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Photon-assisted transmission through an oscillating quantum well:
A transfer-matrix approach to coherent destruction of tunneling
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Based on a transfer-matrix formalism, photon-assisted tunneling is studied in a strongly driven
double-barrier tunneling diode. Two scenarios are considered: a driving potential Vz cos(QJt) acting
on the central quantum mell, which may be realized with electrostatic gates close to the quantum
well, and a driving electric field across the diode generated by a laser field. Strong quenching of
the transmission probability is found for certain parameters (Vi, &u) of the driving field, which can
be explained in terms of zeros of fractional Bessel functions, J~„(pVq/Ru), where p is a structural
parameter. The effect shows a strong similarity to the "coherent destruction of tunneling" recently
found in strongly driven quartic double wells.

PACS number(s): 42.50.Ne, 03.65.Ge, 42.50.Hz, 73.20.Dx

I. INTRODUCTION

Harmonically driven bistable systems have recently at-
tracted a great deal of interest in the field of nonlinear
dynamics. In the classical regime, they exhibit instabili-
ties and fractal phase-space structures with at least two,
possibly strange, attractors [1], while in the quantum-
mechanical regime they feature a rich variety of effects
related to coherent tunneling. The archetype of strongly
driven bistable systems is the harmonically driven sym-
metric quartic double well with V(z) = —z2/4+ z4/64D,
where the two lowest lying states are almost degenerate.
Such a bistable system can, for instance, be realized in a
laser-irradiated semiconductor double quantum well. In
their pioneering work, Grofimann et al. [2] showed that
the coherent tunneling between the two lowest states of a
quartic double well can be suppressed by many orders of
magnitude, if the laser power and &equency are chosen
carefully. In particular, they found that a "coherent de-
struction of tunneling" occurs at zeros of Jo(2Eyiz/Ru),
where Jo is the zeroth Bessel function, F the applied
electric field, ~ the photon energy, and p&2 the dipole
moment between the two states. The basic underlying
mechanism is the ability of a suitably chosen laser field
to maintain the localization of an electron initially pre-
pared in one side of the quartic double well. It was then
demonstrated by Bavli and Metiu [3] that a laser field
can even be used to localize an electron initially delocal-
ized in both wells, provided the strength, frequency, and
phase of the semi-infinite laser pulse are chosen properly.
These results are not only of academic interest. Being
able to control tunneling rates is of great potential use
in as diverse fields as chemistry (steering chemical reac-
tions) and optoelectronics (electro-optical switches).

A powerful tool for analyzing these effects is the
Floquet-state formalism [4] which, by virtue of the pe-
riodicity of the Hamiltonian in time, enables us to de-
fine quasienergies of stationary states in the presence of
a time-dependent electric Geld. It turns out that the
Floquet states emerging &om the almost degenerate two

lowest states of the static quartic double well experience
a crossing, or almost crossing, of their quasienergies ex-
actly at the laser-field parameters where the coherent de-
struction of tunneling occurs. The interpretation follows
that for the tunneling-induced level splitting between two
static wells: The inverse of the energy splitting is a mea-
sure for the rate at which the two states communicate
with each other or, in other words, for the tunneling
rate. Hence, if the splitting tends to zero, the states lo-
calize and the tunneling rate will be correspondingly sup-
pressed. This intriguing result has inspired a lot of work
on driven two-state systems [5]. Among others, some
groups have started addressing the question of dissipa-
tion [6], and a rather surprising result is that dissipation
may not even be detrimental to the coherent destruction
of tunneling, at least for some suitably chosen temper-
atures. Other work deals with the increased fiexibility
of control enjoyed by using two commensurate laser fre-
quencies to drive a double well [7]. Nevertheless, apart
&om the quartic double well, only a few other systems
have been looked at so far. For instance, Holthaus and
Hone [8] have studied a finite superlattice embedded in a
closed box and they also found a coherent destruction of
tunneling for certain parameters of the laser field which
they could explain by using the Floquet-state theory.

All these systems have in common that they are closed
w'ith respect to (electrical) particle exchange with their
environment and hence that no dc current can fiow. This
means that the effect of coherent destruction of tunnel-
ing is only accessible to optical experiments. However,
very recently, a similar effect termed "quenching of res-
onant transmission" was analytically studied in a har-
monically driven double-barrier resonant tunneling diode
[9]. (Weakly driven systems have, for instance, been
considered in Ref. [10].) In this structure, the center
quantum well is driven with Vi cos(ut), while the bar-
rier and contact regions are assumed to be static. The
driving potential generates additional sidebands at ener-
gies E+n~ in the transmission probability of traversing
electrons, which can be interpretated as due to photon
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absorbtion (n ) 0) or emission (n ( 0). A simultane-
ous strong quenching of the transmission probability in
all sidebands is predicted at zeros of J (pVr/Ru), where
J is the Bessel function of the Brst kind with its index
n depending on the energy E of the incoming electron,
and p is a structure-dependent parameter close to unity.
The approach employed in Ref. [9] is an extension of the
transfer-matrix method to harmonically driven systems
and in part goes back to Buttiker and Landauer s discus-
sion of the tunneling time through an oscillating barrier
[11]and even much earlier work on microwave-driven su-
perconducting tunneling diodes [12]. A quenching of the
resonant transmission probability through a tunneling
diode opens up exciting new possibilities, as now trans-
port experiments can be used to probe the coherent de-
struction of tunneling. One has to bear in mind, though,
that a major difFerence between open and closed systems
seems to be that in the latter case at least two "inter-
acting" Floquet states are necessary, while in an open
system a single Floquet state is apparently enough to see
the quenching. The origin of this difference is not fully
understood yet. We are not aware of any transport ex-
periment assessing the quenching effect in strongly driven
open systems so far, but a number of experiments have
been aimed at, for instance, the photon-assisted tunnel-
ing through quantum point contacts [13] or across quan-
tum dots in the Coulomb-blockade regime [14—17].

The present paper extends previous work on driven
double-barrier tunneling diodes [9], where the energy of
the traversing electron had to match the energy Ep+nLu
of the quantum-well resonance or one of its sidebands-
the so-called resonant case—to arbitrary energies of the
incoming electron. In Sec. II we brieHy introduce the
transfer-matrix approach to photon-assisted tunneling
through a heterostructure, deferring a more detailed
derivation to Appendixes A and B. In particular, we dis-
cuss the quenching of the transmission probability at cer-
tain parameters of the driving Beld for the nonresonant
case, i.e., for incident electrons of energy E g Eo+ nRu.
In Sec. III we study the experimentally more readily ac-
cessible transmission probability integrated over all side-
bands, while in Sec. IV the analysis of the escape time
of the driven quantum-well resonance suggests that the
quenching of the transmission probability does not cor-
respond to a localization of a Floquet state as seen in
closed systems. Finally, in Sec. V we present results on a
double-barrier structure driven by oscillating potentials
in the contact regions such that there is a phase difFer-
ence of vr between the left and right contact, which serves
as a crude model for an electric driving Beld across the
diode.

II. OSCILLATING QUANTUM WELL:
NONRESONANT CASE

The transfer-matrix formalism is an often used tool
for calculating the probability for an electron of energy
E to traverse a quasi-one-dimensional heterostructure by
means of tunneling [18]. The basic idea is to decompose
the heterostructure into a number of smaller layers such

that in each layer the Schrodinger equation can be solved
analytically. For every layer, the most general solution
can then be written as a linear combination of two lin-
early independent solutions Agr(z) + BP2(z). To Hnd
a global solution across the entire heterostructure, one
has to match these local solutions in each layer at their
mutual boundaries, and the transfer matrices are sim-

ply a convenient way of expressing the rules for such a
wave-function matching. In particular, the total trans-
fer matrix relates the expansion coeFicients A~ and B~ of
the wave function on the left-hand side of the structure
to those of the right-hand side,

One particular advantage of the transfer-matrix approach
is its modular structure: The total transfer matrix T'~"
is made up of the product of all the local transfer matri-
ces for the individual layers in the heterostructure. Thus,
when the properties of a single layer change, we only need
to find the transfer matrix of this particular layer and
plug it into the formula for Tr~". In the case of an os-
cillating quantum well, for instance, we have to calculate
the transfer matrix in the presence of an additional mod-
ulating potential of the form Vr(z) cos(wt). A detailed
derivation is given in Appendix A, and it is found that
Eq. (1) has to be replaced by

(2)

where n and n' denote the sidebands at E + n~ and
E+ n'he@, respectively. The diagonal elements Tr~' are
closely related to Tr~" in (1), while the off-diagonal ele-
ments T„'&„",describe the effects of n —n' photon absorb-
tion respectively emission on the transmission probabil-
ity of the electron, very similar in spirit to the theory of
phonon-assisted tunneling [19]. For Hatband conditions
on both sides of the heterostructure, the wave functions
Pr(z) and $2(z) in the contacts are plane waves, and in
this case the proper boundary conditions to describe an
electron at energy E, incident from the left-hand side, are
Ar = h o and B = 0. The transmission probability in

sideband n is then deHned as T„=~ ' ~A„"/Ar ~, where

k„" and k& are the wave vectors on the right- and left-
hand sides in sidebands n and 0, respectively. One should
note that this transmission probability is a time-averaged
quantity and hence that the photon-assisted current as
calculated in this paper is always the dc response to the
ac driving Held [20].

The model double-barrier structure used in the follow-
ing is schematically shown in Fig. 1; two static barriers
I and III enclose a quantum well II which is harmoni-
cally driven as Vr cos(ut). The parameters used are the
same as in Ref. [9]: mr rr rrr = 0.067mo, Vi rrr = 0.5 eV,
and dg~ ——d~ ——d = 5 nm. In this section we analyze
the nonresonant case, where the energy of the incoming
electron neither matches the quantum-well resonance at
Ep nor one of the sidebands at Ep + nLc). The resonant
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FIG. 1. Transmission channels through a driven
double-barrier diode consisting of an oscillating quantum well
sandwiched between two static barriers. As the incoming elec-
tron of energy E can pick up or lose photon quanta hen, side-
bands are formed in the transmission on the far side of the
structure at energies E+ nba. The amplitude of these side-
bands is strongly affected by the driven quantum-well reso-
nance at Ro.
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case has been studied in Ref. [9], where it was shown
that in a strongly driven system a simultaneous quench-
ing of all transmission channels occurs at certain values
Vq/Ru ) 1.

A. Numerical results

V, /hfo
FIG. 2. Transmission probability T z/2 1/2 in sidebands

n as a function of Vq/fuu for an electron incident on a driven
double-barrier diode Ru/2 below the quantum-well resonance,
as calculated with the transfer-matrix method. The simulta-
neous quenching in the case of photon (a) absorption and (b)
emission occurs at different values of Vi /her (indicated by ar-
rows .

The numerical analysis is much facilitated by the ob-
servation that to a very good approximation the trans-
mission probability T„ is a function of Vq/Ru only and
hence using a single, fixed modulation &equency is suf-
ficient. For the following discussion, we have chosen ~
= 0.4 meV, which is much smaller than both Eo and
V1 111—Eo, yet suKciently large compared to the linewidth
of the quantum-well resonance. For modulation &equen-
cies smaller than this linewidth the scaling property will
break down.

Figure 2 shows our results based on the transfer-matrix
formalism for the transmission probability of an incom-
ing electron ~/2 below the quantum-well resonance at
Eo. For better clarity, we have divided the various trans-
mission channels into two classes: Panel (a) shows the
transmission probability in sidebands where the electron
has absorbed photon quanta when traversing the quan-
tum well (n ) 0), while in (b) the electron has emitted
photon quanta (n & 0). At zero modulation amplitude
Vz, only the center channel n = 0 is present, which is the
common-sense result for a static double-barrier structure,
whereas at large modulation amplitudes the transmission
probability in the sidebands can be Inuch higher than in
the center band. The oscillatory structure as a function
of Vq/Ru is very similar to that found in the resonant case
[9]. However, the simultaneous quenching of all transmis-
sion channels at certain values of Vq/Ru, as seen in the
resonant case, has given way to a more complex behavior:
The channels involving the absorbtion of photon quanta
[Fig. 2(a)] quench separately &orn those involving the
emission of photons [Fig. 2(b)]. The respective positions
of quenching are indicated with arrows in Fig. 2 and the
analysis shows that these positions can be described by
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FIG. 3. Same as Fig. 2 for an incoming electron of energy

R = Eo —hem/4. The difference in the positions of quenching
in the (a) absorption and (b) emission channels, indicated
with arrows, is now reduced.

the roots of J~~/2(pVq/Ru), where J~~/2 is a &actional
Bessel function and p = 0.93 is the same parameter as
determined in Ref. [9]. The plus sign refers to absorbtion
and the minus sign to emission of photons. To support
this interpretation, we also present results for the case
of an incoming electron at energy Eo —Ru/4 (see Fig.
3). In this case, the positions of quenching in (a) and
(b) have moved closer to each other and now agree with
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the roots of J~)/4(pVq/Ru). It is apparent &om Figs. 2

and 3 that the resonant case is just a special case where
the quenchings of the photon emission and absorbtion
channels coincide.

ing quantum well is proportional to the product of the
spectral weights of both the incoming and the outgoing
bands [21]

B. Analytical results

In Appendix A it is shown that the wave function de-
scribing an electron incident at energy E together with
its reBected and transmitted partial waves can be written
as

Q(E, z, t) = Q'"(z) exp (
—'~s')

+ ) It.(Z, s, t) eap (
—' +„""-'), (h)

where g„(E,z, t) is the amplitude of sideband n, . For the
following, it is convenient to measure the energy E of
the incoming electron with respect to the quantum-well
resonance by introducing a dimensionless parameter v
such that E = Eo—v~. The analytical analysis provided
in Appendix B, which uses a similar approach to that
given in Ref. [9], shows that to lowest order in hen, but
arbitrary order in Vz/her, the spectral weight II@„II of
sideband n in the wave function (3) is proportional to

1--,---(r ) —= II@-II'

~ (~g') v,
v, J---(&=')

&- (~g')
J„(pv

)J „(p„), n = 0
Vi.n) ~vJ (p& ), n(0,

(4)

(6)

From (6) we see that all transmission channels in which
photon quanta are absorbed (n ) 0) quench simultane-
ously at zeros of J„(pz'), while channels involving the
emission of photon quanta (n ( 0) do so at zeros of
J (pz'). Since for &actional v the roots of J„(u) and
J (u) do not coincide, a more complicated spectrum
results as compared to the resonant case where v is in-
teger [22]. Essentially, the simultaneous quenching of
all sidebands (marked with arrows in Figs. 3 and 4) is
caused by the spectral weight I „„(z')of the incom-
ing band tending to zero, which means that the incident
electron cannot couple to the driven quantum-well reso-
nance in the first place, and hence gets almost completely
re8ected. In addition to these simultaneous quenchings,
individual quenchings of single channels, such as that of
the n = I sideband in Fig. 8(a) at Vs/hts = 8.7b, hap-
pen when the spectral weight I „„(&' ) of an outgoing
sideband vanishes.

To illustrate the quality of our analytical solution, we
present in Fig. 4 the results for the transmission probabil-
ity for an electron at energy Eo —Ru/4 based on Eq. (6),
which has to be compared with the numerical transfer-
matrix solution shown in Fig. 3, which takes into account
higher orders in Lu. Using (5), the parameter p was eval-
uated to p = 0.93 and the data have been normalized with

where the parameter p turns out to be the same as in the
resonant case

kk&&d + sinh(kg&d)

+k" d + 1 — ' -n sinh(k, ",d)

+k,"rd + sinh(kf, d)

+ 2~y + 1 ii sinh k&&d
I

(5)

Here the plus sign is for odd and the minus sign for even
quantum-well resonances.

A simple argument can now be used to calculate
the relative transmission probabilities via different side-
bands: In order to traverse the oscillating quantum well,
an electron of energy E = Eo —vhcu first has to couple to
the driven resonance in the quantum well. The probabil-
ity for this to happen is proportional to the probability
of finding the electron at energy E in the quantum well
or, in other words, to the spectral weight I (z') of
this energy in the scattering state. In the second step,
the electron exits the quantum well via some sideband n,
which again happens with a probability proportional to
the spectral weight I „„(~z)of the sideband involved.
Hence the transmission probability through an oscillat-
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FIG. 4. Analytical results for the transmission probability
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reference to T (0) of Fig. 3. The agreement found is
excellent.

III. INTEGRATED TRANSMISSION
PROBABILITIES

& &0-~
I

&0-'

II )0 3 v=3/4

v= 1/2

Essential to successfully measuring the quenching of
the transmission probability of individual channels as a
function of the driving amplitude Vi is the ability to
make energy-resolved measurements on the energy scale

One way of achieving this is to add superlattices
to the collector and emitter side of the heterostructure
which then act as energy filters [23]. However, as these
devices are fairly complicated, it would be interesting to
see whether some fingerprints of the quenching could still
be seen in somewhat simpler structures.

The simplest possible approach is to maintain the en-
ergy resolution at the incoming side, but to drop this
requirement at the outgoing side of the heterostructure.
In this case, we have to integrate over all transmission
channels for fixed energy E of the incoming electron
and the result is shown in Fig. 5 for various energies
E = Ez —veau. Although the quenchings of individ-
ual transmission channels have gone, the simultaneous
quenching of all channels at particular values of Vi/Ru
is still clearly seen. The effect is most prominent close
to the resonant case where v is integer, but it can still
be observed as far as bc'/4 off the resonance. As the en-

ergy of the incoming electron is lowered, the position of
quenching moves towards higher modulation amplitudes
Vj, but there seems to be a pinning at certain values
of Vi/her. To inspect this more closely we have plotted
in Fig. 6 the position of the first quenching of the to-
tal transmission probability T„of Pig. 5 as a function
of Vi/Ru (solid line). Indeed, pronounced plateaus are
seen in the neighborhood of resonant transmission, i.e.,
around integer v, where the position of the quenching
depends only very weakly on the energy of the incoming
electron. [What does change, however, is the degree of
quenching (cf. the dashed curve in Fig. 5).] This means
that the requirements on the energy resolution at the in-

put side are not as severe as one might first think. In
particular, the quenching effect should still be visible for

0
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3~10 3
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M
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(
1x10 3
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FIG. 6. Position (solid line) and value (dotted line) of the
first quenching of the total transmission probability T of Fig.
5 as a function of Vq/hu. Pronounced plateaus are seen in the
neighborhood of resonant transmission (v integer).

an incoming electron distribution with an energy broad-
ening of up to about Ru/4.

One possible, albeit certainly difEcult, way to achieve
a sufIiciently monochromatic electron beam at the input
side is to use only a weak dc bias across the diode V,& (
Ru and low temperatures k~T &( Ru. In this case, only
the electrons at the Fermi energy contribute to the net
current and the dc current response, i.e., the photon-
assisted current, will be proportional to T . Another
approach would be to engineer the conduction-band edge
in the emitter by means of a clever doping profile to be
just below the Fermi energy.

IV. ESCAPE TIME OF A DRIVEN RESONANCE

A characteristic fingerprint of the coherent destruction
of tunneling in closed systems such as the quartic double
well is a strong localization of the states at these particu-
lar parameters of the laser field. It is therefore interesting
to see whether a similar localization occurs in the driven
double-barrier structure as well. To this end we used the
complex-energy formalism [18] to calculate the lifetime of
the quantum-well resonance as a function of the ampli-
tude of the driving field. It turns out that the effect of the
driving field on the lifetime is extremely small [24]. In the
example studied above the lifetime decreased monotoni-
cally &om 14.743 ps for a static quantum well to about
14.738 ps at Vi/Ru = 7.5. In particular, the quenching
of the transmission probability as seen in Figs. 2 and 3
does not show up as a corresponding resonance in the
lifetime. We therefore conclude that in our system the
quenching or coherent destruction of tunneling is not ac-
companied by a localization of the Floquet state as seen,
for instance, in a closed quartic double well.

&0-4

0.0
I

2.5

V, /hm

I

5.0 7.5
V. OSCILLATING ELECTRIC FIELD ACROSS

A DOUBLE-BARRIER TUNNELING DIODE

FIG. 5. Total transmission probability T„= g T „
as a function of Vj/bc' for various energies of the incoming
electron E = Es —vhcu. Quenching is most pronounced for
resonant transmission (v integer).

The scenario where the center quantum well of the tun-
neling diode is driven as Vz cos((dt) while the barrier and
contact regions remain largely unaffected may be realized
by electrostatic gates close to the quantum-well layer. A
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FIG. 7. Transmission probability To, in sidebands n as a
function of Vz/Ru for an electron of energy Eo resonantly in-
cident on a double-barrier diode driven by an electric field,
which is simulated by a static central quantum well and the
potential in the emitter oscillating in antiphase to the collec-
tor potential [Vc(t) = —Va(t) = Vj cos(ut)].

different situation arises when an ac bias is applied across
the tunneling diode or when the diode is irradiated with
a laser field, which may be better described by a driv-
ing electric field F(z) cos(ut) across the diode instead of
an oscillating fiat potential in the center quantum well.
To tackle this case within the framework of the transfer-
matrix method, we have to divide the corresponding driv-
ing potential Vi(z, t) = e J' dz'F(z') cos(wt) into many
steps such that Vj(z) can be assumed to be constant
within each step.

As each step requires the computation of a rather
large transfer matrix, we shall study only a very crude
model for a driving electric field. As in Fig. 1 we divide
the structure into five layers, with the contact regions
now oscillating in antiphase as +Vj cos((dt). The bar-
rier layers experience only a reduced driving potential
+gVi cos(wt) with g & 1 depending on the geometry of
the diode, while the central quantum well remains static.
In Fig. 7 we present results for the probability of an elec-
tron at energy Eo to resonantly traverse the electric-field
driven tunneling diode. Again, a simultaneous quench-
ing is seen at particular parameters fVi, u j of the driving
field and an analysis in terms of zeros of Bessel functions
shows that these quenchings can be described by zeros of
J„(pVi/hcu), where p=l.000 26 6 0.000 22.

In general, for asymmetrically driven systems, there
will be three, instead of two, relevant field parameters
Vi', Vi", and u, where Vi' is the driving potential be-
tween the left-hand region and the quantum well and Vi
that between the quantum well and the right-hand region
[25]. Correspondingly, there will be two different series
of quenching, one associated with Vi'/bc' and the other
with Vi" /bc'. In the present symmetric case, though, we
have Vii = Vi = Vi and these two series coincide. Nev-
ertheless, a residual interference between them can still
be seen in Fig. 7 as a doublet fine structure in the cen-
tral band at Vi/Ru = 2.4 and 5.5. This interpretation is
further supported by the observation that in Fig. 7 the
quenching of the sidebands is much more pronounced as
compared to Figs. 2 and 3, and also Fig. 4 of Ref. [9], sug-
gesting that as the V~' and V~" series of quenching collapse
into a single series, their strengths roughly multiply.

These characteristics persist for electrons incident at
1
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other energies E = Eo —veau, but again, as in the case
of the oscillating-quantum-well tunneling diode studied
above, for noninteger v the simultaneous quenching of
all sidebands is lost. Moreover, for noninteger v we were
unable to interpret the positions of quenchings as ze-
ros of Bessel functions. Nonetheless, the total transmis-
sion probability, defined as the sum over all transmis-
sion channels, shows a striking similarity to that of the
oscillating-quantum-well tunneling diode; Figs. 8 and 5
are virtually identical if we account for the slightly dif-
ferent scaling factor p of the driving amplitude.

VI. CONCLUSIONS

In conclusion, we have studied photon-assisted elec-
tron transport through a driven double-barrier resonant
tunneling diode within the framework of the transfer-
matrix formalism. In the first example, a driving po-
tential Vi cos((dt) acting on the central quantum well of
the tunneling diode caused additional sidebands at en-
ergies E + n@u to open up in the transmission proba-
bility of traversing electrons due to photon absorbtion
(n ) 0) and emission (n & 0). A strong quenching of
these channels was found at certain parameters (Vi, uj
of the driving potential. In particular, transmission chan-
nels requiring. photon absorbtion quench simultaneously
at zeros of J„(p~~), where J is a fractional Bessel func-
tion, while channels involving photon emission do so at
zeros of J „(p~~). Here —veau = E —Eo is the energy of
the electron relative to the quantum-well resonance and
the parameter p --I depends on the structure of the
diode. A simultaneous quenching of all channels is only
seen for integer v, i.e., for the case of resonant transmis-
sion. These results can be understood in terms of van-
ishing amplitudes in the spectral decomposition of the
wave function of the scattering state at the energy of the
incident electron.

The second example considered is a simple model for a
double-barrier tunneling diode driven by an electric field
P(z) cos(ut) across the diode, which is a situation typical
for diodes irradiated by a laser field. For the symmetric

V, ibm

FIG. 8. Total transmission probability T„= g T „,„
as in Fig. 5, but now for a diode driven by an electric field
across the double-barrier structure. Even though the driving
method is rather diferent, the resulting T„ is virtually the
same after accounting for the slightly di8'erent p values.
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case studied here, the parameter relevant for quenching
is the ratio of the potential drop between emitter and
quantum well, Vi ——e IdzF(z), to the photon energy he@

of the driving Geld. For the case of resonant transmission,
we again find that the quenching can be described by
zeros of integer Bessel functions J„(pVi/Ru), with p =
1 as structural parameter, while the nonresonant case
is not well understood yet. Interestingly, even though
the driving mechanisms in the two examples studied here
are rather different, we find that after accounting for the
slightly different structural parameters p, the sum over
all transmission channels looks almost identical in both
examples.

In order to see the quenching effect experimentally, one
would need electrons incident onto the double barrier of
the tunneling diode with an energy distribution better
than Ru/4, which may be realized with energy filters such
as superlattices. Alternatively, such a filtering could be
achieved at very low temperatures k&T && Lu by restrict-
ing the dc bias across the diode to a range V,d ( Lu. In
both cases, the photon-assisted current is the dc current
in response to the ac driving field. The problem of Gnding
a suitable range of experimentally accessible parameters
should be eased somewhat by the fact that the position
of quenching scales linearly with the photon energy of
the driving Geld.

Our results may be useful for getting a better under-
standing of a related effect, termed "coherent destruc-
tion of tunneling, " which occurs in driven closed systems
such as, for instance, a harmonically driven quartic dou-
ble well. In particular, our work shows that this effect
can be studied not only using optical techniques, but also
in transport experiments. The main difference to previ-
ous work on the coherent destruction of tunneling is the
fact that in the latter case two almost degenerate Floquet
states are necessary in order to observe the effect, while in
the driven double-barrier tunneling diode studied here a
single Floquet state is sufBcient. Moreover, this Floquet
state does not localize at quenching indicated by the
absence of any resonance in its lifetime —which is also in
contrast to results found for closed systems. We attribute
these differences to the fact that in a closed double-well
system the two Floquet states probe each other, whereas
in our system an external electron beam of adjustable
energy is used for probing the spectral decomposition of
a single Floquet state.

Note added in proof M. Holth. aus pointed out to ine
the important work of D. H. Dunlap and V. M. Kenkre
on the dynamic localization of a charged particle mov-
ing on a tight-binding lattice under the influence of an
electric field [Phys. Rev. B 34, 3625 (1986)]. The "dy-
namical localization" they discussed is very similar to the
"coherent destruction of tunneling" in a double quantum
well.
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APPENDIX A: DEFINITION OF TRANSFER
MATRICES

In this appendix, the standard transfer-matrix ap-
proach is reformulated to account for a harmonically
oscillating potential in a quasi-one-dimensional time-
dependent Hamiltonian of the form [26]

H(z, t) = Hp(z) + Vi (z) cos(~t)
t9 1 0—+ V(z) + Vi(z) cos(~t). (Al)

2 Bz m(z) Bz

Here V(z), Vi(z), and m(z) are step functions, i.e. , piece-
wise constant. The notation used follows Refs. [9] and
[18].

For a spatially uniform modulation amplitude
Vi(z) = Vi, a particular solution to the correspond-
ing time-dependent Schrodinger equation ih& @(z,t) =
H(z, t)g (z, t) is [12]

@(z,t) = @p(z) exp (—'& ) exp i ~ sin(art)—

= @p(z) exp (—'& ) ) J„(~)exp( —in(dt),

(A2)

where J is the Bessel function of the first kind and
@p(z) solves the time-independent Schrodinger equation
Hp(z)gp(z) = Egp(z). There are two points about
Eq. (A2) which we would like to stress: (i) Though
valid for Vi (z) = const only, it holds for arbitrary
potentials V(z), and (ii) as this wave function solves
the time-dependent Schrodinger equation, it does not
possess a single eigenenergy, but rather can be char-
acterized by a whole series of evenly spaced energies
(E+nkvd~ n integer). This latter observation means that
if we replace E in Eq. (A2) by E + ilia(, the resulting
wave function can still be characterized by the same en-

ergy ladder (E + nhcu~ ninteger) [27]. Hence the most
general wave function for a given energy ladder is a lin-
ear combination of particular solutions of the form (A2)
at energies E+ lou,

p(E, z, t) = ) @&(z)exp(—*~ ee ~')
l=—oo

x exp —i&' sin(wt)

=exp( —'.') ).@~(z)

x ) J„(~~)exp[ —i(n + l)(ut]. (A3)

Here we have defined Q~ (z) to be a solution of
Hp(z)@~(z) = (E + lhcu)v)~(z). The index l is usually
referred to as the sideband index relative to the l = 0
center band at energy E. Note also that the normal-
ization of the coefficients @~(z), i.e. , the intensity of the
sidebands, are parameters which have to be determined
&om the boundary conditions at energies E + LLu and
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vier(E, z, t) = ) A'r exp(k,'z) + BI exp( —k,'z)
l =—oo

i(Z+l~}t (A4)

with the wave vector of each sideband l given by hkj ——

/2mr(Vr —E —Ncu). On the other hand, if the modu-
lation amplitude Vi is finite in layer II, we find, from Eq.
(A3),

the normalization of vP(E, z, t).
In order to set up a transfer-matrix description, we

next approximate the potential V(z) + Vi(z) cos(ut) by
a series of small steps of layers I, II, III, etc. in which
V(z), Vi(z), and the effective mass m(z) can be assumed
to be constant. The accuracy of this approximation can
be easily controlled by increasing the number of layers.
Then, in any layer, the parameter functions gr (z) of each
sideband are simply linear combinations of plane waves

@i(z) = A exp(k z) + B'exp( —krz) with wave vector
hkr = +2m(V —E —lou). (Note that, in order to unify
the notation, in our definition the wave vector can be
real or imaginary, thus describing propagating waves as
well as decaying and diverging solutions. This is difFerent
&om the approach taken in Ref. [9].)

Now let the modulation amplitude Vq vanish in layer
I. Then, from Eq. (A3), the most general wave function
for a given energy ladder reads

This can be rewritten in a more compact matrix form

). r)
(~I, l

T"'"'
I

Bl
II

l=—oo

(A8)

with

and

( exp(kr z;) exp( —kr z;)~ exp(k z, ) —~ exp( —kr z;) )( my I ~ mI

T.",... = J--( )

exp(krrz;)
X

l" exp("rrz;)

exp( —klrz;)
I.'—"" exp( —krrz, ) j

(A10)

With the identity pi J r(u) Jn' —r(u)
(A].0) can be easily inverted to give

p rr)
—1

( exp( —krrrz;) „," exp( —krrz, ) )
xp(k z, ) —,~~ exp(krrz')

~

(A11)

The transfer matrix across layer II &om zq to z2 is then
finally given by

err(E, z, t) = ) . .+Ir exp(klrz) + B,'r exp( —kr'rz)
l= —oo

r r ~V q i[%+(l+n}her]t
)

(A5)

where hkIr ——+2mrr(Vrr —E —lou).
When matching the wave functions in layers I and II

at their common interface z = z, , the boundary condi-
tion in the e8'ective-mass approximation is that the wave

function and its flux have to be continuous,

gr(E, z;, t) = @rr(E, z;, t),
1 0—err(E, z, t)

mjy Oz

1 0
@r(E,z, t)—

m~ Oz
(A6)

As tais boundary condition has to hold at every instant
in time, the coeKcients of the energy phase factors must
already satisfy this boundary condition, leading to an
infinite system of algebraic equations

Ar exp(kr" z;) + Br" exp( —kr z;)

) [AIr exp(krrz;) + Brr exp( kr'r *)j J~ r(~)—
(A7)

k(
[Ar exp(kr" z, ) —Br" exp( —kr" z;)]

m$

) " [A'„exp(kIrz;) —B,', exp( —kIrz, )]
mug

xJ„r („)

l=—oo

cosh(kIrd)

" sinh(kIrd)

„," sinh(krrrd) )
cosll(krrd)

(A12)

):J.—()J- —(-) =~-,-
l=—oo

) &J r(u) J, r(u) = nb ——( ~,~'+1+ n, n, ' — ) ~

l=—oo

) t2 J„,(u)J. r(u)

( u2) ( 11(a„„,—u(n ——i&., +1
2 ' 2)

--i-+- i~-,-- + —(~-,-+ +~--- )4

(A13)

with d = zz —zz being the width of layer II. For van-

ishing modulation amplitude Vi', 0, (A12) reduces
to the familiar expression (A13) of Ref. [18]. For finite
modulation amplitude, we first expand the wave vec-

tor hkrr
——/2mrr(Vrr —E —lou) in a power series of l

and then evaluate the resulting sums of the general form
l~ J i(u) J r(u) exactly by recursion [28]. To

lowest order we find
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This perturbation series usually converges very quickly
as it depends only on Ru being much smaller than V and
E V—(in order for the krir expansion to converge quickly).
Its main virtue is that it is not an expansion in Vi/Ru, but
holds for arbitrary ratios Vr/bc', and can thus be used to
study strongly driven systems. Another issue is the fact
that the transfer matrix has an infinite rank and. thus
needs to be truncated for numerical computation. The
number of sidebands included depends on their spectral
weight in the wave function, i.e., on Vr/bc'. In our case
we set the cutofF weight to 10 r5 and found n „=31
to be sufficient up to pVr/Ru = 7.5. Finally, we note
that a static electric field can be easily included in our
derivation of a transfer matrix by using Airy functions
[18] instead of plane waves as a basis set in each layer.

APPENDIX B: NONRESONANT
TRANSMISSION THROUGH A STRONGLY

DRIVEN QUANTUM WELL

In this appendix we derive an analytical expression for
the transmission probability for an electron of arbitrary
energy E to traverse an oscillating quantum well. The
more limited case where the energy of the incoming elec-
tron has to match one of the sidebands of the quantum-
well resonance has already been established in Ref. [9].

As in Ref. [9] we consider a quantum well consisting of
two static barrier regions I and III and a central driven
quantum-well region II (see Fig. 1). We use the boundary
conditions (A7) at the interfaces x = 0 and z = d of the
quantum well to eliminate the coefficients Arr, and Brr,
thereby arriving at an infinite set of algebraic equations
for the remaining coeKc&ents I ~ +I ~ Arrr ~

an rrr o
the barrier regions

77?11 I IIIHere we have defined ar iii(n, l) = 1 +,»

gn
p ' (n&l) = 1 —™i,&" "". By adding and subtracting

these two sets of equations and summing over l we find,
again with the help of gi J„ i(u) J„ i(u) = h„„,

Ar + Br" = ) ~ cosh(kiid)
L,n= —oo

sinh(kiid) Aiii exp(krrrd)
mrrr k

+ cosh(krrd) +
&

sinh(krrd)
mIII

«»&» «»( —»» ) l~--&( —")~.-& (.".)

(B2)

A" —B" = — ) ' sinh(k' d)
k,
"' -

[
mrr

cosh(k'„d) Arri exp(krrrd)
mIII

+ sinh(krrd) + cosh(kiid)
mII mrrr

xBrrr exp( —krrrd) )J„ i („)J„ i (
—„') .

) rr'(n, l)Ar + P'(n, l)Br" J„ i (~s)

) [a"'(n& l) Arir exp(krrrd)
n= —oo

+p"'(n, l)Brir exp( krrrd)] J„ i (i., ) exp( krrd),

(B1)

) [P'(n, l)Ar + n'(n, l)Br"]J„ i (~~)

) [p" (n, l)Arri exp(krrrd)

+~'"(n, i)Birr exp(-krird)1 J--i ( —,.') exp(kiid)

The integers n, n', and l employed here refer to the
energy E used in Eqs. (A4) and (A5) which has not been
speci6ed yet. It is now convenient to specify this energy
to be that of the incoming electron, so that n = 0 refers
to the center band where the energy of the traversing
electron remains unchanged [29]. In order to find an an-
alytical solution to (B2), we expand all wave vectors to
lowest order in Lu about the wave vector of the quan-
tum well resonance at energy Ep. This expansion can be
conveniently parametrized by a parameter v defined by
Ep = E + vied. To keep things simple, we further as-
sume in the following a symmetric quantum well having
VI ——Vrrr and mr ——mrrr. A calculation similar to that in
Ref. [9] then shows that the resulting system of equations
can be solved by the ansatz [30]

~V

v J~—~(p~w)& n ) 0
~--(-&s )

Arri exp(kiiid) &

k„d) &x & J (p~~) J „( p~~), n =0—
~V

v J„„(—p~), n«,
(B3)
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where the parameter p turns out to be different for the
A" and B" series of coefficients

(B3) leads to

fA, B = II kiid + slIlh(kIId)
2

CA, Bk&&d + 1 — '
&P sinh A:&&d

C~ II kl"I d + sinh(kl1 d)

c& eke&d + 2~/„~ (1 — ")sinh(&fed)
I

(B4)

The constants C~ II are given by

C~ = +I+ 2/n ' sinh(klid), CII ——+I,

where the plus sign is for odd quantum-well resonances
and the minus sign for even resonances.

The transmission probability T „ through channel
n is proportional to the product of the spectral weights
I„oc [Alii~ +[Bill[ of the incoming (n;„= 0) and outgo-
ing (n „t = n) sidebands as discussed in [9]. If either the
A (z) or the B (z) series of coefFicients is dominant (as
is the case for a strongly bound quantum-well resonance),

with p = p~ or p = p~, respectively .[Here we have
utilized that [J„(u)[ = [1„(—u)[ holds for arbitrary real
v.] It should be noted that according to (B3) the side-
band amplitudes diverge at zeros of the Bessel functions,
while the final result for the transmission probability
(B6) does not. This singularity of the sideband ampli-
tudes is removed if higher orders of hen are taken into
account. Finally, the remaining proportionality factor in
(B6) can be determined for noninteger v from the static
case T „„(0)= b pT (0).

Again, we point out that the relevant parameter used
in the perturbation expansion leading to Eq. (B6) is Ru
and not VI/Ru. The results are thus suitable for strongly
driven systems.
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