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General quantum theory of nonlinear optical-pulse propagation
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Based on the linearization approximation and the conservation of commutation brackets, a gen-
eral, self-consistent scheme is developed to quantize nonlinear optical-pulse propagation problems.
A general computation procedure is developed to calculate the quantum uncertainties of the inner
product between any given function and the (perturbed) field operator. As an illustration, a self-

consistent quantum theory of the-welf-Raman effect in optical 6bers is presented. The in8uence of
the self-Raman effect on soliton squeezing is examined.

PACS number(s): 42.50.Dv, 42.65.Dr, 42.81.Dp

I. INTRODUCTION

The advance of technology has led to the possibility
of studying quantum effects of optical-pulse propagation
inside nonlinear media. Recent experiments on generat-
ing pulse squeezed states using optical fibers [1—3] are
good examples of experimental efforts in this direction.
Because of this, the development of a satisfactory quan-
tum theory of nonlinear optical-pulse propagation has
attracted a lot of attention recently. In the literature,
quantum effects of pulse propagation inside dispersion-
less Kerr media have been studied by many authors [4—7].
Quantum effects of soliton propagation in optical fibers
have also been examined by many approaches [8—14].
Through the studies of these systems, we have gained a
lot of understanding of the quantum nature of nonlinear
pulse propagation. It is natural to generalize the treat-
ment to more complicated nonlinear pulse propagation
problems. The quantum effects of third-order dispersion
have been studied using the time-dependent Hartree ap-
proximation [15]. A quantum theory of the self-Raman
efFect has been developed using a Hamiltonian approach
[16,17]. However, to proceed further in this direction,
there are still two important missing links that must
be filled. First of all, the systems to be studied may
not be Hamiltonian systems and then their quantization
may become a problem. We need a general quantization
scheme. Second, it is quite possible that the systems to
be studied can no longer be solved analytically. We need
a general computational procedure to calculate quantum
uncertainties.

About the first missing link, a solvable example of non-
Hamiltonian systems is the self-induced transparency
solitons [18]. In one of our previous works, we have suc-
cessfully quantized and solved this problem using the lin-
earization approach and by taking advantage of the fact
that the classical self-induced transparency problem can
be solved analytically using an inverse scattering trans-
form. In fact, the method we developed there is already
applicable to any problem that can be solved by the
Zakharov-Shabat inverse scattering transform. However,
in dealing with more general systems, we may not have
the same luck that the classical solution is known ana-

lytically. Therefore we still need to seek a quantization
scheme that can be applied to general problems.

About the second missing link, one possible solution
is to transform the quantum operator equations into
equivalent stochastic equations by using positive-P rep-
resentation and then to solve the stochastic equations
by direct numerical simulation. This approach has been
demonstrated to work on Hamiltonian systems, such as
the nonlinear Schrodinger equation [9,10], and is applica-
ble to other Hamiltonian or non-Hamiltonian systems as
long as the quantization problem can be solved. Alter-
natively, the Wigner representation can also be used to
derive approximate equivalent stochastic equations. Such
a method has been used to study the impact of Raman
efFects on soliton squeezing [17]. Even though the above
approach is very general, the procedure for transforming
quantum problems into stochastic problems is not easy
to follow and direct numerical simulation requires a lot
of computation to achieve good accuracy. We still need
a simple, yet general, computation procedure for calcu-
lating quantum uncertainties.

The objective of the present paper is to ofFer a
simple solution to the two missing links mentioned
above. Based on the linearization approximation and
the conservation of commutation brackets, a general, self-
consistent scheme is developed to quantize general non-
linear optical-pulse propagation problems. Quantization
based on the preservation of commutator brackets has
been widely used in the quantum treatment of linear op-
tical loss and optical gain [19]. It represents a straightfor-
ward approach to quantize linear systems. In combina-
tion with the linearization approximation, we generalize
the approach to nonlinear systems. This is the subject
of Sec. II. In Sec. III we develop a general computation
procedure ("the backpropagation method") to calculate
the quantum uncertainties of the inner product between
any given function and the (perturbed) field operator.
This general computation procedure is a generalization
of the method we developed previously for noise analyses
of soliton propagation [14,20). However, it is not lim-
ited to solitons; it is now applicable to general nonlinear
pulse propagation problems. Finally, in Sec. IV we take
the self-Raman effect in optical fibers [21,22] as an ex-
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ample to illustrate our theory. A quantum treatment of
the self-Raman eKect in optical Gbers can be found in
Refs. [16,17]. Here we present a difFerent approach. The
quantization is based on the preservation of commutation
brackets and the calculation of quantum uncertainties is
based on the backpropagation method. The in8uence of
the self-Raman eEect on soliton squeezing is then exam-
ined.

Equations (2.4) and (2.5) are the commonly used com-
mutation relations for the photon Geld. We have used u
and u~ instead of u and u* to denote that they are now
quantum operators. With these new notations, Eq. (2.3)
now becomes

—u(z, t) = Pi (z, t)u(z, t) + Pz (z, t) ut (z, t) + n(z, t).
Oz

(2.6)

II. GENERAL SCHEME OF QUANTIZATION

A classical complex nonlinear optical-pulse propaga-
tion equation can be written generally as

In Eq. (2.6) we have also introduced an additional zero-
mean noise operator n(z, t) Th.e noise operator n(z, t)
is assumed to be b-function correlated in z and with the
commutation relations

0
DZ
—U(z, t) = E(U(z, t), U*(z, t)). (2 1) [n(z, t ), nt(z', t2)] = N(z, ti, t )b(z —z'),

Here U(z, t) is the normalized optical field envelope func-
tion, z is the propagation distance, t is time, and I' ( ) is
a nonlinear function of U, U*, and their derivatives or
integrals with respect to t. The optical Geld is normal-
ized in such a way that f ~U(z, t)

~

dt represents the total
photon number in the optical pulse at the propagation
distance z.

If Uo(z, t) is the exact solution of Eq. (2.1), then the
evolution equation of the perturbation field u(z, t) can be
obtained by the standard linearization procedure. Set-
ting

U(z, t) = U, (z, t) + u(z, t), (2.2)

substituting Eq. (2.2) into Eq. (2.1), expanding in a Tay-
lor series, and ignoring all the higher-order terms of u
and u*, one obtains a linear equation with the general
form

0
19Z
—u(z, t) = P (z, t)u(z, t) + P2(z, t)u'(z, t). (2.3)

Here Pi(z, t) and P2(z, t) are complex differential and
integral operators, respectively (on t), that may depend

Uo-
We are now going to quantize the problem using the

linear equation Eq. (2.3) instead of the nonlinear equa-
tion Eq. (2.1). Of course this is an approximation. How-
ever, it is a very good one since usually quantum uncer-
tainties are much smaller compared to the mean values of
the Beld and thus the contributions of higher-order terms
are very small. Our previous studies on the nonlinear
Schrodinger equation and the self-induced transparency
problem based on this approach have been proven to be
very successful. This represents a straightforward ap-
proach to quantize nonlinear optical-pulse propagation
problems.

Quantization is performed by imposing the following
commutation relations for the perturbation fields u(z, t)
and u*(z, t):

[n(z, t ), n(z', t2)] = [nt(z, ti), nt(z', t2)] = 0. (2.8)

Please bear in mind that ND(z, ti, tz)—: P1(z, ti) ——

Pi (z, t2) is in general a difFerential or integral operator
which operates on a b function as shown in Eq. (2.9).
Therefore, Eq. (2.9) is merely a formal representation
and its real meaning can be understood only when it is
inserted inside integrals.

After successfully introducing noise operators to pre-
serve commutation brackets, we have quantized the prob-
lem self-consistently by deriving a self-consistent opera-
tor equation. Such a quantization procedure based on
the preservation of commutator brackets has been widely
used in the quantum treatment of linear optical loss and
optical gain [19]. It represents a straightforward ap-
proach to quantize linear systems. In the present paper
we apply it to quantize nonlinear systems with the help
of the linearization approximation.

Knowing the commutation brackets is not sufficient for
determining quantum uncertainties. From Eqs. (2.7) and
(2.8) one can only induce that

([n(z, t, ), n'(z', t, )])

= (n(z, t, )nt(z', t2)) —(nt(z', t2)n(z, ti))
= N(z, t„t, )b(z —z'). (2.10)

To calculate quantum uncertainties, we need to know all
of the four correlation functions: (n(z, ti)n(z', t2)),

Here N(z, ti, t2) has to be chosen correctly so that the
commutation relations Eqs. (2.4) and (2.5) are satisfied
for all z. The preservation of commutation brackets is a
fundamental requirement of quantum mechanics. In the
Appendix we show that this requirement implies

N(z, t, t ) = ( —P (z, t ) —P'(z, t2) )b(ti —t2)
= Nii (z, ti, t2) b (ti —t2) . (2.9)

[u(z, ti), ut(z, t2)] = b(ti —t2), (2.4) (n(z, t )nt (z', t2) ), (nt (z, ti) n(z', t2) ),

[u(z, ti), u(z, t2)] = [ut(z, ti), ut(z, t2)] = 0. (2.5)
and (nt(z, ti)nt(z', t2)). This can only be achieved by
assuming or knowing more about the properties of noise
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sources. For example, in the quantum treatment of lin-
ear optical loss, the noise is modeled as coming &om the
direct coupling to a reservoir composed of a set of har-
monic oscillators. If the reservoir is in its ground state,
then the noise operators n and n~ can be interpreted as
the annihilation and creation operators, respectively, and
thus

function f(t) with the perturbation field operator u(z, t).
Here the inner product is defined in the usual way as

1
(f(t)l~(t)) = — f (t)g(t)+ f(t)g'(t) « (3 1)

To make the notation more elegant, we will rewrite Eq.
(2.6) in a more compact way [20]

(n(z, t )n(z', t2)) = (nt(z, t )nt(z', t2)) = 0, (2.11) —u(z, t) = P (z, t)u(z, t) + P2(z, t) ut (z, t) + n(z, t)
Oz

(n(z, t )nt(z', t2)) = N(z, t, t2)b(z —z'), (2.12) =—P(z, t) ~ u(z, t) + n(z, t). (3.2)

(nt(z, t )n(z', t2)) = 0. (2.13)

If the reservoir is at a temperature T, then Eqs. (2.12)
and (2.13) become

We have put a ~ after P to remind readers that the oper-
ator P is a special operator that operates on both u and

The adjoint operator of P is defined according to

(n(z, ti)n (z', t2)) = [nii(T) + 1]N(z, ti, t2)b(z —z'), (fip ~ ~) = (I'" ~ &Ig). (3.3)

(2.14)

(n (z, ti)n(z', t2)) = nri(T)%(zt ti, t2)b(z —z'). (2.15)

Here

For a given problem, the analytical form of the adjoint
operator P can be derived easily using the definition
Eq. (3.3) with the possible help of integration by parts.

We now define an adjoint system that is described by

—u (z, t) = —P (z, t) ~ u (z, t).
Dz

(3.4)

nn(T) =
gaT —]

(2.16)

is the mean number of quanta of the noise source at tem-
perature T and 0 is the resonance frequency of the har-
monic oscillators.

For more complicated problems, it is necessary to ex-
amine more carefully the physical origin of the noise be-
fore one can determine the correlation functions. A good
example is the self-Raman efFect in optical fibers, which
is treated in Sec. IV.

—(u~(z, t)iu(z, t)) = (u~(z, t)in(z, t)). (3.5)

Integrating both sides &om z = 0 to z = L, one imme-
diately has

Note that the adjoint system is a classical, deterministic
system, whereas the original system is a quantum system.
Moreover, it is not diFicult to prove that the solutions of
the original and the adjoint systems have to satisfy

III. GENERAL SCHEME OF CALCULATING
QUANTUM UNCERTAINTIES

(u"(I, t) lu(L, t)) = (u" (O, t) Iu(O, t))
L

(u~ (z, t) in(z, t) )dz.
0

(3 6)

In many cases of interest it is sufficient to find the
quantum uncertainties of the inner product of a weighting

From Eq. (3.6), the uncertainties of (u+(I, t) iu(I, t)) can
be written as

Var((u (I, t)]u(I, t))f = Var((u ( t)]u(0O, t))]+ — f u '(z, tr)u '( t )( (zz, t )t(uz', t )r)drrt dt dzzdztz
0 0

I L
+- u '(z, ti)u (z', t2)(n(z, ti)n (z', t2))dtidt2dzdz'

0 0

L

+ (z, ti) u ' (z', t2) (n (z, ti) n(z', t2) )dtidt 2dzdz'
0 0

I L
+- u z tq u z', t2 n z ti n z'yt2 d't&dt2dzdz'.

0 0
(3 7)
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Equation (3.7) is the main result of this section. The
first term on the right-hand side is the original uncer-
tainty after being transformed by the nonlinear process.
The last four terms are the contributions from the noises
added midway. The quantum uncertainties of the pro-
jection between a given function u (L, t) and the per-
turbed field operator u(z, t) is determined fully by the
solution u (z, t) of the deterministic adjoint system and
the stochastic properties of the noise operator.

Equation (3.7) provides us with a general scheme for
calculating quantum uncertainties. The computation
procedure is as follows.

(i) Solve the classical nonlinear problem either analyt-
ically or numerically to obtain Uo(z, t) for 0 ( z ( L.

(ii) Decide u (L, t) according to the purpose of calcu-
lation (an example can be found in Sec. IV).

(iii) Backpropagate the adjoint system Eq. (3.4) from
z = L to z = 0 with the initial condition u (L, t).

(iv) Calculate the quantum uncertainties according to
Eq. (3.7).

The computation procedure given here is a generalization
of the method developed in our previous papers [14,20].

If the classical nonlinear pulse propagation equation
has properties of phase-shift invariance or time-shift in-
variance, then there exist conserved quantities that can
be used to check the numerical accuracy of the solution of
the adjoint system [20]. Here "phase (time) shift invari-
ance" means that if one shifts the solution of the classical
nonlinear equation by a constant phase (time position),
the obtained function is also a solution. These conserved
quantities prove to be very helpful in our numerical pro-
gramming.

of the self-Raman effect on the achievable squeezing ra-
tio. In order to do this, one needs a quantum theory of
the self-Raman effect in optical fibers.

The self-Raman effect is due to the interaction of pho-
tons with optical phonons. In the literature, a quantum
theory of the self-Raman effect has been developed using
a Hamiltonian approach [16]. The phonon field is as-
sumed to be purely inhomogeneously broadened and the
correlation function of the noise operator is derived. One
example of the calculation of the squeezing ratio in the
presence of the self-Raman effect has also been obtained
by direct numerical simulation based on a truncated
Wigner representation [17]. In this paper we present
a different approach. The quantization is based on the
preservation of commutation brackets and the calculation
of squeezing is based on our backpropagation method.

We model the self-Raman effect in two ways. In our
first model the phonon field is treated as purely homoge-
neously broadened, while in the second model the phonon
field is treated as purely inhomogeneously broadened.
The two models represent the two limits. The actual
phonon field in optical fibers should be both homoge-
neously and inhomogeneously broadened. Since opti-
cal fibers are not made of crystals, the inhomogeneously
broadened mechanism should dominate. Nevertheless, it
is of interest to compare the two limits and find out their
differences. In the following two subsections we develop
a formulation for the two limiting cases. In the third
subsection we present our results of the numerical calcu-
lation.

A. Self-Raman effect with a homogeneously
broadened phonon Beld

IV. SELF-RAMAN EFFECT IN OPTICAL FIBERS

The formulation developed in previous sections is ap-
plicable to general pulse propagation problems. In this
section we take the self-Raman effect in optical fibers
as an example for illustration. The study of the self-
Raman effect in optical fibers has its own importance
in pulse squeezed state generation using optical Gbers
[1—3]. With a loop interferometer configuration, a pulse
squeezed vacuum has been successfully generated at the
1.3-pm wavelength [2,3] and at the 1.55-pm wavelength
[1]. In the squeezing experiment at 1.3 pm, pulses from
mode-locked Nd: YAG or Nd: YLF lasers with a pulse du-
ration around 20 ps were used. At this wavelength, the
group velocity dispersion is close to zero. In the squeez-
ing experiment at 1.55 pm, pulses from a mode-locked
color-center laser with a pulse duration around 200 fs
were used. The group-velocity dispersion is negative and
the pulses propagated inside the optical fiber are actually
solitary pulses. In going from longer pulses to shorter
pulses, one gains the advantages of a high peak power
at the same pulse energy and thus a shorter propaga-
tion distance in order to achieve appreciable squeezing.
However, it is well known that when the pulse duration is
below 1 ps, the self-Raman effect will start to affect pulse
propagation. It is thus important to study the inhuence

The interaction of photons with homogeneously broad-
ened optical phonons can be modeled as

0
v, —U(z, t) + —U(z, t) = ig [b(z, t) + b* (z, t)]U(z, t),Bz ' Bt

(4.1)

0
b(z, t) =—pb(z, t) ——iA b(z, t) + i go U*(z, t) U(z, t).

(4 2)

Here U is the optical field envelope function, b is the
phonon Geld, v is the group velocity of the optical field,
Op is the resonance frequency of the phonon field, and p is
the decay rate of the phonon field (homogeneously broad-
ening). The physical meaning of Eqs. (4.1) and (4.2) is
clear. The optical field envelope travels with a group
velocity v . The phonon field travels with a zero group
velocity and experiences a loss. Its carrier frequency is
Op. The phonon field modifies the optical refractive in-
dex. This is represented by the term on the right-hand
side of Eq. (4.1). The optical field excites phonons. This
is represented by the last term on the right-hand side
of Eq. (4.2). The constant go represents the coupling
strength between photons and phonons.
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We remove the term BU/Ot in Eqs. (4.1) and (4.2) by
changing to a moving frame that travels with speed v .
The equations become

derived from Eq. (4.8) by expanding lU(z, ~)l around
~ = t to the first order of ~ —t. In this way, one obtains
the following expressions for hp and hi..

U—(z, t) = i [b(z—, t) + b* (z, t)]U(z, t),|9z vc
(4 3)

hp ——k, +
OO 2

v +2+ g2
0—b(z, t) = pb(—z, t) —iOpb(z, t) + i gp U* (z, t) U(z, t). (4.10)

(4.4)

b(z, t) = igp exp[( —p —imp) (t —7)]

x U* (z, ~)U(z, 7 )d~. (4.5)

Substituting Eq. (4.5) into Eq. (4.3), one obtains

Here we still use t as one of the independent variables,
although its meaning has changed. From now on the
variable t represents the time deviation from the pulse
center.

We further eliminate the phonon field by the following
procedure. From Eq. (4.4), one has

DO

g~ POpth(t)dt = —4—'
v, (p'+0')'' (4.ii)

Here A g is the effective cross section of the fiber, kp is
the propagation constant, ~p is the optical frequency, and
n2 is the usual Kerr coefficient. According to Ref. [22],
82% of the Kerr coefficient comes from the instantaneous
Kerr nonlinearity due to an electronic transition [the first
term on the right-hand side of Eq. (4.10)], while the other
18% comes from the noninstantaneous Kerr nonlinearity
due to a photon-phonon interaction [the second term on
the right-hand side of Eq. (4.10)]. Utilizing these results,
we estimate the magnitudes of the parameters according
to the expressions

0—U(z, t) = i h(t —7.)U*(z, ~)U(z, 7 )d7 U(z, t).
t9Z

(4.6)

p= 20 THz,

Op ——27t. x 12 THz,

(4.12)

(4.i3)

Here

2

h(t) = 2—exp( —pt) sin(Opt) if t ) 0
Vc

=0 ift&0. (4.7)

t9 . 8
U(z, t) =id; U(z, t) +ik, lU(z, t)l U(z, t)

t
+Z h(t —T)U (Z, 7 )U(zi 7)dr U(z, t).

(4.8)

Equation (4.6) says that the self-Raman effect can be
modeled by a noninstantaneous Kerr nonlinearity [21,22].

In optical fibers, both the group-velocity dispersion
and the instantaneous Kerr nonlinearity due to electronic
transition exist. Therefore, the complete propagation
equation should be

pkpn2
k, = 0.82

efF
(4.i4)

2—
2 2

——0.18g() Op %up kpn2

V- ~2+ np2 A,N
(4.i5)

The approximate equation Eq. (4.9) should be very
good when the pulse duration is much longer than the
response time of the Raman response function h(t).
When the pulse duration is comparable to the response
time, the accuracy of such an approximation needs to be
checked. In this paper we always use the exact equation
Eq. (4.8).

If the quantization procedure in Sec. II is applied to
Eq. (4.8), it is not difficult to show that one has to intro-
duce a noise operator n(z, t) that obeys the commutation
relations given in Eqs. (2.7) and (2.8) by

Here d; = —kp'/2 represents the group-velocity dispersion
and k; represents the instantaneous Kerr nonlinearity.

Equation (4.8) is a difFerential-integral equation. In
the literature, some authors preferred to use the follow-
ing partial differential equation to model the self-Raman
efFect:

~(z, tz, t2) = ~Up(z, tz)Up(z, t2)h(t2 —tz) if t2 ) tg

= —iU, (z, t, )U,*(z,t, )h(t, —t, )

if t2 ( tg (4.16).
|9 . 0—U(z, t) = id, U(z, t) + ih lU(z, t) l U(z, t)

+ihg ' U(z, t).~IU(z t)l'
Ot

(4.9)

Here hp and hq are two constants. Equation (4.9) can be

As we have mentioned before, knowing the commutation
relations is not sufhcient for calculating quantum uncer-
tainties. We have to examine the origin of the noise more
carefully in order to determine all four correlation func-
tions. Physically, the noise comes from the decay of the
phonon field. Therefore, it is more physical to go back
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(4.i7)

to Eq. (4.4) and introduce a noise operator there. Af-
ter doing this, the quantum operator equations for the
self-Raman eKect are now given by

02—U(z, t) =id; U(z, t) +ik, U (z, t)U(z, t)U(z, t)
Bz ' Ot2

+i [b(z—, t) + bt (z, t)]U(z, t),
vc

b(z, t) = —pb(z, t) —iO b(z, t)

+igp U" (z, t) U(z, t) + nt, (z, t) (4.is)

Here we have also included the group-velocity dispersion
and the instantaneous Kerr nonlinearity terms.

By eliminating the phonon field again, we get

0 . 8U—(z, t) =id; U(z, t) + zk, U (z, t)U(z, t)U(z, t) + i I (t —7)U (z, T)U(z, T)dr U(z, t)

t
+i H t —w nb z 7 + H t —7 nb z 7 AU z t (4.19)

Here

H(t) = —exp[( —p —iOO)t].
go

Vc
(4.20)

(n~(z, t~)ng(z', t2)) = 2n~, (T)pv h(t~ —t2)h(z —z').

(4.26)

Here
By linearizing Eq. (4.19), one obtains an expression for
the final noise operator n in terms of nb,

t

n(z, t) = i [H(t —T)ng(z, T)

+H*(t —r)nt~(z, 7)]d7Up(z, t). (4.21)

The commutation relations of nb have to be chosen cor-
rectly such that the self-consistency requirement Eq.
(4.16) is satisfied. This can be achieved by choosing

[n&(z, tz), n&(z', tz)] = [n&(z, tz), n&(z', t2)] = 0, (4.22)

[n&(z, t ), nt&(z', t )] = 2&v, b(t —t )h (z'—z'). (4.23)

The expression Eq. (4.23) has good physical meanings.
The commutator brackets of nb and nb is b- function cor-
related on time and is proportional to 2p, as in the usual
quantum treatment of a harmonic oscillator with a lin-
ear loss. However, in the pulse propagation problem, the
commutator brackets of nb and nb are also 8-function cor-
related on space and are proportional to v, the relative
traveling speed between the light field and the phonon
field.

Physically, since the origin of nb is due to the decay
of the phonon Geld, kom the quantum treatment of lin-
ear loss, we can interpret nb and nb as the annihilation
and creation operators, respectively, and determine their
correlation functions as

1
n~, (T) =

6 && —1
(4.27)

(n(z t~)n(z' t2))

—Up(z)ty)Uo(z) t2)N~(ty t2)b(z —z )) (4.2S)

(n(z, t, )n" (z', t, ))

= U (z, t )U*(z, t2)N„(t —t )h(z —z'), (4.29)

(nt(z, t, )n(z', t, ))

= U*(z, t )U (z, t )N (t~ —t2)h(z —z'), (4.30)

(nt(z, tg) t(z', t2))

= —U*(z, t&)U'(z, t2)N„(t& —t2)h(z —z'). (4.31)

Here the function N„(t) is given by

2

N„(t) = —exp( —p~t~)([n„, (T) + 1]exp(—iAot)
vc

is the mean phonon number at temperature T.
After obtaining the correlation functions of nb, the cor-

relation functions of the final noise operator n also can
be calculated. The results are

(nq(z, t~)nq(z', t2)) = (nz(z, t~)n&(z', t2)) = 0, (4.24)
+n~, (T)exp(iOot) ). (4.32)

(n&(z, t, )n', (z', t, ))

= 2[n~, (T) + 1]pv,h(t —t )h(z —z'), (4.25)

Up to this point we have successfully quantized the prob-
lem in which the phonon field is purely homogeneously
broadened.
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B. Self-Raman efFect with an inhomogeneously
broadened phonon Beld

The interaction of photons with inhomogeneously
broadened optical phonons can be modeled as

02

Bz ' 'Ot2U(z, t) = id; U(z, t) ~ ik, U (z, t)U(z, t)U(z, t)

units) defined in the literature [21,22]. Since each phonon
component is assumed to be lossless (no homogeneous
broadening), there is no additional noise operator in Eq.
(4.34).

We eliminate the phonon Beld by the following proce-
dure. From Eq. (4.34), one has

bii(z, t) = bii(z, —oo)exp( —iAt)

+i [b&(z, t) + bt„(z, t)]dAU(z, t),
vc

(4.33)

t
+ig(A) exp[ —iA(t —r)]U (z, r)U(z, r)dr

(4.35)

6/(—zt) = —1'Ab/(z, t) + ig(A)U (z, t)U(z, t). (4.34)Bt

Here the phonon Geld is now a sum of distributed compo-
nents with different resonance frequencies. The coupling
strength between the photon field and different phonon
components are given by a real function g(A). As we
are going to see, 27rg2(A)/v, is the Raman gain (in real

Note that the contribution from the initial phonon Beld
component bri(z, —oo) cannot be ignored in this case,
whereas it has been ignored in Eq. (4.5) due to the expo-
nential decay term. In the case of inhomogeneous broad-
ening, the initial phonon field component bri(z, —oo) does
not decay and actually is the noise source.

Substituting Eq. (4.35) into Eq. (4.33), one obtains

2 t

Bz Bt2U(z, t—) = id; U(z, t) + ik, U (z) t) U(z, t) U(z, t) + i h(t —r) U (z) r) U(z) r) dr U(z, t)

+i (bri(z, —oo)exp( —iAt) + b~(z, —oo)exp(iAt))dAU(z, t).g(A) A f

0 Vc
(4.36)

Here the response function h(t) is now given by

„—fp g'(A)sin(At)dA if t ) 0
0 if t(0. (4.37)

us to determine the right commutation relations for
bii(z, —oo) and b&~(z, —oo),

[b~(z, —oo), br' (z', —oo)] = [bi (z, —oo), b~t, (z', —oo)] = 0,

The Raman gain is deGned as twice the imaginary part
of the Fourier transform of h(t) [21,22]:

AR(B) = 2Im J h(t)exp(ipt)dt = . (4.38)
2vrg2(A)

vc

Prom this equation, the function g2 (A) can be deterinined
from the experimentally measured Raman gain spectrum
[21,22]. This is of course the right approach if one wants
to make a very careful comparison with experimental re-
sults. Nevertheless, it is also interesting to note that if
one assumes a Lorentzian distribution of Raman gain

2 2

A (A) =
+ (A —Ap) p + (A+Op)

(4.39)

then h(t), given by Eq. (4.37), is equal to h(t) in the
case of homogeneous broadening [Eq. (4.7)]. In other
words, under the assumption of a Lorentzian distribution
of the Raman gain, the propagation equation with an in-
homogeneously broadened phonon Beld is identical to the
propagation equation with a homogeneously broadened
phonon Beld, except for the noise term.

The preservation of commutation brackets again helps

(4.40)

+nri (T)exp(iAt) )dA. (4.42)

Up to this point we have successfully quantized the prob-
lem with an inhomogeneously broadened phonon Beld.

In the literature, the noise statistics due to the self-
Raman effect have been studied using a Hamiltonian ap-
proach and the transform of the quantum operator equa-
tion into a stochastic equation based on the positive-P
representation [16] or the truncated Wigner representa-
tion [17]. In those papers, the phonon field is assumed
to be purely inhomogeneously broadened, the correlation
function is expressed in the Fourier domain, and the nor-

[bri(z, —oo), b~t, (z', —oo)] = v, b(A —A') h(z —z'). (4.41)

These are again the right expressions one would expect.
Following a similiar derivation as in the case of homo-

geneous broadening, we find that the correlation func-
tions of the Gnal noise operator n are also given by
Eqs. (4.28)—(4.31), except that the function K„(t) is now
given by

OO

N„(t) = — AR(A)([nri(T) + 1]exp(—iAt)2' 0
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malization units are introduced. Converted into our time
domain and expressed in our notation, the correlation
function from the expression (12) in Ref. [17] is

and the function Q(z, tq, t2) obeys

Q(z, t„t,) = Q(z, t„t,), (4.46)
OO

N„(t) = — A~(A) f[n~(T) + ~]exp( —iAt)
27l p

+[nn (T) + —,']exp(iBt) )dO. (4.43)

N„(t) + N„(—t)
2

(4.44)

However, if one further notes that Eq. (3.7) can be put
into the form

var[(u" (L t) lu(L t))l

At first sight, Eq. (4.43) is difFerent from Eq. (4.42).
Actually, the two expressions are related to each other
by

then it is not difficult to see that the calculated quan-
tum uncertainties are the same whether N„(t) or N„(t)
is used. Thus we conclude that the correlation functions
derived in this paper agree exactly with the formulation
derived in Ref. [17]. Our quantization approach ofFers an
alternative and more straightforward way of quantizing
problems and studying noise statistics.

C. Impacts of the self-Raman effect on the squeezing
ratio

= var[(u (0, t) [u(0, t))]
L

+ Q (z, ~g, &2) N„(&g —4)d& g d&2dz
p

(4.45)

The formulation in Sec. III can be directly applied to
calculate the quantum uncertainties in the presence of the
self-Raman efFect. The original system after linearization
is given by

2 t

i9z Ot
—u(z, t) =id; 2u(z, t) + 2ik;[Up(z, t)~ u(z, t) + ik, Up(z, t)ut(z, t) +i h(t —w)~Up(z, w)~ d7u(z, t)

t t

+ t(ttzz, t) f tt(t — )Uz(zz, )uz(z, )dz+ztttz(z, t) tt(t — )Uz(z,z)u ztz, z )du +u(z, t). ' (4.47)

The adjoint system is given by

2 t

Oz
' 'Ot2

—u (z, t) =id;, u (z, t)+2ik;~Up(z, t)~'u (z, t) —ik;Up(z, t)u '(z, t) 4-i h(t —~)~Up(z, 7)~'d~u (z, t)

+xUp(z, t) h(r —t)Up (z, 'r)u (z, 7 )d7 —xUp(zt t) h(7 —t)Up(z, 'r)u (z, 7 )der.
t t

(4.48)

After backpropagating the adjoint system, the quantum
uncertainties between any given weighting function and
the perturbed field operator can then be calculated using
Eq. (3.7).

As an illustration on how to choose the initial condition
for the adjoint system, we utilize the above results to cal-
culate the achievable squeezing ratio in optical fibers in
the presence of the self-Raman efFect. In squeezing exper-
iments, homodyne detection is usually used for squeezed
state detection. We have shown in our previous work
[13,14] that the output of the homodyne detection is the
inner product of the input Geld operator and the local
oscillator (the projection interpretation of homodyne de-
tection). Therefore the squeezing ratio in squeezing ex-
periments is given by

R(L) = var[(fr. (t) ~u(L, t))]/var[(fL, (t) ~u(0, t))]. (4.49)

cillator, with a possible adjustment of a constant phase.
Therefore, the appropriate expression for fL, (t) is

Up(L, t)exp(ie)t
f )U, (L, t)~'dt

(4.50)

Here 0 is an adjustable phase. One can adjust 0 to
minimize the squeezing ratio R(L). To calculate the
minimum R(L), one has to backpropagate the adjoint
system with two sets of initial conditions. Supposing

that with u+(L, t) = Up(L, t)/ f ~Up(L, t)~2dt the solu-

tion of the adjoint system is u (z, t) = I'q(z, t) and with

u (L, t) = iUp(L, t)/ f [Up(L, t)~~dt the solution of the

adjoint system is u+(z, t) = E2(z, t), then the squeezing
ratio with u (L, t) = fL, (t) will be

Here fr. (t) is the local oscillator pulse envelope func-
tion. In usual squeezing experiments, one uses the same
pulse after propagating through the fiber as the local os- Here

R(L) = Leos 0 + 2BcosOsine + Csin O. (4.51)
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L L
F 0 t dt+ F»' z, t» F»' z', t2 n z, t» n z', t2 dt»dt2dzdz'

0 0
L L

+ F» z, t» F» z', t2 n z, t» n z', t2 dt»dt2dzdz'
0 0

L I
+ F» z, t» F» z', t2 n z, t» n z', t2 dt»dt2dzdz'

0 0
L L

+ F» z, t» F» z', t2 n z, t» n z', t2 dt»dt2dzdz',
0 0

(4.52)

1B = — [Eq*(0, t)E2(0, t) + E2'(0, t)Eg(0, t)]dt

L L
+- [E~ (z, tq) E2 (z', t2) + E2 (z, tq) E~'(z', t2)] (n(z, tq) n(z', t2) )dt's dt2dzdz'

0 0
L

+- [E~ (z, tq)E2(z', t2) + E2 (z, tq)Eq(z', t2)](n(z, tq)n (z', t2))dtqdt2dzdz'
0 0

L L
+- [Eq(z, tq)E2 (z', t2) + E2(z, tq)E~ (z', t2)](n (z, tq)n(z', t2))dtqdt2dzdz'

0 0
L L

+ [Eq(z, tq)E2(z', t2) + E2(z, tq)Eq(z', tz)](n (z, tq)n (z', t2))dtqdtzdzdz',
0 0

(4.53)

L L
~E2(0 t)

~

dt + F2 z, t» F2 z', t2 n z, t» n z', t2 dt»dt2dzdz'
0 0

L I
+ F2 z, t» F2 z', t2 n z, t» n z', t2 dt»dt2dzdz'

0 0
L

+ z', t2 n z, t» n z', t2 dt»dt2dzdz'
0 0
I L

+ n z, t» n z', t2 dt»dt~dzdz'.
0 0

(4.54)

The minmum value of R(1) is thus given by

A+ C —Q(A —C)2 + 4B2
min[A(L)] =

2
(4.55)

Note that in Eqs. (4.52)—(4.54), the integrals needed
to be calculated are in fact only three dimensional since
all four correlation functions of n and n~ are b-function
correlated on z. Thus one layer of integrations can be
reduced.

Under the assumption of a Lorentzian distribution of
the Raman gain and with the set of parameters given in
Eqs. (4.12)—(4.15), we calculate the squeezing ratio for
50-fs and 100-fs [full width at half maximum (FWHM)]
solitary pulses. The input pulse is the soliton solution
in the ideal case [k; = Rupkpn2/A, ~ and h(t) = 0]. It is
a sech pulse Apsech(t/wp) with Ap7p ——2d;A, s/Rupkpn2.
We did not try to optimize the input pulse shape or the
local oscillator pulse shape in the present calculation.

In order to have some idea about the relative mag-
nitudes of difFerent noise sources, in Fig. 1 we plot the
squeezing ratio with temperature-dependent noise being
ignored. The solid line is the squeezing ratio calculated
using the exact propagation equation Eq. (4.8), whereas
the dashed line is the squeezing ratio calculated using the

approximate propagation equation Eq. (4.9). It can be
seen that the approximate model always overestimates
the achievable squeezing (i.e. , gives a smaller squeezing
ratio). The dotted line is the squeezing ratio for ideal
solitons (i.e., without the self-Raman eB'ect). It is plot-
ted for comparison. It is interesting to note that even
for ideal solitons, the squeezing ratio does not decrease
monotonically, but exhibits a small oscillation when it
is smaller than 20 dB. This is because once we use the
same soliton from the optical f»ber as the local oscillator,
some parts of the continuum noises will enter the detec-
tion [13]. To reject all the continuum noises, an optimum
local oscillator pulse shape is needed. The analytical ex-
pressions of the optimum local oscillator pulse shape and
the optimum squeezing ratio have been derived previ-
ously [13]. Actually, one way we checked the accuracy of
our calculation was to compare our numerical results for
this special case with the analytical results in Ref. [13].
They agree very well. If such an optimum local oscillator
pulse shape is used in our calculation, the squeezing ratio
for ideal solitons is smaller than the dotted line and de-
creases monotonically, just as predicted by the analytical
theory.

In Fig. 2 we plot the squeezing ratio calculated from
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the homogeneously broadened model at 0 K, 77 K, 273
K, 298 K, and 373 K. However, the lines for 0 K and 77 K
are too close to be determined from the figure. In Fig. 3,
we plot the squeezing ratio calculated from the inhomoge-
neously broadened model at the same five temperatures.
In all the figures the transverse coordinate is the normal-
ized propagation distance in conventional soliton theories
[i.e. , z = z/zo, zo ——w /iko'l, and w = (FWHM)/1. 763].

From the figures, it is clear that the self-Raman e8'ect
always increases the squeezing ratio (reduces squeezing).
This is not surprising since physically the self-Raman ef-
fect causes a soliton frequency downshift and represents
additional perturbations to the photon field. However,
squeezing still survives even when the self-Raman efFect
is strong. It is just that the achievable squeezing ratio
cannot be made smaller without a limit, at least for the
cases considered here. For 50-fs pulses, the lower limit
due to transformed original quantum noises is about 14.2
dB [see Fig. 1(a)]. From the inhomogeneously broadened
model [see Fig. 3(a)], for 50-fs pulses at 0 K, the lower
limit is raised to 11.2 dB. In going from 0 K to 298 K, the
lower limit is further raised to 10 dB. For 100-fs pulses,
the lower limit due to the transformed original quantum
noises is about 21.2 dB [see Fig. 1(b)]. From the inho-
mogeneously broadened model [see Fig. 3(b)], for 100-

fs pulses at 0 K, the lower limit is raised to 18.4 dB.
In going &om 0 K to 298 K, the lower limit is further
raised to 15.6 dB. The prediction &om the homogeneous
model exhibits a smaller temperature dependence (see
Fig. 2), as is expected intuitively. As we have said before,
in optical fibers the inhomogeneously broadened mecha-
nisim should dominate. Therefore Fig. 3 instead of Fig. 2
should be used in the comparison with experimental re-
sults.

As we have seen, in the presence of the self-Raman ef-
fect, as the propagation distance increases, the squeezing
ratio will eventually stop decreasing and increase. This
behavior is physically difFerent &om the saturation of the
squeezing ratio at zero group-velocity dispersion [25]. If
the dispersion is zero and nonsquare pulses are used, the
pulses will get chirped due to self-phase-modulation. The
squeezing directions with respect to the phase of the field
at diferent time slots are difFerent; since the intensities
are difFerent. In homodyne detection, the local oscilla-
tor cannot match the squeezing directions at every time
slot and thus the squeezing ratio eventually gets satu-
rated. In the case of solitons with the self-Raman eH'ect,
the destruction of the squeezing is present even if the
temperature-dependent noises introduced midway are ig-
nored (see Fig. 1). This suggests that the nonlinear trans-
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FIG. 1. Squeezing ratio vs normalized propagation dis-
tance for (a) 50-fs and (b) 100-fs (FWHM) solitary pulses
with the temperature-dependent noise ignored. Solid line,
exact propagation equation (4.8), dashed line; approximate
propagation equation (4.9); dotted line, ideal solitons. The
same pulse after propagating through the fiber is used as the
local oscillator.

FIG. 2. Squeezing ratio vs normalized propagation dis-
tance for (a) 50-fs and (b) 100-fs (FWHM) solitary pulses
from the homogeneously broadened model. The lines from
the bottom to the top correspond respectively to the squeez-
ing ratios at 0 K, 77 K, 273 K, 298 K, and 373 K. The lines
for 0 K and 77 K are too close to be determined. The same
pulse after propagating through the fiber is used as the local
oscillator.
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equation and noise operators are introduced to preserve
the commutation brackets. Quantum uncertainties of the
inner product of any given function and the perturbed
field operator are calculated by backpropagating the ad-
joint system. The formulation is very elegant and ap-
plicable to general nonlinear optical pulse propagation
problems. We have developed a self-consistent quantum
theory of the self-Raman efFect in optical fibers and use it
to study the inQuence of the self-Raman efFect on soliton
squeezing. We are now investigating more complicated
nonlinear pulse propagation problems based on our gen-
eral theory.
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APPENDIX

In this appendix we prove that by introducing noise
operators according to Eqs. (2.7)—(2.9), the commutation
relations Eqs. (2.4) and (2.5) are correct for all z. The
reasoning is as follows. Supposing Eqs. (2.4) and (2.5)
are correct at z, we are going to show that they are also
correct at z + dz.

From Eq. (2.6) we have, to erst order of dz,
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n(z', t)dz'. (Al)

Moreover,

u(z + dz, t)= u(z, t)+ 1P (z, t)u(z, t)+ P (z, t)ut(z, t) }dz
z+dz

([u(z + dz, ti)) u (z + dz, t2)] —[u(z, ti)) u (z, t2)])/dz

= [u(z, t ), P*(z, t )ut(z, t )] + [P (z, t )u(z, t ), ut(z, t )] +-
dz

=(P (z, t )+P'(z, t ))b(t —t )+N(z, t, t ).

z+dz z+dz
[n(z', t ), nt (z", t )]dz'dz"

(A2)

Equation (A2) has to be zero. This tells us what the correct N(z, ti, t2) is. Just to be sure, we also check if
[u(z, ti)) u(z, t2)] is preserved

([u(z + dz) ti)) u(z + dz, t2)] —[u(z, ti)) u(z, t2)] }/dz

[Pz(z) ty)u (z, ty)) u(z) t2)] + [u(z) ty)) P2(z) t2)u (z, t2)] = —P2(z) ty)8(t2 —ty) + P2(z) tz)8(tj —t2). (A3)

At first sight, one may think that this is not necessarily equal to zero in general. However, please remember that the
b' function has real meaning only when it is inserted inside integrals. Using Eq. (A3), it is easy to prove that

f*(t )u(z, t )dt, f*(t )u(z, t )dt (A4)

are independent of z for any given function f (t).
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