) =exp(ipoq) shifts momen-
tum eigenstates by po, see, for instance, Ref. [35]. Hence
the momentum distribution Tr[p~p ) (p~ I is shifted by po
when f'(po) is applied to the quantum state p. On the
other hand, the momentum distribution is not changed
when S(qo) is applied to p, i.e., when the position is shift-
ed. Position and momentum are strictly independent



86 U. LEONHARDT, J. A. VACCARO, B. BOHMER, AND H. PAUL

since shifting one variable does not affect the other. We
may regard this mutual independence of the canonically
conjugate variables as being fundamental and require the
same for number and phase.

for describing a noisy measurement of phase without con-
tamination from the complementary observable, photon
number. Now we consider the detailed consequences of
both axioms.

Axioms B. Consequences

We require that a phase-distribution function of a sin-
gle mode satisfies the following axioms.

(A) A phase shifter shifts the phase distribution.
(B) A number shifter does not change the phase distri-

bution (complementarity). To be explicit, a phase shifter
is represented by the unitary transformation operator,

0(P)= exp(i/a d) . (9)

Axiom (A), thus, means that

Pr'(y) =Tr I 0(P)p 0(P) A(q&) ]

=Pr(qr —P)

Pr(y)= g &m ~A(y)~n && n~p m & .
n, m =0

We use the axiom (A),

Pr(g) =Pr[0—( —y) ]

&m~A(o)~n &&n~0( —q)pO(q)~m &

n, m =0

(13)

Foek representation

We express the noisy phase probability distribution in
the Fock basis,

A number shifter is expressed by the operator

~n+1&&n~ .
n=0

(10) &m ~A(0)~n &e' "'~&n~p~m &,

define the coefficients
—=z~&m)A(0)~n &,

(14)

It shifts the photon-number distribution up by one step.
(~n & denotes a Fock state. ) The operator P is nothing
but the Susskind-Glogower exponential phase operator
exp( —iqr) [36]. As is well known, it is neither a unitary
nor a strictly invertible operator, since P annihilates the
vacuum state. However, we are not concerned about the
problems of P as an exponential phase operator here. We
only use the number-shifter property of k Axiom (B)
thus requires

Pr'(y):—TrIX'pE A(g)] =Pr(q&) .

Comments

Both axioms (A) and (B) together determine a phase
distribution. What do they mean physically? Axiom (A)
is almost trivial. We only require that the phase distribu-
tion should indeed reAect the basic feature of quantum
phase, i.e., that a phase shifter is a phase-distribution
shifter. Naturally, many phase-sensitive quantities have
the property (A). Axiom (B) is more specific [37]. It
means that the distribution function Pr(y) contains the
properties of quantum phase and nothing else. It must
not reAect any properties of the canonically conjugate
variable, the photon number. Hence (B) means that
phase should be complementary to photon number. We
also note, however, that if a particular distribution func-
tion Pr(y) satisfies the axioms then so does the weighted
average p, Pr(y)+p2Pr(y+5) of this function and the
phase-shifted distribution Pr(p+6), which describes un-
certainty in the reference phase. We interpret this as the
axioms allow for a noisy measure. of phase. The nature of
this noise is very special in that the resulting distribution
still satisfies the axioms of complementarity. Thus our
approach here contains, in essence, the basic prescription

and obtain

Pr(q)= g B„e" "'~&n~p~m & .= 1

n, m =0
(16)

Since the operator A(y) is Hermitian, the matrix B„
must be Hermitian as well,

Bn, m Bm, n (17)

a„e' "'~& n —1~P~m —1&2'

B„+, +,e" "'~&n~p~m & .
n, m =0

Consequently, the B coefficients should have the
number-shift invariance as well,

Bn+1,m +1 Bn, m

This simple relation will provide us with the key for relat-
ing canonical and measured phase distributions.

Convolution

Because of the invariance relation (19) and the Hermi-
tian condition (17) the B-coefficients depend on a single
row of free parameters,

Expressions of the type (16) have been known for several
phase-dependent distributions for a long time (cf., for in-
stance, Ref. [19]). As we have seen here, the root of these
formulas lies in the phase-shifter axiom (A). Now, we
consider the consequences of axiom (B):

Pr(g)= g B„e' "'~&n(PpP ~m &
= 1

2&
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80 for v~0,
nm rn —n& v $+ for &(0 (20)

principle (19), we have

8„"+Q+ =8„"8 (27)

These parameters characterize all possible noisy phase
distributions satisfying both axioms (A) and (B). Using
the definition (20) and the Fock expansion (16) for a noisy
phase distribution, we find ' ~n ~1 '«~n —l ~0~8„*8,=e " =e (2g)

Setting n = rn, we obtain ~8„~ = ~8o ~, and because of the
normalization of the phase distribution ~8„~ = 1. We ex-
press 8„asexp( i—P„)and obtain

Pr(q&)= g e'"% c, ,
~= —oo

with

and, consequently,
21

e "=e " 'e'~, P=P, —
P&& .iPn iPn —I i (29)

C V

g (n~p~n+v) for v~0,
2& —0

c* for v(0. (22)

Applying this relation n times, we get, finally,
—iP -IP

m

Hence, the phase distribution Pr(y) is

(30)

Here the noisy phase distribution Pr(y) is expressed as a
Fourier series. According to the convolution theorem,
we obtain

Pr(y)= g e' " + ~'(n ~p~m )= 1

2m
n, m =0

Pr(y) =f g(p)pr~(q p), —+~dP

with

g(P) = g e' ~b

and

+ oo
1

oo

Pr (y)—:g e' ~c = g e' "'~(n ~p~m ) .
oo n, m =0

(23)

(24)

=Pr (q) —P) . (31)

III. MEASURED PHASE DISTRIBUTIONS

It corresponds to the well-known phase-distribution first
introduced by London [30]. Hence up to a reference
phase our basic axioms (A) and (B) determine a canonical
phase distribution uniquely when we consider a pure dis-
tribution, while, in general, any noisy phase distribution
satisfying the complementarity axioms can be seen as a
statistical mixture of pure canonical phase distributions.

The function Pr (y) is nothing but the Helstrom-
Shapiro-Shepard phase distribution [4,5] and the Pegg-
Barnett phase distribution [6] for physical states in the
infinite-dimensional limit. We call Prz(p) a pure canoni
cal phase distribution The fu.nction g(P) is real because
of the definition (20) of the b coefficients. Moreover, it
must be nonnegative and normalized to unity since the
distributions Pr(y) and Pr (p) are nonnegative and nor-
malized for all states. Hence we can interpret g(P} as a
probability distribution. Our result (23) thus means that
any noisy phase distribution Pr(y) satisfying both axioms
(A) and (B) consists of pure canonical phase distributions
Pr (y) averaged with respect to a certain probability dis-
tribution g(P) of reference phases P which represents the
noise.

A. Q-phase distribution

Pr (y)= f dr —(re'+~padre'+) .
o m

(32)

(
~

re'~ ) is a coherent state of amplitude r and phase y). It
reads in terms of the POM formalism,

The phase distribution measured in the Noh-
Fougeres-Mandel experiment [18] is the radius-integrated
Q function (Q phase) [15],provided a strong local oscilla-
tor and perfect detectors have been employed [21]. Also,
in other operational approaches to quantum phase
[19,20], the Q-phase distribution is measured. In this Sec.
we show that we can interpret this distribution as a
smoothed canonical phase distribution. The Q-phase dis-
tribution is defined as

Pure phase distributions with

Prg(y) =Tr I pAg(p) ], (33)

Finally, it remains to be proved that the pure canonical
phase distributions Pr (q&) are the only ones that deserve
the designation "pure, " in the sense that they correspond
to pure phase states ft(y) = ~y) (y . In fact, they are the
only distributions having both properties (A) and (B) and
a coeKcient matrix B„ that factorizes according to

(26)

The proof is rather simple. Because of the invariance

A (q&)= f dr —~re'+)(re'+~ .
o

(34)

This type of phase state for the Q phase has been studied
in detail by Paul [19].

Wigner function

To compare the Q-phase distribution with the pure
canonical phase distribution, we can use the Wigner-
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function-overlap relation [32], i.e., according to Eq. (5),
we express Pr&(q&) in terms of Wigner functions,

Pr&(92) =2m. f dx f dp W(x,p) 8'&(x,p;qr), (35)

with

8'&(x,p;p)= f "dr "W—,.„(xp) .
0 7T

(36)

Here, W„h(x,p) denotes the Wigner function of the
coherentstate lre'~)

1
W„h(x,p) =—exp[ —(x 2' r—cosy)

0.4
0.3
0.2
0.

We substitute

—(p 2' —r sing) ] . (37)

x =x cosy+p sing, p = —x siny+p cosy, (38)

and obtain

X8' (x,p;q&)= e ~Ie ~+x m' [1+erf(x )] j .
{2 ' '

(2 )2

(39)

The Wigner function associated with the Q-phase distri-
bution grows linearly in the phase direction p. It has a
Gaussian profile which originates physically from the
vacuum noise involved in realistic measurements of phase
[24], see Fig. 1. In contrast, the Wigner function of a
pure phase state (cf. Fig. 3 in Ref [34]) grows quadratical-
ly in the phase direction. It is much narrower, shows
characteristic oscillations, and becomes negative in cer-
tain regions. Here, on the other hand, the Wigner func-
tion of the Q-phase state is always positive which already
indicates that it represents a statistical mixture. (Only
Gaussian pure states have non-negative Wigner functions
[33].)

Fock representation

In Fock representation, the Q-phase distribution reads

FIG. 1. Wigner function {39)for the Q-phase state (34).

Convolution

For relatively narrow photon-number distributions
compared to the mean photon number, we can approxi-
mate

Bn, n+ /vf BN, N+ /~/

with N being the mean photon number

N=Tr[p8 d] .

Consequently, the Q-phase distribution reads

(43)

(44)

tion. On the other hand, we note that the B coefficients
tend to unity in the limit n, m ~ Oo. Thus, the Q phase
coincides with the pure canonical phase for very large
photon numbers. Hence, the number-shift invariance
cannot be exact. Here, we are interested in an intermedi-
ate regime where n and m are relatively large. We wi11

now quantify the asymptotics of the Q-phase distribution.

Pr~(q)= y B„e" "'~&nlplm&,= 1

n, m =0

with

[—,'(n +m)]!
(n!m!)'

(40)

(41)

Prg(y)= g e' B~~+~ ~c (45)

Pr&(y)= f g(P;N)Pr (p P), —+~dP
(46)

where the c coefficients are defined in Eq. (22). Similarly
to noisy canonical phase distributions treated above, we
obtain according to the convolution theorem,

as derived some time ago [19]. [Here and elsewhere, we
denote the function I (x +1) by x!.] Obviously, Pr(y)
satisfies axiom (A). Moreover, it shows the number-shift
invariance (B) to a rather good approximation,

with

(47)

—,'(n +1+m +1)
n+1, m+1

(n +1) (m +1),~2B„~=B„m. (42)

The B coefficients differ by the ratio of the arithmetic and
geometric mean of the photon numbers n +1 and m + j.

[38]. When n and m are large, the invariance principle
(19) is fulfilled quite well. This means that the Q-phase
distribution is approximately a canonical phase distribu-

Note that the mean photon number 1V enters the expres-
sion (47) for the reference-phase distribution g (P;N). We
wish to derive an asymptotic expression for g(P;N) in
case of large N. We replace the Fourier series in Eq. (47)
by an integral and use the saddle-point method to evalu-
ate it. According to Stirling's formula [39] [Vol. 1, Eq.
1.18(1)],we obtain from Eq. (41)
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1~~,~+ ~v~' N+ +
&

ln N+ + 1

—
—,'(N+ —,') ln(N+1)

—
—,'(N+ Ivy+-,') in(N+ Ivy+ i)

, v'+O(ivy') .
16(N + 1)

Hence, we get for the distribution function

+ QO 3+2Xg(P;N)= f dvexp ivP— V
OO 16(N + 1)

and, finally,

g (P;N) =2m.
1/2

4(N+ 1)
rr(2N +3)

4(N+1)
2N+3

(50)

This simple formula describes the asymptotics of the
reference-phase distribution g(P;N). It is a Gaussian
with a width depending roughly inversely on the mean
photon number X which reQects the extra noise involved
in phase measurements [24]. The distribution g(P;N)
gets narrower with increasing N and finally tends to a 5
function for very large 1V, since with increasing intensity
the inAuence of this noise decreases. In the macroscopic
regime the measurement-induced noise is negligible. This
is readily understood from the particular source of extra
noise being present in an experimental setup that allows
measurement of the Q phase. It is either vacuum noise
introducing the apparatus via the unused port of a beam
splitter [15,20] or amplification noise [19]. In both cases,
the noise becomes negligible when the intensity of the ini-
tial field is high. On the other hand, a distribution func-
tion g (P) that is independent of the field can most easily
be interpreted in taking the term "reference-phase distri-
bution literally, i.e., in identifying the noise with phase
instabilities in the reference beam, e.g., a high-intensity
laser beam. In contrast, the X-dependent distribution
g (P;N) shows that the Q-phase distribution is also an (ap-
proximative) noisy measure of the pure canonical phase
distribution but now the noise relative to the field intensi-
ty decreases as the latter increases. In particular, if the
field is in a coherent state then both the relative
measurement-induced noise and the intrinsic quantum-
phase fluctuations of the field vanish at roughly equal
rates as the intensity increases. In this respect, the Q
phase remains a good measure of the pure canonical
phase distribution even for lower values of N. This is,
however, a special result for coherent states. For states
with narrower phase distributions, e.g. , phase-optimized
states [40], a reference-phase distribution that decreases
at a faster rate is required to preserve the relative accura-
cy of the noisy phase distribution [26].

g, (x)=(x~f, ) =(g/m)'~ exp[ —(g/2)(x —V2a) ],
(51)

see Ref. [12], Eq. (3). Here, g is a real and positive pa-
rameter which characterizes the squeezing. (It is
equivalent to Schleich's s [12]. In order to avoid con-
fusion with the quasiprobability parameter, we denote it
by g.) The real parameter a characterizes the coherent
amplitude of the squeezed state. The mean photon num-
ber N of the state ~g,q) is given by [41]

N = ~a~'+-,'(g+g-' —2) . (52)

We calculated numerically the pure canonical phase dis-
tribution (25) using the photon-number probability ampli-
tudes (m ~g,q) given by Ref. 12, Eq. (4). According to
Eq. (46) this distribution was convoluted numerically
with the weight function g(P;N) of Eq. (50) and com-
pared with the exact Q-phase distribution for squeezed
states, as found in Ref. [27], Eqs. (32), (33) with

p =g, ao =a. Figure 2 shows the exact versus the approx-
imate Q-phase distributions for some squeezed states with
mean photon numbers N =25. We see that the approxi-
mate curve fits quite well the exact one. We observed
that for lower mean photon numbers the agreement be-
tween both curves becomes worse while for higher inten-
sities they become almost indistinguishable.

B. s-phase distribution

Due to losses in overall detection eKciency the phase
from an s-parametrized quasiprobability distribution (s
phase) is measured in realistic experiments [16]. The pa-
rameter s is, in general, less than —1, which means that
the quasiprobability distribution is a smoothed Q func-
tion. The measured phase distribution is given by

Pr, (y):—f dr rW(r cosy&, r sing;s) .
0

(53)

—1 1
WDr(x, p) = exp —(x —r cosy)

7TS s

+—(p rsiny)—1

s
(55)

The function WD~(x, p) can be interpreted as the Wigner
function of a displaced thermal state pDT. Using some
standard expressions for thermal states pz and Ref. [42],
we easily obtain the corresponding density operator,

Here, W(r cosy, r sing;s) denotes an s-parametrized
quasiprobability distribution [11,16],

W(r cosy, r sing;s)= f dx f dpW(x, p)

X WDr(x, p), (54)

with

Numerical tests

We tested the accuracy of our treatment of the Q phase
as a noisy canonical phase for squeezed states [41] having
quadrature wave functions,

2
pD~= exp —2 arcoth( —s)DT

1

7—e

—e

(56)
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FICx. 2. Comparison of exact Q-phase distributions for squeezed states (51) with the results of our treatment of the Q phase as a
noisy canonical phase, i.e., as convolutions (46) of pure canonical phase distributions (25) with weight functions (50). The exact Q-
phase distribution (line) and the approximation (dashed line) is plotted for (a) a coherent state with a =5 and /= 1 (no difference be-
tween the exact and the approximative distribution is visible); (b) a phase-squeezed state with a=4. 5 and /=0. 0477275; (c) an
amplitude-squeezed state with a=4. 5 and /=20. 9523 [the inverse squeezing parameter as in (b)]; (d) an amplitude-squeezed state
with a= 1 and /=97. 9898 showing bifurcation of the phase distribution [12]; and (e) a squeezed-vacuum state with a=0 and
g= 101.99. In all cases the mean photon number 1V was fixed to N =25.
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According to the Wigner-function-overlap relation [32],
we can write Eq. (54) as

Pr, (y)= f dr r f dO W(r cosO, r sinO)
0

1W(r cosy, r siny;s)= Tr[ppDT} . (57)
r 2

exp (y —8)
s

We substitute this result in Eq. (53), replace r2 '~ by r,
and obtain, finally, the POM form for the s-phase distri-
bution,

Pr, (y) =Tr[pA, (y) },
with

X
&—m.s

r 2

exp 0
s

We approximate

= f dO f dr rW[r cos(y —8),r sin(y —8)]
7T 0

(63)

ft, (y) = f dr r exp[ —2 arcoth( —s)(d re'~—)
oo

l

m(1 —s} 0

Pr, (y)= f dO
mrs

R
exp L9

s

X(&—re'~)] . (59) X f "dr rW [r cos(y —8), r sin(y —8)],
0

In the following paragraphs, we relate the s-phase distri-
bution to the pure canonical phase distribution. First, we
calculate the Wigner function for the "s-phase state"
A, (y) and thenw, e apply a similar procedure as for the

Q phase. We verify that the number-shift invariance (19)
is fulfilled approximately, and calculate the asymptotics
of the related reference-phase distribution.

Wigner function

Similar to the Wigner function associated with the Q
phase, we obtain from Eqs. (53)—(55) the Wigner function
for the "s-phase state" ft, (y),

1
W, (x,p;y) = dr r exp —(x rcosy)—

2sm s

+ —(p rsiny)—1

s

(60)

Evidently, W, (x,p;y) is simply a scaled Q-phase Wigner
function,

W, (x,p;y)= 1 X PRgs V —s v' —s
(61)

(Note that s & —1. ) This indicates that the s-phase dis-
tribution is broader than the Q-phase distribution, as we
would expect since extra detection noise is involved in
inefficient phase-measurement schemes [16]. We now
derive an approximative relation which links all s-phase
distributions for s 0. Writing the expression (39) for the
Q-phase Wigner function W&(x,p;y) in polar coordi-
nates, we find that approximately

(64)

where R is a typical radius of the Wigner function
W(x,p) for the particular physical state p, for instance,
the mean radius. The integral with respect to r yields the
phase distribution derived from the Wigner function
(s =0). Thus, we find that the relation

Pr, (y)= f G, (P;R)Pro(y —P)—~ 2&
(65)

between an s-phase distribution and the Wigner-phase
distribution holds approximately in the semiclassical re-
gime. Hence, we can interpret Pr, (y) as consisting of
Wigner-phase distributions averaged with respect to a
reference-phase distribution given by

1/2
R

exp
s

4m R
(66)G, (P;R)=

Iock representation

Now, we investigate how accurately the axioms (A)
and (B) are fulfilled. Tanas, Miranowicz, and Cxantsog
[27] found the Fock representation of an s-parametrized
phase distribution to be given by

Pr, (y)= g B„e' "'"(n~p~m },= 1

27T 0

with
(n+m)/2

(n!m!)'

(67)

(Note that s &0. ) Since the Wigner phase approaches
the pure canonical phase in the limit of very large intensi-
ties [13],we anticipate that an s-phase distribution is ap-
proximately a noisy canonical phase distribution. We
may already guess what the reference-phase distribution
looks like.

W&(r cosO, r sinO; y) ='z exp[ r(y 8) ]——(62)
min(n, m) [—'(n +m) —k]!

k!(n —k )!(m —k)!
1+s

2

k

(68)

holds for r))1. According to the overlap relation (5)
written in polar coordinates, and utilizing Eq. (61), we
obtain for the s-phase distribution

Evidently, the phase-shifter axiom (A} for a canonical
phase distribution is satisfied. How accurately is the
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number-shift invariance (B) fulfilled? In order to test ax-
iom (B) it is convenient to write the expression (68) for
the B coefficients in a different way. We recall the
definition [39] [Vol. 2, Eq. 10.8(12)] of the Jacobi polyno-
mials,

Convolution

Hence, we can interpret Pr, (p) as pure canonical phase
distributions Pr ((p) averaged with respect to a weight
function,

P„"~)(x)=2-" y
k=0

and find

n+a n+p
k n —k

X(x —1)" "(x+1) (69)

Pr, (q&) =f g, (P;N)Pr~(y P—),
with

g (0'»)= g e'"
&N, N+(

~

~

(77)

(78)

m n
t

2
2 1 —s

(m —n)/2 s+1
s —1

XP(--" -'- "'")[1—4(s+1)-']

n

n!
1/2

(70)

As before, X denotes the mean photon number. Similar
to the case of the Q phase, we derive an asymptotic ex-
pression for g, (P;N). We replace the Fourier series by an
integral and use the saddle-point method for evaluating
it. It is shown in the Appendix that

for m )n. (Otherwise, n and m should be interchanged. )

We utilize a property [39] [Vol. 2, Eq. 10.8(33)] of the
Jacobi polynomials and obtain

—,'(n +1+m +1)
B +1 +i= 8 (1+e) (71)(n+1) (m+1) /

BN, N
~BN, N+ l~l

Bv

2~ ~N, N+ iv)

v=+02

—+O,
v=+0

(79)

with c given by

m —n s+1 e
n +1+m +1 s —1

and

p(m —n, —(m+n)/2 —1][1 4( + 1)
—1]e=

p(m —n, —(m+n)/2)[1 —4(S+1) ']

(72)

for large mean photon numbers X. Hence, the saddle
point lies at v=O and we can approximate BN N+

I I

by

SV
BN, N+

I I

exp 8~ (80)

in the Fourier series (78). Replacing the series by an in-

tegral, we obtain, finally,
] 1/2

The expression (71) looks quite similar to the approxi-
mate number-shift invariance (42) of the Q-phase distri-
bution. Apart from the factor (1+E), the shifted
coefficients B„+& +, differ from the initial coefficients
B„bythe ratio of the arithmetic and the geometric
mean of n +1 and m +1, as the Q-phase coefficients do.
Evidently, for the Q phase where s equals —1, the correc-
tion c. is zero. Now, we prove that c. is small for s & —1

[43]. Because of

n +P+1
n —k

n+p)
n —k (74)

we obtain from the definition (69) of the Jacobi polynomi-
als that for x ) 1,

0&P' i')(x)&P' ~+ "(x) .

For s & —1, we get x =1—4(s+1) ') 1, and, hence,

O&e&1.

(75)

(76)

According to Eq. (72) this implies that the correction E in
the number-shift relation (71) is indeed small for states
having narrow photon distributions compared to the
mean photon number. Consequently, the number-shift
invariance (19) holds approximately in the semiclassical
regime. Thus, measured phase distributions, i.e., s-phase
distributions with s & —1, can be regarded as noisy
canonical phase distributions.

g, (P;N) =2' 21' 2N
exp

s
(81)

IV. SUMMARY

We have extended the treatment of canonical
quantum-optical phase within the formalism of probabili-

(Note that s & —1.) This expression describes the
intensity-dependent probability distribution of reference
phases for inefBciently measured phase distributions con-
sidered as noisy canonical phase distributions. Our ex-
pression (81) is very similar to Eq. (66), which was
motivated by the overlap relation (5). Note that the gen-
eral formula (81) is less accurate than the specific expres-
sion (50) for the Q phase since some more approximations
are involved. However, when we set s = —1, both formu-
las converge to the same expression for large mean pho-
ton numbers N. The s dependence in Eq. (81) is easy to
understand. The more inefficient the phase measurement
is the larger is the modulus of the s parameter and the
broader is the weight function. We also note that as in
the case of the Q phase, the reference-phase distribution
for the s-parametrized phase gets narrower with increas-
ing intensity. It approaches a 6 function in the macro-
scopic limit. We tested numerically the accuracy of our
treatment of s-parametrized phase as a noisy canonical
phase. For N/~s~ )20, we found a similar accuracy as in
the case of the Q phase.
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ty distributions to include external measurement-induced
uncertainty. We require that quantum phase satisfies two
elementary axioms motivated by the complementarity of
phase and photon number: A phase shifter shifts a phase
distribution while a number shifter does not change it [37].
These requirements determine a pure canonical phase dis-
tribution uniquely as being the Helstrom-Shapiro-
Shepard phase distribution [4,5] or the Pegg-Barnett
phase distribution [6] for physical states when the limit of
infinite Hilbert-space dimension has been taken. A noisy
canonical phase distribution can be interpreted as a
weighted average of pure canonical phase distributions
where the weight function represents uncertainty in the
reference phase.

As a second step, we have linked recent phase measure-
ments [18] with canonical phase in the semiclassical re-
gime. Under reasonable assumptions [21], measured
phase distributions [22] are s-parametrized phase distri-
butions, i.e., integrals of smoothed Q functions over the
radial coordinate [15,19,20, 16]. We have shown that
these distributions fulfill approximately the basic axioms
of canonical quantum phase for states having a narrow
photon distribution compared to the mean photon num-
ber. In this case, we can interpret a measured phase dis-
tribution as a weighted average of pure canonical phase
distributions. The important point is that the measure-
ment is not contaminated (at least to the level of the ap-
proximation) by the conjugate variable, photon number.
The weight function depends on the s-parameter which
comprises the overall detection noise in phase measure-
ments [16]. In contrast to an axiomatically defined noisy
phase distribution, the weight function depends weakly
on the mean photon number as well. It tends to a 5 func-
tion for very large intensities since the extra noise in-
volved in phase measurements [24] becomes negligible in
the classical domain. Numerical tests illustrate that our
treatment of measured phase distributions as noisy
canonical phase distributions is well justified in the semi-
classical regime for mean photon numbers exceeding
roughly twenty times the modulus of the s parameter.
Our analysis, thus, bridges all three conceptions of
quantum-optical phase [3] (canonical phase, s-
parametrized phase, phase from measurements) and pro-
vides important physical insight into the relationship be-
tween them.

by Eq. (68). Since PN' '(x)=[—,'(x+1)], we obtain
immediately from Eq. (70)

BN, N (A3)

Now, we calculate the first derivative BN N of BN N+lvl
with respect to v at v=+0. We get from the number-
shift relation (71) the recurrence relation,

BN+i, N+i =BN, N+~ ~

with

(A4)

v/2 s+1
Bv ~+ v+1 s 1

2

(A5)

1 s+1
2(N+ I) s —1

(A6)

Here, eo is given by

eo=e~.=o=

p(0, —N —1)
s+1

P(o, —N) 1
4

s+1

s+1
s —1

(A7)

Hence, the recurrence relation for the BN N reads
N+1

1 s+1
N+1, N+1 N, N 2(~ + 1)

(A8)

According to the definition (68) of the B coefficients, we
have

Bo
2

1 —$

v/2 2
(A9)

and, hence,

2
Bo,o =-,' ln (A 10)

Solving the recurrence relation (A8) and using the initial
value (A10), we obtain
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2 1 —s
1 s+1

, k s —1
(Al 1)

APPENDIX

We wish to derive asymptotic expressions for BN N,

~BN, N+ lvl
BN, N av .=+0

2~ BN N+lvl
BNN 2 =+0

(A2)

in the limit of large N for the B coefficients being defined

J.A.V. thanks D. T. Pegg and S. M. Barnett for previ-
ous discussions regarding quantum-optical phase.

BN N~0 ~

because [44] (Vol. 1, Eq. 5.2.4.4)
k

1 s+1 = —ln
k s —1 1 —$

(A12)

(A13)

Now, we derive an asymptotic expression for the second
derivative BN N of BN N+ lvl at v=+0. First, we obtain
from the definition (68) of the B coefficients the

For s = —1, thus, considering the Q phase, the
coefficients BNN are always zero. For s & —1, they ap-
proach zero in the limit of large N,
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differential equation, BN N =QNS (A16)

~BNN+ ~v~ v
(1 s) = N+ B~~+~&~Bs 2

Inserting the ansatz (A16) into the differential equation
(A15) we obtain, neglecting the (2N) '(s+1) (s —1)
term,

[N(N+ I&l ) 1' Bar i,x——i+[&[ .

(A14)
1(1 s)a~—=N(a~ a~— , )s +

4X (A 17)

Consequently,

(1—s) ' =N(B~~ Bg —
i x i )

N(BN, N BN —1, N —I )

N
1

4' '
1 s+1

2N s —1
(A15)

where the recurrence relation (A8) for B&~ has been
used. Motivated by the result (66) derived using the over-
lap relation (5), we make the ansatz

Comparing the powers of s on the left and the right side
of this equation, we get

and

= 1

4Q
(A18)

(N + 1)a~ =Na~ (A19)

II S
BN N 4X

(A20)

Equations (A18) and (A19) do not contradict each other
for large N. Hence the ansatz (A16) is justified, and we
obtain, Anally,
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