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Theory for the linewidth of a bad-cavity laser
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We derive the quantum-limited linewidth of a bad-cavity laser, where the cavity-loss rate can be
comparable to or larger than the gain bandwidth. We allow for incomplete inversion and arbitrary
mirror losses and show how the position-dependent gain, refractive index, and populations co-
determine the laser linewidth. The result obtained factorizes in parts that have straightforward
physical interpretations. In the bad-cavity regime the laser linewidth is shown to be reduced as
compared to the Schawlow-Townes expression as a result of anomalous dispersion associated with
the optical gain. Saturation is shown to lead to a power-independent contribution to the laser
linewidth; the magnitude of this contribution depends critically on the assumed pumping and decay
rates.

PACS number(s): 42.50.Ar, 42.50.Lc, 42.60.—v

I. INTRODUCTION

In every laser the spontaneous emission that inevitably
occurs in a gain medium acts as a (quantum) noise source
that results in a difFusion of the optical phase and poses a
lower limit to the laser linewidth. For a single-mode low-
loss fully inverted laser tuned to the center of a homo-
geneously broadened gain profile this linewidth, as origi-
nally derived by Schawlow and Townes [1], is given by

I'p hv I'2pLv= 4-S 4-P...
where Av is the full width at half maximum (FWHM)
laser linewidth, I o

—— (c/2L) 1n—(BiR2) is the cold- or
empty-cavity-loss rate, with L the cavity length and Bz
and B2 the mirror refIectivities, S is the average num-
ber of photons in the lasing mode, hv is the energy per
photon, and P „t is the total output power through both
mirrors.

Nowadays the expression for the laser linewidth has
been generalized to include lasers with large losses, in-
complete inversion, and strong saturation. Contributions
have been made by, e.g. , Petermann [2], Henry [3,4], Uji-
hara [5], Lu [6], Goldberg, Milonni, and Sundaram [7],
and Prasad [8]. A limitation of most treatments is that
the angular frequency gain bandwidth (FWHM), denoted
by 2p = 2/T2, is assumed to be very much larger than the
cavity-loss rate I'p, i.e., 2p )) I p. Although this assump-
tion is valid for most lasers, it is generally incorrect for
short high-gain lasers, where the cavity-loss rate can be
comparable to or even larger than the gain bandwidth.
We will use the notion "bad cavity" to indicate the latter
situation, i.e., I'p ) p. Note that a bad-cavity laser does
not necessarily have a bad cavity in the sense that the op-
tical loss per round-trip is large. In bad-cavity lasers the
polarization cannot be adiabatically eliminated &om the
laser rate equations, dispersion effects will be important,
and the laser linewidth will deviate &om the Schawlow-
Townes expression [Eq. (1)]. Examples of bad-cavity

lasers are the 3.39-pm He-Ne and the 3.51 pm He-Xe gas
lasers. Bad-cavity aspects will inevitably also show up
in the development of "thresholdless" semiconductor mi-
crolasers, as only a bad-cavity laser can be really without
threshold [9].

The finite polarization lifetime T2 ——1/p theoretically
leads to two deviations &om the usual Schawlow-Townes
behavior. First of all, Scully, Siissman, and Benkert [10]
have shown that the memory effect of the collective dipole
moment colors the spontaneous-emission noise. As a con-
sequence, the evolution of the laser phase on a time scale
short as compared to T2 will be slower than expected
for pure phase diffusion and the spectral wings of the
emitted laser light will drop faster than Lorentzian. We
will not consider this short-time deviation anymore, as it
is expected to be very small and only visible in the far
wings of the optical spectrum. In the good-cavity limit

(p )) I'o) considered in Ref. [10] the long-time evolution
of the optical phase is not affected by the atomic memory
and the laser linewidth is still given by Eq. (1). In the
opposite (bad-cavity) limit p ( I'o the laser linewidth
mill be affected. In fact the atomic memory can lead to
a drastic reduction of the laser linewidth as compared to
Eq. (1). This has been shown theoretically by Lax [11]
and Haken [12] in the mid-1960s and by Kolobov et al.
[13] in a recent paper, which combines the short-time and
long-time evolution.

Recently we have experimentally demonstrated the
predicted linewidth reduction for a 3.39-pm He-Ne laser
[14]. A comparison with theory is hampered by the
fact that Lax, Haken, and Kolobov et al. unfortunately
only consider cavities with relatively good mirrors, us-
ing a mean-field approximation of the intracavity field.
In practice, however, the mirror reflectivity must often
be rather low to reach the bad-cavity regime, so that
the intracavity Beld shows strong spatial variation. In
this paper we will combine the bad-cavity aspect with
the situation of large losses, incomplete inversion, and
strong saturation mentioned earlier. The aim of the pa-
per is to Bnd how these complications appear in the laser
linewidth and, more speciBcally, to what degree they are
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independent. To reach this goal we will quantify the
memory effect of the macroscopic polarization in terms
of the anomalous dispersion associated with the optical
gain.

We are not the first to address this issue. Important
theoretical contributions have been made by Henry [4]
and Tromborg, Olesen, and Pan [15]. However, the the-
ory developed by these authors is very general and is
therefore not always easy to access. After brie8y ex-
plaining the key ideas and results of the general theory
we will apply it to bad-cavity Fabry-Perot lasers. We
will show that for these lasers the complicated expression
for the laser linewidth simpliBes to an expression that
gives a theoretical basis for the heuristic traveling-wave
phase difFusion model introduced earlier by van Exter,
Hamel, and Woerdman [16]. It can be solved analytically
and leads to a rather elegant equation that factorizes in
parts, allowing a straightforward physical interpretation.
Crosslinks are made between the theory discussed here
and other work on the laser linewidth.

Our theoretical analysis is based upon three assump-
tions. We assume (i) that spectral hole burning is absent,
a condition that is automatically fulBlled for a homoge-
neously broadened active medium, (ii) that spatial hole
burning is unimportant, which is the case for a unidirec-
tional ring laser or a Fabry-Perot laser in which spatial
difFusion of the active molecules is fast enough to effec-
tively erase the induced population grating, and (iii) that
the laser &equency is tuned to the center of a symmetric
gain profile. Condition (iii) implies that the re&active in-
dex is independent of population inversion and that the
linewidth enhancement or n parameter [3], which is so
important in semiconductor lasers, is zero.

II. GENERAL LINEWIDTH THEORY

The dynamics of a laser is most generally described in
terms of four variables: the electric field E, the atomic
polarization P, the upper-level population density N2,
and the lower-level population density Nz, each of which
depends on position and time [7,11—13]. The interactions
are governed by the Maxwell and Bloch equations sup-
plemented with boundary conditions such as the mirror
reAectivities and pump rates. The coupling to the outside
world is incorporated by the introduction of damping and
noise sources. When the mirror refIectivities are high, the
intracavity Geld is almost uniform and it is convenient to
introduce cavity modes. In the case of low mirror reQec-
tivities it is still possible to introduce cavity modes, but
they will be nonorthogonal [17]. In this case a clearer
physical picture is obtained by directly keeping track of
the position dependence of E, P, N2, and Nq.

We will assume that the polarization decay rate is
much larger than the population decay rates, but not
necessarily larger than the cold-cavity-loss rate. Un-
der this condition saturation by stimulated emission will
mainly afFect the relatively slow population dynamics,
but will hardly change the polarization dynamics, which
is dominated by "pure dephasing. " The polarization P
can then be expressed in terms of the electric Beld E and

a frequency- and population-dependent dielectric con-
stant e, even in the case of saturation. We exclude a
possible explicit intensity dependence of e (at constant
Ni and N2), which in semiconductor lasers is denoted
as "nonlinear gain" and which is just a convenient way
to parametrize the efFects of spectral hole burning. The
laser dynamics will thus be described by the wave equa-
tion for the optical field, supplemented with rate equa-
tions for the populations N2(z, t) and Ni(z, t).

We start by summarizing the semiclassical results ob-
tained by Henry [4] and Tromborg, Olesen, and Pan [15],
making use of the conventions and symbols introduced
by the latter authors. For a laser that oscillates in a sin-
gle fundamental transverse mode P(x, y; z), the problem
can be reduced &om three to one dimension by projec-
tion onto this transverse mode. The intracavity electric
Geld is written as

E(x, y, z, t) = 1/(2') E (z) P(x, y; z)e ' ' d~, (2)

where the transverse mode is normalized

~P(x, y;z)~'dxdy = 1 .

The propagation of the intracavity field E (z) is given
by the optical wave equation

O'E (z) + k'(z)E (z) = f (z), (4a)

k'(z) = [n(z, cu) ((u/c) —ig(z, (u)/2]' = e(z, (u) cu'/c',

(4b)

where the complex wave number k(z) incorporates the re-
&active index n(z, u) as well as the intensity gain g(z, w).
The projection of the driving spontaneous-emission noise
source onto the considered transverse mode is denoted by
f-(z).

Equation (4a) is supplemented with boundary condi-
tions, so that E (z) satisfies the imposed mirror reHec-
tivities, and with equations that express k(z) in terms of
the populations Ni(z) and N2(z), and the latter in terms
of E (z). For slow processes the noise source f (z) can
be excellently approximated by a (position-dependent)
white noise source, often denoted as Langevin noise,

(f (z)f*,(z')) = 2Df f (z) 6(z —z') 8(u —u') . (5)

The inhomogeneous wave equation (4a) can be solved
with Green's functions for lasers operating either above
or below threshold [15]. We limit ourselves to a single-
mode laser operating above threshold. The intracavity
electric Beld can then be factorized in spatial and time-
dependent parts as

E(z, t) = Z(z) a(t) e'~~'~ e ' "+ c.c. ,

where Z(z) is the (complex) intracavity field distribu-
tion, a(t) and p(t) are the field amplitude and phase,
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dV (t)
dt

(7a)

uo is the average laser &equency, and c.c. stands for the
complex conjugate. When amplitude fluctuations are ne-
glected, i.e., a(t) = ao, the FWHM laser linewidth Av is
determined by the rate of phase diR'usion via

products ngN, ~ and nns, should be averaged over the
transverse intensity profile [P(x, y; z)

~

and must be inter-
preted as modally averaged values [15,18]. In case of gain
guiding, Eq. (10) must be multiplied by the transverse
Petermann factor Kq,~„, ) 1 [2,4]; we take Kq, ~„, ——l.

Equation (10) can be recast into a more familiar form
[15,18]:

(F,(t'+t)E (t')) = D, b(t), (7b) (»a)

Av = D«/(2~) . (7c)

1 fo iZ(z)i 2Dff, (z) dz

4~&o
i
2 f Z'(z) k(z) Ok(z)/B(u dz i2

When the laser &equency is tuned to the center of a
synirnetric gain profile, fluctuations in pump rates and
populations have no effect on the optical phase [15]. The
noise F~(t) can then be easily expressed in terms of the
projection of the position-dependent noise source f (z, t)
on the longitudinal eigenmode Z(z). The phase difFusion
constant D« is found to be [see Eqs. (23), (25), and
(36) in Ref. [15]]

[j nns, [Z(z)('dz][j, ngN, p[Z(z))'dz]R.p ——C

i f, nn„Z'(z)dzi'
(11b)

L
ooz nns, ~Z(z) ~' dz,

0 0
(1lc)

where B,p is the spontaneous-emission rate, which can
be interpreted as the number of photons that are spon-
taneously emitted into the considered cavity mode per
unit time, and S is the average number of photons in
that mode. Equations (10) or (lla) —(llc) form the basis
of our treatment of bad-cavity lasers.

c' f. IZ( z)l' D„.( z)dz

~ o~o
] j Z (z) n(z) ns, (z) dz

]

(8) III. APPLICATION TO TRAVELING-WAVE
LASERS

where Bk(z)/Bur = 1/vs, ——ns, /c is the inverse group
velocity and ns, is the group re&active index. A calcula-
tion of the laser linewidth is now reduced to solving the
integrals in Eq. (8), for which one needs the steady-state
field distribution Z(z), the phase and group re&active
indices n(z) and ns, (z), and the strength of the noise

Dff (').
There is an ongoing discussion as to whether the noise

should be attributed to spontaneous emission inside the
cavity, to vacuum fluctuations leaking in &om outside, or
to a combination of the two [6,7]. Quantum-mechanical
treatments show that the choice is related to the order-
ing of creation and annihilation operators and that the
calculated laser linewidth is independent of the chosen or-
dering [6,7]. For convenience we prefer to lump all noise
in spontaneous emission to avoid the introduction of ad-
ditional localized noise sources at the mirrors. Dff, (z)
can then be determined &om the fluctuation-dissipation
theorem, which relates spontaneous emission to stimu-
lated emission and optical gain. Henry found [4]

We first consider a Fabry-Perot laser. Figure 1 shows
how the intracavity field can be separated in two traveling
waves, Z(z) = Z+(z) + Z (z), one moving to the left,
with local intracavity power P (z), and the other moving
to the right, with power P+(z). As the local intensity
inside a dielectric is given by 2cocn~E~, one easily finds
[using Eqs. (2), (3), and (6)]

2eocnao Z(z)Z*(z) = P (z) + P+(z) + . , (12a)

2eocn ao Z(z) Z(z) = 2 QP (z) P+ (z) + (12b)

where the dots denote (generally complex) terms oscillat-
ing at a spatial &equency of 2k(z). In the slowly varying
envelope approximation, the latter terms disappear when
integrated over the cavity length. For completeness we
note that, because the intracavity power propagates with
the group velocity vs, ——c/ns„ the total electromagnetic
energy contained in the laser cavity is [19]

2+~03
Dff ()= s n()g()Ni(), (9)

L
Shu0 —— ng, c P z +P+ z z. (13)

where the spontaneous-emission factor N,p—:Nz/(N2-
Ni) measures the degree of inversion. Substitution of Eq.
(9) in Eq. (8) gives I' R,

M2

T2

~Dc f ngN, p ~
Z(z) ~' dz

o ] jo nns, Zz(z) dz
]

(10)

Note that for a more realistic three-dimensional laser the
FIG. 1. Laser cavity with intracavity traveling elec-

tro-magnetic waves.



812 M. P. van EXTER, S. J. M. KUPPENS, AND J. P. WOERDMAN 51

Lt)o
4~~2

( 1 1
~

g(z) N„(z) dz,

(14)

where we have introduced the cavity round-trip time wR

as

The coupling between the two traveling waves can be
neglected in the absence of spatial hole burning and when
k(z) varies relatively slowly with position (WKB approx-
imation). In this case we deal effectively with a traveling-
wave laser and the physics is the same as that of a uni-
directional ring laser. Rigrod [20] has noted that, the
gain of the leftward and rightward traveling waves being
equal, the product P (z) P+(z) should be independent
of the position z. When this is used, substitution of Eqs.
(12a) and (12b) in Eq. (10) yields a surprisingly simple
expression for the laser linewidth:

ter type of lasers, when (i) the integral is taken over a
round-trip, (ii) either P (z) or P+(z) is removed from
the integral, and (iii) the factor 2 is omitted &om Eq.
(15).

IV. LINEWIDTH AS A FUNCTION
OF OUTPUT POWER

We will now cast Eq. (14) in a form that is more practi-
cal from an experimental point of view, by expressing the
intracavity powers in terms of the laser output power P „t
and by analytically solving the integral. For the laser
cavity sketched in Fig. 1, having mirrors i = 1, 2 with in-
tensity reQectivities B, and transmissivities T, = 1 —B;,
one finds

P „t ——((1 —R, )/QRg + (1 —Rz)/QR2) P.
= —ln(RqR2) ~KP, , (16a)

2 ns, (z)/cdz .

Equation (14) is important as it allows for a sim-
ple physical interpretation of the quantum-limited laser
linewidth. It shows that one can treat phase diffu-
sion as a local process, being proportional to the lo-
cal spontaneous-emission rate and inversely proportional
to the local traveling-wave power. This gives a for-
mal corroboration of the heuristic traveling-wave model
for laser phase difFusion that we introduced previously
[16]. Note that the spontaneous-emission noise source
[oc g(z)N, ~(z)] is proportional to the local excited-state
population N2(z), since g(z) oc [N2(z) —Nq(z)], as one
would intuitively expect. Quantum-mechanical treat-
ments show that for antinormal ordering of the opera-
tors the noise source would have been proportional to the
local ground-state population Nq(z). However, for this
ordering, one also has to take into account disturbances
due to vacuum Huctuations leaking through the mirrors.
Goldberg, Milonni, and Sundaram [7] have shown that
such an analysis gives the same result as that for normal
ordering.

Equation (14) is an extension of the traveling-wave ex-
pression derived in Ref. [21] in the sense that in our work
the bad-cavity aspects have been included. The pre-
factor in Eq. (14) shows that the efFects of a position-
dependent dispersion on the laser linewidth can be conve-
niently expressed in terms of an integral over the cavity,
yielding the round-trip time wR. Possible bad-cavity as-
pects of the laser show up in this prefactor only. Note
that the phase re&active index n has dropped out of the
equations; only the group re&active index ng, is relevant
for the laser linewidth, because only ng, enters the ex-
pression for ~~. The simple physical picture is that the
spontaneous-emission noise source disturbs the intracav-
ity field by emitting wave packets that travel around with
the group velocity.

As mentioned above, a Fabry-Perot laser without spa-
tial hole burning can theoretically be converted into a
unidirectional traveling-wave ring laser, by unfolding the
laser cavity. Equation (14) is thus also valid for the lat-

1 Bi — Bi + 1 B2 — B2
—ln( RgR2 )

P (z) P+(z) = P,', (16c)

~P-( )+P.( )&
g z) =go 1 +

sat
(17a)

(o) (P (z) + P+(z) )
sp sp + 2

Psat )
(17b)

where go is the (position-independent) unsaturated

gain, P, t the saturation power, %,p the unsaturated
spontaneous-emission factor, and k2 a dimensionless
parameter (0 ( kz ( 1), which describes how the
spontaneous-emission factor %,p increases upon satura-
tion. The exact values of %,p and. k2 depend on the
relative strength of the pump and decay rates of the up-
per and lower laser level (see Appendix A) [22]. For an
ideal four-level laser N, p = 1 and k2 ——0.(o)

The laser output power appearing in Eq. (16a) can be
expressed as

Po t = P. (gto L + -,'ln(R, R2)) .

where P is the local traveling-wave power at the position
where P (z) = P+(z), not necessarily being the center
of the cavity. The longitudinal Petermann K factor has
been introduced as a measure for the spatial uniformity
of the intracavity field [5,17]. For small output coupling
(R; = 1) we have K = 1, whereas K ) 1 for larger output
coupling.

To solve the integral in Eq. (14) one needs expressions
for P (z), P+(z), g(z), and N, ~(z). For a uniformly
pumped homogeneously broadened laser medium, g(z)
and N, ~(z) can be easily expressed in terms of the local
traveling-wave powers as (see Appendix A)
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It should be realized that P, t, being equal to I, &A,
where I, t is the saturation intensity and A is the
modal cross section, can be z dependent, since gener-
ally A = A(z). However, we prefer to stick with the
one-dimensional approach, as inclusion of the transverse
aspects makes the problem extremely complicated. We
will therefore assume that both A and P, q are indepen-
dent of z.

By substituting Eq. (17b) in Eq. (14), by expressing
P (z) and P+(z) in terms of P „t and B;, and by using
P+(z) as integration variable, one finds

Av =
2 (in(RiR2) ) K( ) + Avp, (19a)

4Vrs R2 out

rR = (n(, ) + I'p/(2 p) j2L
(22)

Anomalous dispersion thus leads to an increase of vR in
the active cavity as compared to the unpumped laser.
This is related to the phenomenon of mode pulling ob-
served in bad-cavity lasers [24]. Note that r~ is inde-
pendent of the laser output power and that the quantity
Avp introduced in Eq. (19b) can thus indeed be inter-
preted as a power-independent contribution to the laser
linewidth.

It is instructive to calculate the "dressed"-cavity-loss
rate Fs„ i.e. , the cavity-loss rate of the active laser, which
is deGned via the ratio of the average number of photons
in the mode S over the laser output power P „t. We Gnd

—hv ln(RlR2) (p) F
LV0 = 2-. '" P...2 sp (19b)

I
Sh = (,/)[P ()+P ()]d =P„,/F, ,

0

(23a)

F= ((1/Bi Bi + 1/B2 B2)
-4»(B,B2) +-'I . (19c)

For a nonideal four-level laser (k2 & 0) we find a power-
independent contribution Avp to the laser linewidth (as
we will see below, rR is independent of P „t). The fac-
tor F describes the effect of Geld nonuniformity on this
power-independent contribution. The F factor is prac-
tically equal to the Petermann K factor when the mir-
ror reflectivities are reasonably large. For example, if
Ri ——B2 ——1 —b, both K and F can be expanded as
1 + (1/12)8 + O(P). Only for very large outcoupling
do we find that F P K, more specifically, F & K. To
give some examples: for a laser with Bq ——B2 ——0.30 one
Gnds K = 1.127 and F = 1.130 when Ry = Bg = 0.10
one finds K = 1.528 and F = 1.575, and when Bi
R2 ——0.01 one finds K = 4.62 and F = 5.93 [23].

We will now express the cavity round-trip time ~R, as
given by Eq. (15), in terms of the cold-cavity-loss rate
r„

L
I p = (c/L) g(z) dz = —c/(2L) 111(Bi B2 ) . (20)

0

where ng, is the group re&active index in the unpumped
laser and g(z)c/(2p) is the anomalous dispersion associ-
ated with the gain of the lasing transition. Note that in
a gas laser ng, = 1, but ng, can still deviate significantly
&om 1, when g(z)c & 2p, i.e. , when the laser operates in
the bad-cavity regime. Other types of bad-cavity lasers
will be discussed at the end of this paper.

Substitution of Eq. (21) in Eq. (15) and comparison
with Eq. (20) yields

The crucial parameter in this transformation is the
(position-dependent) group refractive index ns, (z). For
a homogeneously broadened (I,orentzian) line with a
FWHM p/7r, the Kramers-Kronig relations yield

ns, (z)—:n+ ~ = n,dn (,) g(z) c

(1 + F/~K(2P. /P, ,) ) 1+F„.
~

1 ~K(2P./P...)

Equation (23b) shows that the finite polarization lifetime
can lead to a drastic reduction of the dressed-cavity-loss
rate as compared to the cold-cavity-loss rate. The fac-
tor within large parentheses, which is identical to the
factor G, t & 1 used in Ref. [25], shows that the dressed-
cavity-loss rate exhibits a (generally very small) intensity
dependence, due to the change in the intracavity power
distribution upon saturation.

Substitution of Eq. (22) in Eq. (19a) finally yields

hvF ( 1

4~P.„, (n(') + F,/(2~)

2

()N, K+ Lvp,

(24a)

2
hv I' (c/L) 1 N( ) k2F
4 sa~ n +. Fp/(2p)

(24b)

Equation (24) is the most important result of this pa-
per as it gives an expression for the linewidth of a bad-
cavity laser, with arbitrary mirror losses, incomplete in-
version, and saturation, in terms of experimentally ac-
cessible parameters. Both equations factorize in parts
that have easy physical interpretations. A comparison
between Eq. (24a) and the Schawlow-Townes expression
Eq. (1) shows that (i) the linewidth is reduced by a fac-

tor (ns, + Fp/(2p)) due to an increase of the cavity
round-trip time in the pumped laser as compared to an
empty cavity [14]; (ii) the linewidth is increased by a
factor N(~) & 1 when the inversion (at zero power) is in-
complete; and (iii) the linewidth is increased by a factor
K ) 1 to account for the nonuniformity of the intra-
cavity power. Here, we recover the familiar result that
a nonuniformity of the intracavity intensity leads to an
increase of the laser linewidth by a factor K, basically
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because the local increase of phase difFusion in the low-
power regions is not compensated. for by the decrease in
the high-power regions. While each of these corrections
has been separately discussed in the literature, it is the
factorization for the general case of a bad-cavity laser
that is new.

The power-independent contribution Ava is a direct
result of the buildup of population in the lower laser level
and the increase of the spontaneous-emission factor N, ~
with laser power, as will be shown in Appendixes A and
B.In these appendixes we also show that Ava will depend
critically on the exact population dynamics and should
be absent for a perfect four-level laser: A v0 ——0 when
k2 ——0.

inversion in the molecular medium is necessarily only a
fraction of the total population due to the thermal distri-
bution over the various rovibrational states, and (ii) the
reduction in gain bandwidth will be limited by collisions.
Using typical numbers &om the literature [28] we pre-
dict that some waveguided CO2 lasers and waveguided
far-in&ared molecular lasers actually operate in the bad-
cavity regime as defined in this article. However, due to
the limited gain in these systems the cavity-loss rate will
necessarily be small, cavity lengths are typically about 1
m, and it will be difBcult to measure the quantum-limited
linewidth of these lasers.

VI. CONCLUSIONS

V. DISCU SSION

The theory developed in this paper is valid for good-
as well as bad-cavity lasers. It proved to be essential for
the interpretation of linewidth measurements on small
high-gain 3.39-pm He-Ne lasers [14], lasers that gener-
ally operate in the bad-cavity regime. An obvious ques-
tion that arises is "Which other types of lasers can op-
erate in the bad-cavity regime'?, " or phrased in a differ-
ent way: "For which other types of lasers is the ratio

P = gac/(2pns~, ~) )) 1'?"

In the visible and near-in&ared range there are prac-
tically no lasers that fulfill this criterion. Although the
gain in solid-state lasers and dye lasers can be enormous,
it is, however, practically always associated with a very
broad gain bandwidth, making P (( 1. For semicon-
ductor lasers bad-cavity aspects and anomalous disper-
sion will be important only when they operate on spec-
trally narrow gain profiles; here one may think of, e.g. ,
quantum-dot lasers, or lasers operating at low tempera-
tures on narrow exciton transitions [9]. Another excep-
tion in the near in&ared might be the miniature stoichio-
metric Nd laser, which has been predicted to have a gain
of as much as 10 dB per optical wavelength [26], which
should make P )) l. Indicative of the bad-cavity aspects
in stoichiometric Nd lasers is the fact that, as a result
of dispersion, the phase and group re&active index can
difFer substantially [26].

An increase of the wavelength towards the midin&ared
generally leads to an increase of the gain (g0 oc A ) and a
decrease of the gain bandwidth (radiative linewidth pro-
portional to A 2, Doppler width proportional to A i). In
the midin&ared bad-cavity aspects of lasers operating on
electronic transitions will thus show up relatively quickly.
As mentioned in the Introduction, this has been demon-
strated for a 3.39-p,m He-Ne laser, where for a 1-mm
capillary g0 ——36 m ', p/~ = 300 MHz, and ns~, ~ = 1,
making P = 5.7 [14]. It applies even more to a 3.51-
pm He-Xe laser, where for a 0.25-DUn capillary gp = 195
m i, p/m' = 190 MHz, and ns~, ——1, making P = 50 [27].

A further increase of the wavelength towards the far
in&ared, using rovibrational transitions, will not auto-
matically lead. to stronger bad-cavity aspects, because
(i) the increase in gain will be limited as the population

Starting from the general expression for the laser
linewidth as given by, e.g. , Tromborg, Olesen, and Pan
[15), we obtain a formal corroboration of the traveling-
wave phase diffusion model [16]. For a Fabry-Perot laser
without spatial hole burning, the obtained result Eq. (14)
can be explicitly solved, resulting in a simple expression
for the laser linewidth in terms of its output power [Eq.
(24)]. In the derivation we assumed that the polarization
decay rate p was much larger than the relevant popula-
tion decay rates. No assumptions were made regarding
the magnitude of p as compared to the cold-cavity-loss
rate Fo, making the result also valid for a bad-cavity laser
(I'0 ) p). We found several corrections to the Schawlow-
Townes expression for the laser linewidth. We predict
a power-independent contribution Lvp, which depends
critically on the pumping and decay rates and is absent
for an ideal four-level laser (see Appendix A). In Ap-
pendix B this result has been compared with other pre-
dictions found in the literature.
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APPENDIX A: CALCULATION OF
STEADY-STATE POPULATION

In this appendix we will calculate how the steady-state
populations N2 and Nz change with intensity. %'e con-
sider the most general situation, as depicted in Fig. 2,
for which the population rate equations are

dN2 oI
dt

= A2 —(A+ p2) N2 — (Nz —Ni), (Ala)
hv

de O. I
dt

= Ai + A%2 —pili + (Ng —Ni), (Alb)
hv
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N2

Ai+A2 A+p2
2 = )

A2

k] Ny: k2 N2

(A2}1)

(A2i)

FIG. 2. Level scheme with pump rates and decay rates.

(
N(o) N(o)

)
1 + I/I. ~i,

(A2a)

(p) 1 + k2I/I, i
1 + I/I, ~g

(A2b)

(p) 1 + ki I/I, ai
1 + I/I. ~i,

(A2c)

where A2 and Ai are the pump rates, (A + p2) and
pi are the spontaneous-emission decay rates, and 0
dg/dN = Ap/(4')AT2 is the cross section for absorp-
tion and stimulated emission between the laser levels
[29). The spontaneous-emission decay from the upper
laser level has been separated in AN2 and p2 N2, where
the product AN2 acts as an additional (population-
dependent) pump rate for the lower laser level.

The above rate equations are identical to those used by
Kolobov et al. [13]. They difFer from those used by Sar-
gent, Scully, and Lamb [30], and Prasad [8], who omit
the term AN2 in Eq. (Alb), by assuming that pi » A
and p2 » A, thus effectively setting A = 0. They
are also more general than the two-level Haken-Lamb
model and the three-level Lax-Louisell model, which have
recently been compared by Levien, Collett, and Walls
[31]. Whereas these treatments aim at a full quantum-
mechanical description of the laser, we have the simpler
job of calculating the steady-state populations.

From the steady-state solution of Eqs. (Al) we find

where we have introduced the unsaturated populations
N2~ l and Ni and the saturation intensity I, i. The
parameters ki and k2 are equal to those used in Ref.
[22]. Inversion can only be reached when 0 & k2 & 1.
The unsaturated spontaneous-emission factor N, ~ can
be calculated from Eqs. (A2f) and (A2g)). The (spatially
averaged) ratio (N2 —Ni )/(N2 —Ni) = 1+I/I. ~i is
the pump parameter of the laser. It quantifies how far
the laser is operated above threshold.

Equation (A2a) shows how an increase of the (local)
intensity leads to a reduction of the (local) population
inversion. It demonstrates the well-known saturation be-
havior of a homogeneously broadened line, which is solely
characterized by the ratio I/I, i. For an ideal four-level
system, where (pi » A, pz) this is all we need to know:
the ground state remains empty, Ni = 0 and k2 -- 0.
For other systems the description is more complicated,
as Ni P 0 and saturation results both in a reduction of
N2 as compared to N2 as well as in an increase of Nq

as compared to Ni (ki & 1). In a typical experiment
a laser with a fixed cavity is studied and the laser power
is varied via the unsaturated gain gp [see Eq. (18)]. The
spatially integrated population inversion is then fixed by
the gain needed to compensate for the mirror losses, and
both N2 and Ni increase with laser power. This increase,
which leads to the described linear power dependence of
N, p and to a nonzero Avp, is quantified by k2. In gen-
eral 0 & k2 & 1 quantifies how much the laser's saturation
behavior difFers from that of an ideal four-level laser, for
winch k2 ——0.

To get a feeling for the magnitude of k2 we will finally
consider a nonideal laser, where only the upper laser level
is pumped (Ai ——0). In the limit considered by Sargent,
Scully, and Lamb (A 0) one then finds k2 ——y2/(pi +
p2), which is small when pi » p2, i.e. , when the laser
resembles an ideal four-level laser, but which can be close
to 1 when pi (& pq. In the opposite limit, where the
upper laser level decays dominantly towards the lower
laser level (p2 (( A), one finds k2 = A/pi, which is small
when pi » A, but which can be close to 1 when pi =
A (pi & A will not produce inversion). Once more we
find that k2 quantifies how much the laser's saturation
behavior differs &om that of an ideal four-level laser.

N, p ——N,~ l (1 + k2I/I. ~, ),
hv pi (A + p2)

sat )
Pl + P2

(0) A2

A+p2 '

(p) A~ A A2+ A+ p2 yg

(A2e)

(A2f)

(A2g)

APPENDIX 8:
POWER-INDEPENDENT LINEWIDTH:

OTHER THEORIES

In the literature one finds several predictions for the
existence of a power-independent contribution Lvo. We
will argue here that these other predictions are also, often
implicitly, based on the increase of Ni and N, ~ with laser
power as originally discussed by Yariv and Vahala [32].
This is true for Ujihara [5], who finds an expression for
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the laser linewidth [Eq. (31) in Ref. [5] ] which exhibits a
power-independent contribution only when the position-
averaged N, & increases linearly with laser power; we in-
terpret Ujihara's factor -', N/(No ti) + -', as a position-
averaged N, ~. Goldberg, Milonni, and Sundaram [7] find
a similar result. They split the laser linewidth in an ex-
ternal part, which is power independent, and an internal
part, which contains the spatially averaged populations.
For the Fabry-Perot laser that we have considered, the
latter term will give rise to a power-independent con-
tribution only when the 1ower-level population increases
upon saturation, i.e. , when (Pz —Pi)t in Eq. (45) of Ref.
[7] decreases upon saturation.

Levien, Collett, and Walls [31] have compared the two-
level laser model of Haken and Lamb with the three-level
model of Lax and Louisell. For the Lax-Louisell model,
they find Avo ——0, in agreement with the simplifica-

tion Ni ——0. For the Haken-Lax model they do find
a power-independent contribution Lvo, which is equal
to our result if we set k~ N, ~ = —,'. This specific value
also occurs in other work [6,8]. In Ref. [6] Lu uses den-
sity operators to find that the linewidth of a good-cavity
laser is proportional to the sum of the unsaturated gain
and the cavity-loss rate, which is equal to saturated gain.
This makes b, vo equal to the Schawlow-Townes linewidth
at an intracavity power of 2P = 2P, &. It equals our
result when we set kz ———,

' and N, ~ = 1. Similarly,(o)

Eq. (5.20) of Prasad [8] is equal to our Eqs. (19a) and

(19c) only if we set k&N(~) = —,'. This specific value

of k2N, ~ = —,
' seems to be related to the chosen laser(o)

model. For Tz )) (pi + A), p2 we predict a value be-
tween 0 & k2 & 1 that depends crucially on the exact
pumping and decay rates (see Appendix A).
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