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Polarization interaction of spatial solitons in optical planar waveguides
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Polarization-coupled spatial solitons in optical planar waveguides are investigated, using Whitham s

average variational principle to cast the problem into a set of ordinary differential equations. The main

problem addressed is the stability of the dynamics and the mathematical results derived are compared
with linear stability theory. Analytical forms for the stability edges are given together with numerical

work that confirms that the true soliton dynamics agree with the mathematical analysis.

PACS number(s): 42.65.—k, 42.50.Rh

I. INTRODUCTION

Much has been written about temporal soliton cou-
pling [1—10] using various forms of coupled Schrodinger
equations [1] and widely differing methods of solution
[4—6,8 —10]. The latter ranges from being almost entirely
mathematical, through mixed approaches, based upon
linear stability analysis, to entirely variational. In a rath-
er elegant paper, Wright, Stegeman, and Wabnitz [4]
used a linear stability analysis, backed up by some numer-
ical experiments. In particular, they set up a model to
study the coupling between two polarized modes in an
optical fiber or those in a directional coupler. The linear
stability analysis enabled them to predict the eventual de-
cay of solitary waves into nonstationary states and forms
of symmetry breaking. With respect to the latter, they
classified the instabilities that ensue into (a) asymmetric
(energy exchange between the two modes) and (b) sym-
metric (no energy exchange). Wright, Stegeman, and
Wabnitz [4] also pointed out that other instabilities could
exist and, interestingly enough, that their numerical work
uncovered instabilities that were not predicted by their
linear analysis.

Spatial solitons are beams of electromagnetic energy
that rely upon balancing diQraction and nonlinearity to
retain their shape [9,11—17]. In contrast, temporal soli-
tons [1] are pulses that rely upon balancing phase
changes across their width, which arise from material
dispersion and nonlinearity. A light beam, even in a vac-
uum, will spread out as a result of diffraction, but a pulse
requires a dispersive medium in order to suffer any
spreading. Hence group velocity plays an important role
in temporal soliton interactions, but does not feature in
spatial soliton interactions [16]. Indeed group-velocity
matching is required for the temporal case, but plays no
role in spatial soliton interactions. As a consequence, in-
teracting beams can be set at any angle to each other,
even in an isotropic medium. The replacement of group-
velocity dispersion by diffraction, in the case of spatial
solitons, means therefore that superimposed beams, even
with different wavelengths, can interact over large propa-
gation lengths [16]. Diffraction is dependent on wave-
lengths, so some interactions for temporal solitons, which

pair bright and dark solitons, have no spatial analog [16].
Novel soliton states and bifurcation phenomena in

nonlinear optical waveguide couplers have been predicted
recently on the basis of a limited mathematical, linear,
stability analysis. It was shown, within this model [5],
that new states appear at a point of bifurcation in the en-

ergy dispersion diagram. It is interesting that this linear
stability analysis appears to show that the reason for the
symmetry breaking predicted by Wright, Stegeman, and
Wabnitz is the appearance of these new soliton states.
Once this is established, then further infra-structure is
identifiable concerning states, with energies above or
below the bifurcation point being unstable or stable [5].

The validity of linear stability analysis as a means of
studying the modulation of a continuous wave (cw) is
widely accepted [1,2] and has been verified in many
theoretical investigations [1,2]. It is, however, a more
questionable technique for analyzing soliton phenomena.
The problem is that the method, as deployed in the
current literature, assumes that the shape of the perturba-
tion (noise) remains constant during its evolution. Only
the amplitude changes and, in the case of cws, such
"noise" is assumed to be harmonic (sin or cos) in form,
with the frequency of the disturbance (perturbation) be-
ing a free (disposable) parameter. This assumption is val-
id because, within a linear framework, any form of noise
can be Fourier analyzed into a set of harmonic waves,
with different frequencies. For solitons, however, because
of the transverse shape change in the soliton itself, the
noise treatable by linear instability analysis has been, of
mathematical necessity, limited to only a few transverse
shapes, which do not form a complete set. In addition,
the noise changes shape during the evolving interaction
with a strong soliton signal, indicating that the transverse
and longitudinal variables cannot be separated.

The problem to be addressed here is described by cou-
pled nonlinear Schrodinger equations. As will be shown
later on, the length scale over which spatial solitons de-
velop and interact is rather short compared to the tem-
poral case. It is important, therefore, to retain all the
nonlinear and linear coupling terms appropriate to this
scale rather than prematurely removing some of them on
the grounds that they average out to zero during the evo-
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lution or interaction. It is recognized that coupled non-
linear Schrodinger equations, in dimensionless form, have
a generic appearance and specialized solutions of them
have been targeted on temporal solitons. Some cases ex-
ist in the literature [18—22], but, for applications to spa-
tial solitons, suffer from some of the limitations outlined
above.

The coupled nonlinear Schrodinger equations to be
developed here have solutions yielding soliton dynamics
that are coupled through two parameters which, at this
stage, will be called v (linear coupling) and p (nonlinear
coupling). For the three common nonlinear mechanisms,
namely, thermal, electronic distortion, and molecular
orientation, p is 1, 2, and (x), respectively, as will be
demonstrated later on. Any restriction on the value of p,
especially confinement to nonphysical or quasi-physical
values, is not a welcome aspect of any stability theory.
Unfortunately linear stability theory does just this and re-
stricts [4] p to be p & 3 for asymmetric perturbations and
to be p & 1 for symmetric perturbations. Hence the kind
of linear analysis reported in the literature can only be
used in the thermal and electronic cases for asymmetric
perturbations, while the analysis of symmetric perturba-
tions hardly applies to any of these nonlinear mechanisms
[5]. Indeed, even thermal nonlinearity lies on the very
edge (p, =1)of the domain of applicability.

The study of soliton dynamics can be based upon varia-
tional theory [7—10,18—22]. Analytical progress rests
upon the adoption of an average variational method,
widely known as Whitham's method [23]. It centers
upon the use of an average Lagrangian density and the
inevitable introduction of trial functions. Detailed
justification of the variational method has been given,
most eloquently, by Whitham himself [23] and has been
rather elegantly applied, mainly by Anderson and Lisak
[10]. It has been used very effectively by Ueda and Kath
[8] and Pare and Florjanczyk [6] to study coupled soli-
tons. As Whitham points out [23], the method permits
the generation of quite general results and is well able to
deal with stability questions. Naturally, the accuracy of
any description of spatial soliton beam dynamics will de-
pend upon the choice of trial function.

Numerical simulations give the true beam dynamics
and a mathematical description, proceeding via a varia-
tional method, and very general trial functions can be

I

cladding (n, )

diffraction-~~ (n, ) nonlinearity
balance

substrate (n, )

FIG 1. Schematic illustration of spatial soliton in a slab
waveguide.

benchmarked safely by comparing the mathematical con-
clusions to the numbers generated. Pare and Florjanczyk
studied the soliton dynamics [6] in all-optical couplers by
a variational method that gives the stability edge for p =0
and an asymmetric perturbation. Even though their
model fails for symmetric perturbations, it does show a
possible way forward. This paper, therefore, also rests its
stability analysis upon the average variational principle.
Rather general trial functions are used, including a local
phase change across the beam (spatial frequency chirp),
to produce some new mathematical results. The trial
functions used lead to certain stability conclusions that
are checked by generating the true soliton dynamics nu-
merically.

II. COUPLED EQUATIONS

A weakly guided (E,=O), weakly nonlinear TE, or
TM, wave carries an electric field whose Fourier ampli-
tude E satisfies the following equation:

V2E + n 2E .+p co2PNL P (1)
C

It is presumed that the waves propagate in the planar op-
tical waveguide shown in Fig. 1 . co is the angular fre-
quency, c is the velocity of light in a vacuum, n is the
linear refractive index of the waveguide material, po is
the permeability of free space, j=x for a TE wave, j=y
for a TM wave, and P are the nonlinear polarizations.
The expressions for P "are

P, = 4eo[(x„„.+x, )( E
I

—+ E )E +x, „(E,+E )E,"]:4&o[(x yy +x y y+x yy)( E
I

+ IEy )E +x (E E +E (2)

where y; kI is a fourth-rank tensor describing the third-
order nonlinear susceptibility. Since
=x„„+x„„+x„„,P„reduces to [24,25]

PN'= -', e,[(x.,„„(IE. I'+ IE, I')E.

+X y y(EyE E Ey )Ey]

=boa[( IE. I'+ IEy I )E„+f(Ey E* Ey*E„)Ey], (3)—

where a =—,'X and f g (Xxyxy /a ) Xxyxy /Xxzzz.
Similarly,

P =boa[(IE
I

+IE
I

)E +f(E*E EE )E„] . —

(4)

Note that f= 3X „/4a = 3X „ /4a =0, —,', 1 for thermal,
electronic distortion, or molecular orientational non-
linear mechanisms, respectively.
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The substitution of Eqs. (3) and (4) into Eq. (1) yields

CO
V E + (n +En )E =0,

where

k, j=x,y, jAk .

The transverse dependence can be factored out by using
the separable solution

. CO

EJ(x,y, z)=I AJ(y)B~(x, z)exp i Pz-
C

where A (y ) is the linear modal field, B (x,z) is. a slowly
varying amplitude envelope, p=(p„+113&)/2, (co/c)p z
are unperturbed wave numbers, and I = 1/
f A„dy =1/f A dy (normalization factors).

Substitution of Eq. (6) into Eq. (5) leads to

BB BB
i2—1t3 + + (p' p+2v)B—=0,

()z ()~ ~

where 2v=P(P„—P~) and Pi is determined from the
modal equation

+ (n +b,n, P~ )AJ. =O, —

which immediately gives

fbn A ldy

spatial solitons because the physical diffraction scale is
such that they do not average to zero. For intended ap-
plications to temporal solitons, however, these terms are
always omitted [8,10,18,21]. If g*g and g*g„are
neglected, Eqs. (9a) and (9b) immediately return to (3a)
and (3b) of Ueda and Kath [8] or the equations used by
Kaup, Malomed, and Tasgal [18]. Upon neglect of the
g„*P» and g'g, Eqs. (9a) and (9b) still have 2vg„and—2vti . This is not a problem, however, since the latter
terms can be easily removed by the transformations
1i —+g, e '"'and g ~g e

Equation (9) can be used to describe the evolution of
the two orthogonally polarized components of a elec-
tromagnetic wave field in a planar waveguide. If only one
field component is launched, a scalar solution of Eqs. (9)
is generated. The alternatives are

1i, =p sech(px ) exp[i(p +2v)z], g =0

for the TE soliton, (10a)

1ij =0, f = ips—ech(px)exp[i(p —2v)z]

for the TM soliton (10b)

III. VARIATIONAL MODEL

The Whitham variational approach to problems of this
kind is well described in an earlier paper [9], so only the
briefest background details will be given here. Before
even this is done, however, it is convenient to transform
the equations to a rotating polarization frame of refer-
ence. In fact, right and left elliptically polarized field am-
plitudes can be defined as

where

=~' IB, I'+ IBk I'+f
J

(8)

(Q„+i'), g2= — (Q„if ) . —(11)

Hence, if a new constant p=(1+f )/(1 f ) is intro-—
duced, the coupled Schrodinger equations become

f IA l4dy f I
A

I Akl dy

f I A, I'dy f I A, I'dy

After substituting Eq. (8) into Eq. (7), and after making
the transformations

+, +2v@2+2( q112+plq212)F1=0,
a@, a2q,

Bx

a@, a2@,+, +2vy1+2(lq212+plq1 2)+2=0 .
Bx

(12)

CO CO—X ~x, Z~2PZ,
C C

1/2

2 J ~J

These are now in a form recognizable in the literature. In
this new frame, the scalar soliton solutions are

the following coupled equations are obtained:

Bg 8 g„+," +2vy. +2(ly. I'+ Iqy 2)q„
Bx

+2f(4"0, 4.4,*)4,=o—
+ —2 @ +2(l@„I + I@

aq, a'y,
(3z

g, =+$2= sech(px)exp[i(p +2v)z] .
&1+p

The Lagrangian density [26] that yields Eqs. (12) is

+2v(41 (i2+@1P2 )+2tu'I @1I'I@2I'

(13)

+2f(Py*f. PYP*W. =0 (9—b)

Note that the terms P„*g" and g*g„must be retained for
and the general (yet still chirpless) trial function that will
be used is
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f =g sech[p. (x —x )]exp i (x —x )+i8
2

(15) =2N, x2 — x1 =2M',
P2 P1 P2' Pl

'

Here the complete set of variational parameters
(g p g x 8 ) varies as the propagation proceeds. They
are defined as the beam amplitudes g, the widths of the
beams I/p~, the angles that the beams make to the z axis
g. , the positions of the beam centers x., and 8 the
phases. The average Lagrangian is achieved by an in-
tegration over x, which is the transverse direction that
lies in the plane of the waveguide. The details of the
averaged Lagrangian and the conservation laws that Aow
from it can easily be obtained from the earlier study [9].

If

92 91
g) =2M/, 8=8~—8, ,P2' Pl

'

where

91 + 92

P1 P2

is a constant which represents the total energy of the cou-
pled soliton, then

dN =2 v+p, pz(M N) J —sech p, x+2 2 MA
dz M —N

MA
sech p2 x

2M Nbg
M N—(M N)—

M =Mg+2v+p, pz(M N) jx—sech p, x+dh 2 2 MA
dz M —N

MA
M+N

M~/ 2M Nb/
M2 N2 (M2 N2)2

(19)

M =2v+p, pz(M N) I sech—p& x+ MA
dz M —N

Mh
sech p2 x—

Mh
X p2 tan p2 x— MA—

p1 tanh p1 x +

Mg 2MNbg
M2 N2 (M2 N2)2

—2v+p, p~(M —N ) f sech p, x+MN( Mh
M —N

MA
sech p2

Mg + 2MNbg
M —N (M N)—

+2',p~(M N) sech p &

x-+ -' MA
sech p2 x—

MA
X .p2tanh p2 x— Mh—p1tanh p1 x+ -dx . (20)

Equations for d8/dz, p&, and pz can also be derived with
some effort, but in a straightforward way. They are rath-
er bulky and will not be quoted here.

The system of equations involving dN/dz, db, /dz,
dg/dz, d 8/dz, and p, z has the stationary solution

dN
dz

dg' db, d8
dz ' dz '

dz

It can be shown that Eq. (21) means Eq. (13), i.e.,

b, =O, N=O, /=0, 8=80=0,+n, pi=pal

for which

(21) pi =pz=p=(1+v)M
1+@
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de, d02
=p +2v .

dz dz

A stability analysis will now be undertaken.

IV. STABILITY ANALYSIS
OF THE STATIONARY STATE

The stability analysis proceeds by introducing pertur-
bations to N, h, g, and 8 and then checking their evolu-
tion to see if they grow or decay. The stability analysis is
simplified by the special nature of the coupled equations
of dN /dz, d b, /dz, d g/dz, and d 8/dz. Around the sta-
tionary state, (N, 8) and (g, h) evolve independently of
each other. For example, a perturbation on N or 0 will
cause dN /dz %0 and d 8/dz%0, but / =0, 5=0,
dg/dz=O, and db, /dz=O are unchanged. This is be-
cause, from Eqs. (19) and (20), dg/dz =db, /dz =0, once
g= b, =0. On the other hand, d g/dz =d b, /dz =0

I

guarantees /=5=0 for the next step in the propagation.
For the same reason, a perturbation of 5 or g will cause
db, /dzAO and dg/dzAO, but will not affect p, =p2,
N=O, 8&, +m, and dN/dz =d8/dz =0. This property of
the equations permits independent perturbation analysis
of (N, 8) and (g, b, ). The final verdict concerning the sta-
bility of the physical system is arrived at after a linear
summation of the results obtained from the two separate
investigations.

A. Perturbation ofb and g

This kind of perturbation changes -the position of the
beam center b, and the beam propagation direction g. It
also changes the beam width p . But, since the two soli-
tons are symmetric, the relationship p&=p2=p is always
maintained in the system. The evolution equations for 6,
g, and p are

and

dA =g+2vp f x sech[p(x+5, )]sech[p(x —b, )]sin(gx )dx,
dz

dg
dz

+2pp f sech [p( x+6, )]sech [p(x —b, )][tanh[p(x —6)]—tanh[p(x+6, )jdx,

=2vp f sech[p( x+5)]sec h[p( x—b, )][tanh[p(x —6)]—tanh[p(x+6, )]icos(gx)dx

(22)

(23)

—', (1—p)+v f sech[p(x+6, )]sechp(x —b, )]cos(gx )dx+pp f sech [p(x+6, )]sech [p(x —b, )]dx

—vp f sech[p(x+5)]sech[p(x —b, )][(x—b )tanh[p(x —b, )]+(x+6,)tanh[p(x+6, )]]cos(gx )dx

pp f—sech [p(x+6, )]sech [p(x —b, )]I(x—b, )tanh[p(x —b, )] +( x+6, )t nah[ (px+b, )]Jd x=0,

(24)

where the variables have been normalized to

M z~z, Mx ~x, ~g, Mb. ~b, ,'M

M v Pg

N '
M ~ cosep~v, ~pM

Equations (22) —(24) reveal that the system has a constant
of motion C, representing the Hamiltonian property of
the system, which satisfies the equation

', p ',p+—,'g——2vp—fs—ech[p(x+6)]

n. sin(b, g)

sinh(2ph )sinh
2p

. , G, = &-th
2p 2p

G& = A/cot(hg), G2 =2pb, coth(2pb. ),

—,'(1—p)+pE — I'(G2 —G3)+—p2ph =0,V aE
p B(2pb, )

—', p ——', p+ 2g 4vF 4IJ,pE =———4v ——', —( I +p)

where

(26)

(27)

X sech[p(x —6 ) ]cos(gx )dx —ppz

X f sech [p(x+6)]sech [p(x —b, )]dx =C . (25)

1 —1
tanh (2pb, )

2ph
tanh(2ph)

For the stability problem in hand, the initial conditions
are p~, o=l+p, g~, o=0, and b, ~, o=0, so that C is
simply

C = —4v —
—,'(1+p)

After performing the integrations, Eqs. (24) and (25) be-
come

The evolution of the perturbations b„p, and g are con-
trolled by the two algebraic equations (26) and (27). Ini-
tially b, =O, /=0, and p= I+@,but if the system is such
that limp p g pd g /dk (0 g becomes pure imaginary
for b,AO. In a real system, of course, this can never
occur, which means that 5 can neuer evolve away
from 6=0. This system is considered, therefore, to be
stable. On the other hand, a system for which
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lim =0, lim =0,
Qdh a odd

g~o g~o

2

dg l. 1 dg
o dA a o2 d&2

$~0 g—+0

16 2 4
3 5P ~+ PP

(28)

21+, (29)
3 p

where p=1+p. Instability is predicted, therefore, when

limz o & Od g /db, )0 is considered to be unstable.
Differentiating Eqs. (26) and (27) with respect to b,

leads to the following limiting values:

respectively, become v/p = ——', and v/p = —3/m,
which indicates that TE solitons are always stable, while
TM solitons are unstable when 3/~ & ~v/p ~

& —', and
stable everywhere else. This is confirmed by the numeri-
cal investigations reported in this paper.

A similar kind of perturbation has been studied by
Wright, Stegeman, and Wabnitz using a linear instability
analysis method, where it is classified as symmetric per-
turbation. Before the two results can be compared, a
small improvement should be made to the previously re-
ported linear instability analysis. In Ref. [4], the authors
set A, =—,'+~, where A, is the wave-number shift. In the
notation of this paper, this corresponds to A, +v= —

—,', but
this restriction is not necessary. Indeed, for any given
value of A, , a stationary solution can be found in the form

1/2
~4@(1+p)+ v

2

1+
3(1+@)

and the two curves

&0 (30)
2A, + 2v

1+p

Xsech(v' —2A, T vx )exp( 2i A—z )

4 p(1+p)+ v=O, (31)

2

1+ =0,
3(1+p)

(32)

0-

plotted in Fig. 2, are the boundaries between the stable
and unstable regions. Instability only occurs for v(0,
that is, when two beams are opposite in phase (80=+sr),
i.e., the TE soliton is always stable. This analysis applies
to several kinds of nonlinearity. In particular, for the
molecular orientational nonlinear mechanism (f= 1),
p~ ~, but the instability range can be transferred to v-f
space by the transformations v~v/M =[(I+@)/p ]v
and p~(1+f )/(1 f ). In this case,—Eqs. (31) and (32),

2
dg'

5~0
g~o

1 dg= lim — =0 .
o2 dh2

$~0

and if p is set to —2A, +2v, then f&=+$2= (p/& I +@sech(px )exp [i(p +2v)z ].
After this minor modification, the linear stability

analysis result is also plotted in Fig. 2 as a dashed line.
In the range 0&p& 1 (note that the linear result is not
valid beyond @=1), the result given by the linear stability
analysis is qualitatively similar to the curve given by Eq.
(31). But the linear stability analysis does not generate
the curve obtained from Eq. (32). This outcome is ex-
pected if it is recalled that Wright, Stegeman, and
Wabnitz [4] use only certain instability edges in their
analysis. These edges correspond to

-0.6- It is easy to check that this is the case for Eq. (31), but
on the curve of (32)

-1.6-

-2-

2
dg

o dA
$~0

d 2/2= lim — ~+oo .
6~0 2
g~o

-2.6-

l
I

/
I ~ I f ~ ~ ~

J
\ I ~

/
I I ~

/
~ I I

/
I ~ I

0 0.2 0.4 0.8 0.8 1 1.2 1.4

FICs. 2. (v, p) plane showing stable and unstable regions for
the symmetric perturbations. Solid lines represent the Lagrang-
ian theory and the dashed line denotes a linear stability analysis,
for which the region contained by the dashed lines and the coor-
dinate axes is unstable.

B. Perturbation of N and 8

dN =F sin8,
dz

(33)

This kind of perturbation causes a change in the
beamwidth p, beam amplitude N, and relative beam
phase 8. The conditions /=0 and b, =O are maintained
in the system, however, so the evolution equations are
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dO =(1+N)p2 (—1 »—pI p—plp2NA+ —&pu 2
V

1/2
1 —N
1+N

1/2
1+N
1-N

1 —N
1+N

1/2
BB 1+N

p~ cos8+ v+p, p2
~P2

' 1/2
BB

p1 cos0
BP1

+ plp2(1+N)pi
aw aw

1/2 ' ' 1/2

—,'(1 —N —p, )+v B cos8+pp2(1+N)A1+N P2

1 —N P1
1/2

1+N BB aw+2v QP,P2 cos8+pp, p(21 +N) =0,
1 —N ~P1 ~Pl

(34)

(35)

1 —N—', (1+N p2)+—v
1/2 ' 1/2

P1 B cos8+pp, (1 N) A-
P2

1 —N+2v 1+N

1/2
aB

p,p2 ~
cos8+pp, pz(1 N) —=0,

~P2 ~P2

where

A (p,p2) = f sech (plx )sech (p2x )dx,

B(p &pz ) = f sech(p Ix )sech(p2x )dx,

F(N, pl p2 ) =2v+1 N+pl p2—B .
d U

dN N=p

d F 1
4v cosOp

dN N =p cosOp

roll down a potential hill, with the result that the system
is unstable.

The stability edges, after a long calculation, are given
by the condition

Once again, normalized variables have been used.
The system has another constant of motion (the Hamil-

tonian)
d E
dN2 N=p

=0, (39)

E+F cosO= C, (37) which are

where the constant C= —2(1+@) +4vcos8O is determined
from the initial conditions and —',(1 —p ) ——',(1—p) —

( —,'+1.21p, )

E(N, P,P2) =
—,'(1 —N) p, —

—,'(1 N)p, + —,'(1+—N) p2

—
—,'(1+N)p2+p(1 N)pip2A . — =4v cosOp 1+ 1.43 dp

(1+@)2 dN

2

(40)

Equations (33) and (37) can be developed into
r

dN +(C E) F=O . — —2 2=
dz

(38)

and

v cosOg=0,

where

(41)

The evolution of the system is controlled, therefore, by
Eqs. (35)—(38). For any given N, PI 2 and cos8 can be ob-
tained from Eqs; (35)—(37) as a function of N. Conse-
quently, (C E) F is deter—mined—as a function of the
single variable N, which will be written as 2U(N). The
initial conditions p, =p2=1+p, N~, O=O and 80=0, +~
correspond to dN/dz~, O=O and N~, o=0, i.e., like a
particle initially at rest, at the center of a potential well
(N=O). The stability of the system can then be judged
from the character of d U/dN ~z o, i.e., if
d U/dN ~~ 0) 0, N=O is a local minimum point on the
potential curve and the system is stable. On the other
hand, if d U/dN ~& 0(0, N=O is a local maximum
and an infinitesimal disturbance will cause the particle to

GP
dN

= —(1—p')
4.29v cosOp

+3.36@

Equations (40) and (41) are plotted in Fig. 3, together
with the result of the linear stability analysis (as modified
in this paper) for an asymmetric perturbation. The re-
sults show that both TE and TM solitons can be unstable
under asymmetric perturbation. Applying the results to
di8'erent types of nonlinearity gives di6'erent v cosep
values for the instability region. In the particular case of
a molecular orientational nonlinear mechanism, p —+~.
After some manipulation, the present theory predicts
that TE solitons, which correspond to Op=0, are always
stable under an asymmetric perturbation, while TM soli-
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c5

i
C)

g

tons, which correspond to 80=+~, are stable if
vcosOo/p (1.05. In the range between p=O and 3, the
present results are qualitatively similar to the results
from linear stability analysis [4].

In the limiting case p=0 for TE solitons, it has been
reported in the literature [6] that instability occurs when
v&0. 6667, within a particle theory similar to the one
presented here. In this limit, the instability predicted
here occurs when v&0. 7467, which is practically the
same as the linear stability, which is v&0. 75. Note that
Pare and Florjanczyk assumed a constant beamwidth.
The TM soliton is always stable for p=0.

0.0
-8.0 0.0

X
8.0

FIG. 4. (a) The contour map of coupled soliton beams over a
distance of z =24L, . The x unit is Dp. The coupling coefficients
are (a) v= —0.2S and p=0.2 and (b) v= —1 and p=0.2. The
initial perturbation is symmetric with N=O, 6=0.01, and g=O.
z and x are dimensionless.

C. Numerical results

For finite p and v, it is easy to integrate Eqs. (11) nu-
merically for initial conditions that are close to the sta-
tionary, solitary wave solutions given by Eq. (13). Such
an integration is reported here to check the predictions of
the stability analysis depicted in Figs. 2 and 3. Figures 4
and 5 contain some of the conclusions. The length scale
L„along the propagation direction, is L, =4mnDolA, ,
where n is the refractive index of the waveguide, A, is the
wavelength in a vacuum, and Do is the beamwidth. For
X=0.62 pm, n =1.53, and DO=8. 5 pm, for example, L,
is 2.24 mm. The numerical work shown in Figs. 4 and 5
agrees very well with the analytical predictions derived in
this paper. Numerical experiments that have been re-
ported in the literature [4] also confirm parts of the
present theory. An important point to make, however, is
that during the course of any numerical simulations,
rounding errors will accumulate, so any instability, com-
putationally observed, may be due to this. Indeed, if the
propagation is long enough, breakup will be sure to
occur. The stability of a system should be judged, there-
fore, by comparing propagation behavior in the stable
and unstable cases over similar distances. The numerical
results shown in Figs. 4(a) and 4(b) confirm the stability
edge conclusions shown in Fig. 2. Figure 4(a) shows in-
stability setting in at 12L, yet, in Fig. 4(b), even at 24L,
no instability is observed. The propagation distance 24L,

9.0—

6.0—

0.0
-8.0 0.0

X
8.0

9.0—

6.0—

0,0
-8.0

I
l

I

0.0 8.0
X

FIG. 5. The contour map of coupled soliton beams over a
distance of z = 12L, and —8Dp (x (8Dp. The coupling
coefficients are (a) v= —3 and (b) v= —1 and @=2. The initial
perturbation is asymmetric with N=0. 01, 6=0, and /=0. z
and x are dimensionless.
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is judged to be long enough for conclusions to be drawn
about the physical stability of the system. In fact, Fig.
4(b) breaks up at z=1501., (because of rounding error),
which is more than ten times the breaking distance in
Fig. 4(a).

As stated earlier, Fig. 2 shows that the stability edge
diagram for symmetry perturbations is quite different
from the one obtained by linear stability analysis. In ear-
lier work, the whole region below the dotted line is desig-
nated as unstable, whereas the theory reported here con-
cludes that only small portions of this area are unstable.
The numerical tests shown in Figs. 4(a) and 4(b) confirm
this and every rapidly unstable case in the paper by
Wright, Stegeman, and Wabnitz [4] also corresponds to
data inside or very close to the unstable regions of Fig. 2.
Any previously reported instability in the stable region of
Fig. 2 has either been for perturbations that are too large
for the perturbation analysis to be valid or for ultralong
propagations, by which time the pulse or beam breaks up
due to rounding error and should not be interpreted as a
physical instability. Figures 5(a) and 5(b) show the nu-
merical confirmations of Fig. 3. In Fig. 5(a) the point
v= —3.0,LM=2. 0 is selected. This point is in the stable
region of Fig. 3 and is shown by the simulation to be per-
fectly stable over a propagation distance of 12L,. In Fig.
5(b) the point v= —1.0,@=2.0 of Fig. 3 is selected and is
demonstrated to be unstable. Note that the stability re-
gimes in Fig. 3 are very similar to the previously pub-
lished case. It is emphasized that the mathematical con-
clusions reached here are borne out by the numerical (ex-
act) simulations, which indicates that good trial functions

are being used.
In order to deal with molecular nonlinearity numeri-

cally, for which f=1 and phoo, the basic equations
should be transformed to

a1i, a'@,
i + +2vp +2(1+f) 1( ~

/+=0,
c3z

a@ a'q
i + +2vf++2(1+f ) g+ ~ g =0,

Bx

(42)

where f+ are p+ =f, /&1 f an—d g =ariz/&1 f and-
p=(1+f )/1 f ). —

The numerical results provided in Figs. 6 and 7 for
symmetric and asymmetric perturbation, respectively,
concern molecular nonlinearity. In the case of in-phase
beams (TE solitons), stability is predicted analytically for
both symmetric and asymmetric perturbations. In the
case of +sr out-of-phase beams (TM solitons), the present
theory predicts instability in the ranges (a)—3/~ )v/p & =

—,
' for symmetric perturbations (b,AO

initially) and (b) 0 & v/p ) —1.05 for asymmetric pertur-
bations (NAO initially). The numerical results, however,
show no dependence on the choice of a specific form of
perturbation. In the range 0&v/p & —1.05, no matter
what kind of initial perturbation is used, an asymmetric
type of breaking will emerge from the evolutions and the
system is unstable. This range covers the symmetric in-
stability range 3/vr to ———', . The system is restabilized
after v/p (—1.05.
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FIG. 6. The contour maps of coupled soliton beams over a distance z=6L, and —8DO ~x & 8DD, in a molecular orientational
nonlinear medium. The coupling coe%cients are v=0. 5, —0.35, —0.6, —1.2, respectively, for (a) —(d) and the initial perturbation is
symmetric. z and x are dimensionless.
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FIG. 7. The contour maps of coupled soliton beams over a distance z=6L, and —8Do &x & SDD, in a molecular orientational
nonlinear medium. The coupling coefBcients are v=1.5,0.5, —0.5, —1.5, respectively, for (a)—(d) and the initial perturbation is
asymmetric. z and x are dimensionless.

V. INCLUSION OF A LOCAL PHASK
CHANGE RATE (SPATIAL FREQUENCY CHIRP)

The spatial soliton dynamics, described in the preced-
ing sections, will now be extended, with a local phase
change across the beam as an additional degree of free-
dom. This inclusion enables the internal oscillations of
the beam to be accounted for. This is achieved by using
the more general trial function

P =g sech[p (x —xj)]

where c. is a chirp parameter (analogous to the temporal
case) and the other parameters have the same meaning as
before. Substituting this general trial function into the
Lagrangian and then integrating over x yields the aver-
aged Lagrangian

X=X,+X,+X„

Xexp i (x —x )+i (x —x ) +—i8c

2 ' 2
(43) where

g, ax, ae, ~,
' 4~,' 2, g&,' l ac,

2 Bz Bz pj 3 pj 3 2 pj 2 Bz p

X&2=2pg, gz J sech [p, (x —x, )]sech [p2(x —x2)]dx

+4vg&g2 sech p& x —x
&

sech p2 x —x2

f2 gl C2 C) 2Xcos (x —xz) — (x —x& )+ (x —xz) — (x —x&) +Oq —Oi dx, (44)
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and r = jx sech xdx.
The application of the Euler-Lagrange equations then

gives the previously reported equations, together with

(jLIJ 4 IJ 2 12
(45)

dz P3 'Jp3 r ac
J J J

The stationary solution is

x, =x&=0, g, =)@=0, c, =cz=c=O,

p &

=pz =p = ( 1+p )M, g I
=re =ri= &1+pM,

8=8&—8I =0, +rr, =( I+p) M +2v .dO

Z

(48)

—g + +—g —p
J

1 p BL, 3 p. BL,+ +
4 g2 Bp 8 r] (3g

4
d p 4 p p ~ pj
dz J J 3 J J J ~2 (jp.

(rc )= —2rc ——p. (g —p )=
Qj J

pJ BL12

2 7)J 8'g .

(46)

(47)

This new system of equations still shows that the law of
"mass" conservation and "momentum" conservation is
satisfied. Also, if a proper coordinate system is used, the
"mass center" of the coupled solitons is stationary. Fur-
ther progress is dificult because of the multicoupling of
the variables, even though the variables can be separated
into two groups (b„g,pi=pz, cl =cz,N=0, 8=0, +rr) and
(b, =O, (=O,p, z, c, z, N, 8). In the following, therefore,
the calculations will focus on the special cases v=O and
p=1.

A. v=0

In this case g /p =M is a constant and

dXj

dz
(49)

=4pgkpJ sech p1 x —x1 sech p2 x —x2 tanh pj X xj dX
dz

2cJ
7

PJ

+4prtkpj f (x —
x~ )]tanh[pj(x —xj )]sech [p&(x —x

&
)]sech [pz(x —xz )dx

1

dz pJ

2rc~ 4pj(—rt~ —
p

—
) 2pr)kp~ f—sech [pi(x —x

&
)]sech [pz(x —xz)]dx

(50)

(51)

(52)

where j,k=1,2 and j&k. The Hamiltonian of this sys-
tern is

d5
dz

d 1

dz p

2c
(54)

2 4 2 2 C2 2zn, 1, kj ri, r
~

1
3 pJ 3 4 pj 2 p.

+—pjq +

p'g1'gp sech p1 x x1

Consequently, the Hamiltonian of the system is
2 T

1 dA r d 1

Xsech [pz(x —x~)]dx=H . (53) pMp f—sech (x —pb, )sech (x+pb, )dx =E . (55)

1. Perturbation type A

If the perturbation is symmetric about p. and c, the
conditions p, =p2=p and c1=C2=c are initially
satisfied. The system then has the following
characteristics: 4= kl=k xz xl =~ go='r)l=rl
(d /dz )( I /pz —1/p&) =0, and (d /dz )(c&—c, ) =0. The
evolution equations then reduce to

Equation (55) can be viewed as the energy conservation
law of a particle moving in a two-dimensional potential,
with E as the total energy. The position parameters of
the particle are (r„rz)=(b, &r/2(l/p)), time is t=z,
and the two velocity components are dr1/dt=dh/dz
and dr&!dt =&r/2(d /dz )(1/p).

Hence a two-dimensional potential function exists,
which is

1/2 1/2
4M r 1 r 1 rU(r„r~) =— +— —pM

3 2 r2 3 r2 2
1 r

r2
sech x—

2

1/2
r1

sech x+
r2

1/2
r
2 r2

dx (56)
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1. BL12
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2
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M =4vM+M —N sinO,
dN 2 2

dz

H=4vM cos8&=4vM+M —N cos8,

which condenses to
2

1 dN +8vN =0
2 dz

(70)

(71)

(72)

The Hamiltonian is
4 4

+— —p, zi, ——pzg2+ —r) &q2 sech (px )dx
1'Qi 1'921 2 1 2 1 2 p 4

3 p, 3 p2 6

+vq, ri2 f sech (px)dx cos(8z —8, )=H .

Defining rizlp2 —zlflp&=2N and using the relations
92 91+ =2M and 02 —

0& =0 leads to
P2 Pi

VI. CONCLUSIONS

This paper contains the results of an investigation of
the dynamics of differently polarized spatial solitons in a
planar optical waveguide. A full mathematical analysis,
obtained via Whitham s variational method, is presented.
Analytical results are obtained using comprehensive trial
functions, some of which include a local phase change.
As in a previous paper [9] the concepts of mass and
momentum How rather easily from this formulation, but
the problem addressed concerns the polarization interac-
tion of beams, within the same waveguide. Predictions of
stability edges are made and these are supported by nu-
merical simulations of the true soliton dynamics. Both
linear v and nonlinear p interaction parameters are in-
cluded in the formalism. No restrictions are placed upon
p and the mathematical work is completely vindicated by
the numerical results.

Obviously, the potential function is U(N) =Sv N so that
d UIdN = 16v is always positive, thus indicating that a
stable solution is always present. This conclusion
confirms the information obtained from Fig. 3, in which
the unstable region shrinks to zero at p= 1. Spatial chirp
does not change the stability nature of the system.

ACKNOWLEDGMENTS

The authors acknowledged support from the United
Kingdom Engineering and Physical Sciences Research
Council (EPSRC). K.X. is supported by EPSRC.

[1]G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston,
1989).

[2] G. P. Agrawal, J. Opt. Soc. Am. B 7, 1072 (1990).
[3] C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174

(1987).
[4] E. M. Wright, G. I. Stegeman, and S. Wabnitz, Phys. Rev.

A 40, 4455 (1989).
[5] J. M. Soto-Crespo and N. Akhmediev, Phys. Rev. E 48,

4710 (1993).
[6] C. Pare and M. Florjanczyk, Phys. Rev. A 41, 6287

(1990).
[7] V. K. Mesentsev and S. K. Turitsyn, Opt. Lett. 17, 1497

(1992).
[8] T. Ueda and W. L. Kath, Phys. Rev. A 42, 563 (1990).
[9] A. D. Boardman and K. Xie, Phys. Rev. A 50, 1851

(1994).
[10]D. Anderson and M. Lisak, Phys. Rev. A 32, 2270 (1985).
[11]A. D. Boardman and K. Xie, Radio Sci. 28, 891 (1993).
[12] F. Reynaud and A. Barthelemy, in Guided Wave Non

linear Optics, Vol. 214 of 1VA TO Advanced Study Institute,
Series E: Applied Science, edited by D. B. Ostrowky and
R. Reinisch (Kluwer, Dordrecht, 1991),p. 319.

[13]J. S. Aitchison, Y. Silberberg, A. M. Weiner, D. E. Laird,
M. K. Oliver, J. L. Jackel, E. M. Vogel, and P. W. E.
Smith, J. Opt. Soc. Am. B 8, 1290 (1991).

[14]J. S. Aitchison, K. Al-Hemyani, C. N. Ironside, R. S.
Grant, and W. Sibbett, Electron. Lett. 28, 1879 (1992).

[15]A. Barthelemy, S. Manuef, and F. Froehly, Opt. Com-
mun. 55, 201 (1985).

[16]R. de la Fuente and A. Barthelemy, Opt. Commun. 88,
419 (1992).

[17]S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov,
Usp. Fiz. Nauk 93, 19 (1967) [Sov. Phys. USP. 93, 609
(1968)].

[18]D. J. Kaup, B. A. Malomed, and R. S. Tasgal, Phys. Rev.
E 48, 3049 (1993).

[19]B.A. Malomed, Phys. Rev. A 43, 410 (1991).
[20] T. Ueda and W. L. Kath, Physica D 55, 166 (1992).
[21] Y. S. Kivshar, J. Opt. Soc. Am. B 7, 2204 (1990).
[22] D. Anderson, M. Lisak, and T. Reichel, J. Opt. Soc. Am.

B 5, 207 (1988).
[23] G. B. Whitham, Linear and Nonlinear Waves (Intersci-

ence, New York, 1973).
[24] A. D. Boardman, P. Egan, T. Twardowski, and M. Wil-

kins, in Nonlinear 8'aves in Solid State Physics, Vol. 247 of
NATO Advanced Study Institute, Series B: Physics, edited
by A. D. Boardman et al. (Plenum, New York, 1990).

[25] A. D. Boardman, P. Egan, F. Lederer, U. Langbein, and
D. Mihalache, in Nonlinear Surface Electromagnetic Phe
nomena, edited by H. E. Ponath and G. I. Stegeman (El-
sevier Science, Amsterdam, 1991).

[26] P. M. Morse and H. Fesbach, Methods of Theoretial Phys
ics (McGraw-Hill, New York, 1953).


