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The present paper establishes the photonic superguiding theory in polar crystals with a high non-
linearity. In quantum theory it is shown that photons can sense an attractive effective interaction
by exchange of virtual optical phonons. Such an interaction leads to the superguiding state. In the
standing-wave superguiding state, the photons with opposite wave vectors and spins are bound into
pairs. In the traveling-wave superguiding state, a propagating photon pair consists of a combination
of two photons with opposite transverse wave vectors and spins. We study the particle properties
of the photonic superguiding state, the most important property being that the system of photon
pairs evolves without scattering attenuations. Quantum fluctuations of the standing-wave super-
guiding state exceed the vacuum fluctuations, while the traveling-wave superguiding state has the
squeezing property. We also investigate the wave properties of the photonic superguiding state. It
is found that the polar crystals with a high nonlinearity are self-defocusing media. In the standing-
wave superguiding state, the system of photon pairs exists in the form of quantized vortices. In
the traveling-wave superguiding state, the system of photon pairs exists in the form of quantized
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temporal solitons.

PACS number(s): 42.50.—p, 42.65.—k, 71.36.4-c

L. INTRODUCTION

This paper reports detailed results of our investigation
of the photonic superguiding state in polar crystals with
a high nonlinearity. In a previous Brief Report [1] we
showed that the system of photon pairs in the superguid-
ing state evolves without scattering losses. However, we
did not distinguish between the standing- and traveling-
wave superguiding states and we also did not discuss the
wave properties of the superguiding state. A comprehen-
sive treatment of these problems is therefore necessary.

The classical Maxwell equations acquire a giant suc-
cess in linear media and result in the discovery of numer-
ous linear optical phenomena. An example is the phonon
polariton in linear polar crystals, which is a particle com-
prised of a photon and a transverse-optical (TO) phonon.
All classical optical phenomena in nonlinear media are
also governed by the Maxwell equations. For example,
the Maxwell equations in nonlinear media have classical
soliton solutions. Basically, nonlinear optical effects orig-
inate from the nonlinear interaction of light with matter
when the quantum many-body problems of light are par-
ticularly important. In order to enhance our knowledge
about nonlinear optical effects greatly, we must develop
quantum nonlinear optics by the quantum-field theory.

Recently the above consideration has provoked much
interest in quantum effects of optical soliton propaga-
tion in nonlinear media. The quantum optical effects
usually appear in one or more of the attributes of being
sub-Poissonian, antibunched, or squeezed. If light ex-
hibits a certain quantum optical effect, it has no positive
nonsingular Glauber-Sudarshan P representation and is
called nonclassical light. Nonclassical light is considered
to be in nonclassical photon states. In the following,
optical solitons first refer to temporal solitons in nonlin-
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ear optical fibers. Carter and co-workers first predicted
the squeezing effect of bright solitons in nonlinear optical
fibers [2—4]. This effect has now been observed in the first
direct experimental test of the quantum soliton theory
[5]. The bright soliton exists in the anomalous disper-
sion region of self-focusing media while the dark soliton
is in their normal dispersion region. Using Gutkin’s in-
tertwining operator technique, Yurke and Potasek have
predicted that photon antibunching statistics should re-
sult near the node of the dark soliton [6]. The photonic
sub-Poissonian state often tends to occur together with
the antibunched state, but the two effects are distinct.
As for the two-dimensional spatial soliton in self-focusing
media, Chiao, Deutsch, and Garrison have proposed a
two-photon bound state which prevents the spreading of
a beam of light due to diffraction [7]. Furthermore, these
authors have discussed the differences between standing-
and traveling-wave quantum solitons [8]. Lai and Haus
have treated the quantum field theory of solitons in some
detail [9].

The author has proposed the idea of the photonic su-
perguiding state in nonlinear polar crystals [1]. Since the
superguiding state is an intrinsic quantum-mechanical
phenomenon, it is a new nonclassical photon state. Co-
herent light entering a nonlinear polar crystal can be con-
verted into a new nonclassical light, which we refer to as
superlight. In this paper we will show that photons in
a polar crystal with a high nonlipearity can sense an at-
tractive effective interaction by exchange of virtual opti-
cal phonons. The coherent state is unstable with respect
to such an interaction and the superguiding state corre-
sponding to superlight is formed through the association
of photons in pairs. In the standing-wave superguiding
state the two paired photons have opposite wave vec-
tors and spins. In the traveling-wave superguiding state
a propagating photon pair is the combination of the two
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photons with opposite transverse wave vectors and spins.
There are the following contrasts between electrons and
photons: (i) Electrons are charged fermions, while pho-
tons are neutral bosons; (ii) the electronic superconduct-
ing state is an equilibrium state, but the photonic su-
perguiding state is a nonequilibrium one; and (iii) the
excitation spectrum for the electronic superconducting
state contains a gap, but that for the photonic superguid-
ing state has no gap. However, there are the following
similarities between the superconducting and superguid-
ing states: (i) Supercurrent flowing in a superconductor
experiences no resistance and superlight propagating in
a waveguide has no scattering losses; (ii) the supercon-
ducting state excludes magnetic fields and the traveling-
wave superguiding state expels vorticity fields; and (iii)
the magnetic flux in a type-II superconductor is quan-
tized and the circulation in a standing-wave superguid-
ing state is quantized. A waveguide that can be super-
guiding can be called a superwaveguide. Photons in the
superwaveguide can propagate as temporal solitons with-
out dispersion. The quantum solitons in the traveling-
wave superguiding state show the squeezing effect. In the
present optical-communication systems, which use coher-
ent beams of laser light, the ultimate performance is lim-
ited by the scattering losses, the dispersion effect, and the
quantum noise. If the coherent input light propagates in
the superwaveguide as superlight, at the same time we
can obtain an ultralow energy loss, a high transmission
rate, and a large signal-to-noise ratio.

Recently some new concepts of photons analogous to
those of electrons have been proposed. Berry has recog-
nized in quantum mechanics a topological phase factor
arising from the adiabatic transport of a system around
a closed circuit [10]. The Aharonov-Bohm effect is a
manifestation of Berry’s topological phase for the elec-
tron. Chiao and co-workers have given the first exper-
imental verification of Berry’s topological phase for the
photon [11,12]. The photon localization in media with
high-dielectric-constant scatterers has attracted exten-
sive investigation [13,14]. The weak localization of pho-
tons has been observed in the coherent backscattering
experiments [15,16] and the strong localization of pho-
tons also seems to have occurred [17,18]. A related prob-
lem is the localization of polaritons in disordered crys-
tals and its role in optical-absorption experiments [19,20].
Yablonovitch and Gmitter [21,22] and Satpathy, Zhang,
and Salehpour have proposed the idea of photon bands
in a three-dimensionally-periodic dielectric structure [23].
Subsequently, John has suggested that any small devia-
tion of the dielectric lattice from perfect periodicity will
induce strongly localized electromagnetic (em) modes in
the photonic band gap [24]. In structures possessing pho-
tonic band gaps, the suppression of molecular interac-
tions and the occurrence of bound states of photons to
atoms also have been predicted [25,26].

The remainder of this paper is organized as follows.
Section II describes our physical model and derives the ef-
fective Hamiltonian of the photon system. The standing-
and traveling-wave superguiding states are studied in
Secs. III and IV, respectively. The wave properties of
the superguiding state are investigated in Sec. V. Fi-

nally, Sec. VI summarizes our results and discusses pos-
sible applications of the photonic superguiding state to
optical-communication systems.

II. PHOTONIC EFFECTIVE HAMILTONIAN

Let a laser light field enter a nonlinear polar crystal.
The incident light field induces a macroscopic em field in-
side the crystal. We consider a coupled system consisting
of the em field and the crystal. By nonlinearity we mean
that the crystal is first-order Raman active. For conve-
nience the crystal is taken to be of the cubic symmetry.
The ion lattice within a volume V has N primitive cells.
Let 7,, be a suitable reference point inside the nth cell.
The instantaneous displacement of the lth ion in cell n
from its equilibrium position is given by the vector &,;.
The incident light field is a linearly polarized coherent
light field of a single mode. The incident frequency wq
is assumed to be well below the electronic transition fre-
quencies, so that the photon-electron interaction and the
related photon absorption by electrons can be neglected.
This approximation allows us to make a phenomenologi-
cal treatment to the interaction between the em field and
the crystal.

In the ion lattice the polar vibration of an ion carries
an electric dipole moment. The interaction Hamiltonian
from the polar vibrations is linear in the macroscopic
electric field E and can be written as [27]

HII = - Zenlgnl : E(Fn), (1)

n,l

where e,; is the effective charge of the nlth ion. Under
the influence of the macroscopic em field, the charge cen-
ter of the electron shell of an ion shifts relative to that
of the nucleus and hence an electric dipole moment is
induced in the ion. For the isotropic medium, the inter-
action Hamiltonian involving the ionic deformations is
quadratic in E and has the form [28]

__1 = N2 ¢ . (=2
Hyp = 5;/dtan,(t,t)E(rmt) B(7t), (2)

where @&,(t,t') is the effective polarizability of the nith
ion. In Egs. (1) and (2) the local electric field at an ion
location is replaced by the macroscopic electric field. The
Hamiltonian of the em field reads

Hy = /df(f-zﬁﬁz ¥ 2—1—E2) , 3)

Ho

where € and po are the permittivity and permeability
of vacuum. We_choose for the vector potential A the
Coulomb gauge V-A =0and suppose the scalar potential
to be zero, so that the electric and magnetic fields are
given by

04 4

E=—E,B=VXA. (4)
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In the harmonic approximation, the Hamiltonian for lat-
tice vibrations has the form

Hc = %théizi + % Z 7t sptiSnrir 5 ()
nli i

where the index ¢ distinguishes the three rectangular

components and the overdot indicates derivative with re-

spect to time. my is the mass of the /th basis atom and

®7,l'"" are called atomic force constants. The Hamilto-

nian of the coupled system reads

H=Hy+Ho +Hpy+ Hypy (6)

The above gives a classical description of the interac-
tion of the em field with the vibrating crystal. We now
discuss the quantum theory of such processes. In doing
so, the coupled system is subjected to certain boundary
conditions. Since the macroscopic crystal contains a large
number of primitive cells, the properties of the macro-
scopic crystal do not depend on the choice of boundary
condition. However, the properties of the macroscopic
em field inside the crystal closely depend on the choice
of boundary condition. Under any boundary condition,
the em field is far away from thermal equilibrium and the
crystal exchanges thermal energy with its surroundings.
The crystal deviates slightly from equilibrium when the
incident intensity of light is below the threshold of stimu-
lated Brillouin scattering, whereas the crystal is far away
from equilibrium when the incident intensity exceeds this
threshold. Since plane-wave modes constitute a complete
orthonormal set, they can be used for the expansion of
the em field in any arbitrary geometry. In terms of the
creation and annihilation operators a!. and aj, of cir-
cularly polarized photons with spin o = +1, the vector
potential of the em field is expanded as

N Eo\¢
At =" (~———2V€owg>

ko
X [Xo(R)ag,e™ ™ + Xs (Ryaf e %], (7)

where )’(’,(E) and wy = c|l€| are the polarization vector
and frequency of photons, respectively. By inserting Eqgs.
(4) and (7) into Eq. (3), the Hamiltonian of the em field
is converted into the Hamiltonian of a noninteracting sys-
tem of photons

H; = Z ﬁw,;a%aa,ga R (8)
ko

where the zero-point energy is removed. The acoustic vi-
bration of an ion represents a pressure fluctuation at the
ion site. If we regard the pressure at an ion site as an
independent state variable of the crystal, the ion vibra-
tion refers to the optical vibration. When the phonons
of the jth optical branch are created or annihilated by
the operators b}j and bg;, the ion displacement can be
expanded as

s = _h—_ : & (aa . t iq-Tn
Snl(t) - Z [2lewg(q-)] el(q])(bq.‘l + b—q'j)e )

g3
(9)
where €;(¢7) and w;(g) are the eigenvector and frequency
of the jth optical branch, respectively. By putting Eq.
(9) into Eq. (5), the Hamiltonian for lattice vibrations is
converted into the Hamiltonian of a noninteracting sys-
tem of optical phonons

He =" hwi(@)bl;bqi (10)
@

where the zero-point energy is discarded also. The op-
erators of photons and optical phonons obey the Bose
commutation relations.

Because the wave vector of light is much smaller than
the dimensions of the Brillouin zone, conservation of mo-
mentum requires that the phonons involved in optical
processes be near the center of the Brillouin zone. The
symmetries of the small-wave-vector lattice vibrations
can then be described by irreducible representations of
the crystal point group. The optical vibrations of po-
lar crystals fall into two distinct categories, i.e., polar
modes and nonpolar modes. Polar modes carry elec-
tric dipole moments and are infrared active, whereas
nonpolar modes carry no electric dipole moments and
are infrared inactive. In the cubic crystal, each group-
theoretical threefold polar mode splits into a TO doublet
and a longitudinal-optical singlet, while each nonpolar
mode is threefold degenerate at zero wave vector. The
charge e, in Eq. (1) is a function of the nlth ion dis-
placement due to the polar vibration. The displacement
Sn1 here is given by Eq. (9) with nonpolar modes re-
moved. Near the ionic equilibrium site, the charge e,
can be expanded in increasing powers of the displace-
ment as e, = €;(0) + Ve; - §n1 + -+, where €,(0) and
Ve, are the charge and differential charge vector of the
lth basis ion at the equilibrium site, respectively. In the
interaction Hamiltonian H,, the linear term in §,; de-
scribes the phonon-polariton effect and the higher-order
terms in 5,; interpret the absorption of a photon with the
formation of two or more T'O phonons. We hypothesize
that the incident frequency is well above the TO phonon
frequencies of the crystal, so that the photon-phonon in-
teraction Hjy; linear in E and the related multiphonon
absorption of a photon can be omitted.

For simplicity, the studied crystal is also taken to be
centrosymmetric. Polar modes in centrosymmetric crys-
tals have odd parity and are Raman inactive [29]. In
the cubic system, the common polar crystals that are
both centrosymmetric and Raman active have the fluo-
rite structure. At this point, the studied crystal is deter-
mined as a certain crystal of the fluorite structure, such
as CaF,. In the fluorite-structure crystal, a primitive
cell contains two anions and one cation giving a single
nonpolar mode, which is Raman active. For the Raman-
active mode, the two anions in the primitive cell move
in antiphase, while the cation remains stationary. Since
the following treatment has no relation to polar modes,
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the optical vibrations of the crystal are limited to the
Raman-active mode. Now the index [ is only used to dis-
tinguish the two anions in the basis. In Egs. (9) and (10)
the Raman-mode frequency w;(q) at small wave vectors
is replaced with the zero-wave-vector value wg and the
branch index j is deleted. Furthermore, the incident in-
tensity is assumed to be below the threshold of stimulated
Brillouin scattering, so that the pressure fluctuations and
Raman-active mode of the crystal are excited thermally.
The polarizability &y is a function of the temperature,
pressure, and displacement at the nith ion site. Near the
equilibrium state of the ion system, the polarizability &,
can be expanded as

Gni(t,t') = a(t—t)
+6(t—t) [5an,(t)+6a,-s*,,,(t)} . (11)

Here &;(t — t') is the polarizability of the /th basis ion
in the equilibrium state and its Fourier transformation
oy(w) reflects the material dispersion due to the ionic de-
formations. day,; is the fluctuation in the polarizability
of the nith ion due to thermal variations in the temper-
ature and pressure. Vo is the differential polarizability
vector of the Ith basis ion in the equilibrium state and
represents the nonlinearity of the crystal. Thereby the
interaction Hamiltonian Hj, contains three terms. The
first term involving &;(t — t') can be incorporated in the
em field energy by introducing a E—dependent linear di-
electric function €(E) Now, in Egs. (7) and (8), €0 is re-
placed with GQE(E) and correspondingly w; = c|E| / E(E)
We define a, = Y, @, and let dag denote the Fourier

transformation of da,. Consequently, the second term
involving day,,; reduces to

H; = Z N,;a(d')&a,;a;%ﬂ,,aa;o ,

ko,q
AN Wi aWR : o -
N; =——l——L"’;k+q5{,k
ko’(q) 2V€0€(k) X ( —‘) ( )
(12)
The last term in Hj, is quantized as follows:
H" = Z Mﬁa(q)a%_,_,z,aia(b&' + bt—q‘)’
ko,
1
B (N wg+qw;:) :
My, (@) = - ; Veorl®) ( - (13)

x [Vau - &(@)] %5 (K + ) - %o ().

Here we have assumed that the scattered photon has the
same spin as the incident photon. This assumption will
be dlscarded at an approprlate point. One easily finds
that x*, (k) - xo(k) = (1 + 0’0 cosf)/2, where 6 is the
angle between k' and k. The Hamiltonian of the coupled
system becomes

H=HL+H0+Hf+Hv . (14)

In the classical solid considered, temperature fluctua-
tions at constant pressure travel diffusively and give rise
to elastic Rayleigh scattering, but pressure fluctuations
at constant entropy propagate ballistically as transverse
and longitudinal sound waves and lead to spontaneous
Brillouin scattering. Therefore the Hamiltonian Hy ac-
counts for Rayleigh scattering and spontaneous Brillouin
scattering. The effect of Hf on the photon system can
be described by the Hamiltonian H}, which is defined
through the relation [30]

exp(H}/kBT) = (exp(Hy/kBT)), (15)
where () denotes the ensemble average for the ion sys-
tem. H/ can be obtained by the cumulant expansion
of probability theory. To the second cumulant, H ’f =
(H ?) /2kpT. Using Einstein’s fluctuation theory, we find
that

((ban)? )
H, = =
f 2Nk T Z
hh'l-
1 t - "
E_q’,a.a,;:+li’alak’a"aka’ ’

(=) Ngior ()
Xa

(16)

((ban)?) T (6an)2 L] (601")2
NkgT =~ VCp \OT Jp VBs \ 0P )5’

where T, P, and S are the temperature, pressure, and en-
tropy of the crystal. Cp is the constant-pressure specific
heat per unit volume of the crystal and S5 is its adiabatic
compressibility. Here H } represents a repulsive photon-
photon interaction. The mechanism of repulsion is as
follows. Rayleigh and spontaneous Brillouin scatterings
of photons are due to inhomogeneities of the crystal on
the microscopic scale. The inhomogeneous crystal pos-
sesses the energy of temperature and pressure waves. It
is known that the crystal is homogeneous on the aver-
age so that photons are correlated. The conservation of
energy requires that the energy of the system of corre-
lated photons increase when the energy of temperature
and pressure waves vanishes. The repulsiveness of pho-
tons is the manifestation of the increase of the system’s
energy. The Hamiltonian H, represents spontaneous Ra-
man scattering by an optical phonon. To determine the
effect of H, on the photon system, it is desirable to make
the unitary transformation Hy = e *He*S in which S
is Hermitian and Hy is removed from H [31]. The ex-
ponential functions in the expression can be expanded.
The unitary transformation can eliminate H, from H in
first order provided S is given by i[Hy + H¢c, S] = —

To second order in S, the transformed Hamiltonian is

1.
Hy =Hp + He + il[Hu,S], (17)
where Hr contains an additional term. Averaging the
additional term with the equilibrium phonon density ma-
trix
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p = exp(—Hc/kpT)/[Tr exp(—Hc /kpT)], (18)
we find the Hamiltonian

H, = lqu,,,sp

_ Z (=@M ,. (T)wr
i ﬁ[ “’E“wk ) — wj]
xat at N B < (19)

k—q,0 k'+q,0

The interaction matrix elements given by Eq. (19) can

be either attractive or repulsive. If the states kand k— q

are separated by an energy smaller than Awp, an attrac-
tion is present. The system will have to adjust itself to
the presence of this attraction. A physical model for this
attraction is as follows. Photons are correlated when the
coupling between photons and thermal optical phonons
is neglected. Since the energy of the system of thermal
optical phonons is constant at a certain temperature, the
energy of the system of correlated photons must decrease.
The effective photon-photon attraction results from this
decrease in the system’s energy. In this case, the con-
servation of energy requires there to be sufficient virtual
optical phonons in the crystal to account for the energy
deficit.

In deriving the Hamiltonians (16) and (19), we also ob-
tain the change in the one-photon energy due to the inter-
action of photons with the crystal. This change reflects
the material dispersion due to the ionic fluctuations. For
this the linear dielectric function E(E) is renormalized as
the linear dielectric function E(E) G(E) is real and spheri-
cally symmetric. ¢(|k|) is an ascending function of |k| and
€(00) = €5, where €, is a high-frequency dielectric con-
stant. Then the photon frequency in the Hamiltonian (8)

is rewritten as wg = clE] / \/ E(E) The effective Hamilto-
nian of the photon system is H, = Hy + H; + H,,. For
future study we make a remark. Since the incident light
field is linearly polarized, the numbers of clockwise and
counterclockwise circularly polarized photons are equal
for each wave vector in the isotropic medium.

III. STANDING-WAVE SUPERGUIDING STATE

We first consider the configuration that the studied
crystal has rectangular faces and is enclosed by perfectly
reflecting mirrors, as shown in Fig. 1. In fact, we form
a passive optical resonator. There is a small window in
each mirror at £ = 0, y = 0, and z = 0. The external
light field enters the resonator through the three windows
within a time interval. The incident directions are along
the z, y, and z axes, and the three windows are closed at
the end of the time interval. The macroscopic em field
induced by the incident light field is in a standing-wave
configuration. In the resonator there is the blackbody
radiation field besides the induced em field. According to
Stefan’s law, the energy density of blackbody radiation at
room temperature is very much smaller than a persistent

z

FIG. 1. The crystal has rectangular faces and is enclosed
by perfectly reflecting mirrors. This forms a passive optical
resonator.

energy density of laser radiation. Correspondingly, we
can neglect the effects of blackbody radiation. The em
field must satisfy the boundary condition at each face,

—

AixE=0, @A-B=0, (20)

where 7i is the unit vector normal to the particular face.
The boundary condition (20) confines the plane-wave
modes appearing in the expansion (7) to the normal
modes of the resonator, so that the photons of wave vec-
tors k and —k always occur simultaneously and have an
equal number.

In Sec. II, we have seen that the interaction between
photons and optical phonons can lead to an attractive in-
teraction between the photons themselves. By high non-
linearity we mean that the repulsion in Eq. (16) can be
overcome by the attraction in Eq. (19). The attractive
effective interaction leads to bound photon pairs. The
physical background for pairing is simple: A photon can
emit or absorb a virtual optical phonon. The emission
of virtual optical phonons by photons means that the
photon is clothed with a polarization cloud of the lat-
tice vibration. If a second photon is near this polariza-
tion cloud, it experiences a force of attraction. In the
standing-wave configuration a photon pair is stable only
if the two photons have opp051te wave vectors and spins.
Thus one set k&' = —k and ¢’ = —c in Egs. (16) and (19).

Next we let k stand for (E, o) and —Fk for (—E, —0). Now
the pair Hamiltonian of the photon system is
1
H, = 3 Z ﬁw,—c-(afﬁa,; + air_,:a_;)
+Z ka'akla fc‘:a kak ? (21)
R,k
MK —B)Pwr | ((ben)®) o 2 &
Ver = = =(k' — k)|2.
ke Al(wp — wi)? — w] + 2NkgT INE(k" = )]
(22)

Since the spin of the scattered photon can be differ-
ent from that of the incident photon, here k' stands for
(k',o') and —k' for (—k’,—0"). Therefore the sum over
wave vectors includes the summation over the two spins.
The pair potential Vi, is real and has the symmetric
properties Viz, = V_; ¢ and Vi, = Vig. The sym-
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metric properties are used in our treatment. It will be
supposed that Viz, = —Vp if |wp —wo| and |wg, —wo| < wr;
otherwise Vzz =0

The diagonalization of the pair Hamiltonian (21) can
be performed by the Bogoliubov transformation

1
U = exp 5 Z (’o’:(a’;ail}' - a,;a_,;) y (23)
E

ap = U‘\a,—éU = aj cosh p + at_,;sinh Yr
(24)
T t17 = At ;
= UTaEU =a; cosh oz + a_gsinh g ,

where the parameter ¢ is assumed to be real and spher-
ically symmetric. a;% and oy are the creation and an-
nihilation operators of quasiparticles in the photon sys-
tem; they also obey the Bose commutation relations. The
state vector of photon pairs in the photon system may
be constructed as |G) = U|0), where |0) is the vacuum
state, such that az|G) = 0. Because the incident light
field is fully coherent, quasiparticles are in a coherent
state of many modes. Concomitantly, we introduce the
displacement operator

D(n) = exp | 3" (mzel —mog) | (25)
p

where the parameter 7; is complex and spherically sym-
metric. The state vector of the photon system may be
written as [n) = D(n)|G), such that agln) = ngln). [ng|*
characterizes the mean quasiparticle number of a mode
field and can be described by a distribution function
fz(v) = |ng|?, where the argument u is the average en-
ergy density of the em field. n; has a definite phase factor

depending on its suffix k. We shall assume that there is
no correlation between these phase factors when k # K.
Strictly speaking, the phase of 7;; is random to some de-
gree, because of thermal scattering. At present one can
neglect the thermal phase noise in the system of quasi-
particles. We substitute Eq. (24) into Eq. (21) and let
the second-order nondiagonal terms vanish. Within the
framework of a mean-field theory [31], the pair Hamilto-
nian of the photon system becomes

1
Hy = Ep(u) + 5 Z Eg(uw)(aktag +af La_g)
k

+ (fourth-order nondiagonal terms). (26)

Here Ej(u) is the excitation energy of a quasiparticle
defined by the equations

Bglu) = [(hog)? — 3] (27)
Ag(u) = _ZW [1+2fz (w)], (28)

where the excitation spectrum FEg(u) has no gap and
Aj(u) is the order parameter for pairing. The param-
eter @ is given by the relation tanh(2¢;) = Ag(u)/hwg.
Equation (28) has the superguiding-state solution with
the form

Ag(u) = A(u)O(wr — |wg — wol),

0 < A(u) < A(wo — wr). (29)

The state vector |n) corresponding to Eq. (29) describes

the superguiding state of the photon system. The energy

of the system of photon pairs is obtained as

1 hwyg
1 Ag, (u)Az(u)

- Voo, RN RN 30

4 2 By (Bl )

In the superguiding state the paired photons are dis-

tributed over only a small range of frequencies (2wg) near

the incident frequency and in the superguiding ground

state |G) all the photons are paired with opposite wave

vectors and spins. Equation (28) also has the normal-

state solution, namely, Ajz(u) = 0 for all E. In this case

the state vector |p) = D(n)|0) describes the normal state

of the photon system and is a coherent state of many

modes. In the normal state, the quasiparticles become

photons and the photons are unpaired and satisfy the
energy-frequency relation E; = Awg.

We rewrite the Ham_lltoman of the em field in Eq. (8)

as

1
H; = 3 Z hw,—c»(a;%a,; + aT_Ea_E). (31)
P
The transformation (24) is put into Eq. (31). The en-
ergy Er of the em field is the expectation value of Hj,

with respect to the state vector |n) of the photon system,
namely,

Er= (n|H|n)
=3 [

where the second-order nondiagonal terms disappear un-
der the random-phase approximation. The first and sec-
ond terms represent the contributions from paired pho-
tons and quasiparticles, respectively. It is assumed that
in the superguiding and normal states the em field has
the same energy Er. The energy E(u) of the photon sys-
tem is the expectation value of the pair Hamiltonian (26)
in the state |n), namely,

E(w)= (n|Hp|n)
=E,(u) + Y Eg(u)fz(w), (33)
k

SE>> G fiw), ()

k

where the fourth-order nondiagonal terms are discarded.
In the superguiding state, Eq. (33) gives the energy F, (u)
of the photon system, and in the normal state, Eq. (33)
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gives the energy FE,(u) of the photon system. Obviously,
E,(u) is always equal to the em energy Er and can be
expressed into the superguiding-state form in Eq. (32).
The difference in the energy between the normal and su-
perguiding states is therefore
0E(u) = E, (u) — E,(u)

Z Voo, Ak,(u)Ak(u)
kk E; (u)E; Ez (u)Ez(u)

5> [(ﬁw,g

where Eq. (30) is used. 6 E(u) is positive and represents
the condensation energy of the superguiding state. The
condensation energy of the superguiding ground state is
SE(ug) = A%(ugy)/4Vo, where uy is the em energy den-
sity corresponding to the superguiding ground state. In
the normal state, the em energy stored in the resonator
is carried completely by the photon system. In the su-
perguiding state, part of the em energy, i.e., E;(u), is
carried by the photon system and the other part, i.e.,
6E(u), is borne by the ion system. At this point, we
show that the photon system in the superguiding state
has a lower energy than in the normal state and there-
fore the superguiding state is preferred. Furthermore,
the superguiding ground state is most stable because of
its maximum condensation energy.

In the normal state, the behavior of photons is gov-
erned by the Hamiltonian (14) of the coupled sys-
tem. The normal photons suffer spontaneous Raman
scattering by optical phonons as well as Rayleigh and
spontaneous Brillouin scatterings. In the superguiding
state, photon pairs and single quasiparticles are present
together. Since Rayleigh and spontaneous Brillouin
scatterings are overcome by attractive photon-phonon-
photon interaction, the resultant photon pairs incorpo-
rate the optical phonons and hence do not suffer any
scatterings. Furthermore, the system of photon pairs is
a condensate because a macroscopically large number of
photon pairs occupy a single-quantum state of zero wave
vector and zero spin. However, the fourth-order nondi-
agonal terms in the Hamiltonian (26) represent the inter-
action between quasiparticles. As this interaction origi-
nates from the scattering mechanisms, individual quasi-
particles experience scatterings like the normal photons.
Because of continual scattering in the resonator, quasi-
particles are distributed continuously in the whole wave-
vector space. The wave vector k is specified by the fre-
quency w and the travel direction 2 of quasiparticles,
where (2 corresponds to a polar angle § and an azimuthal
angle ¢. The frequency spectrum of quasiparticles can
be described by a Gaussian distribution with frequency
width 2w centered at the incident frequency wp. wp is
an increasing function of temperature, but always far
smaller than wo. We write the distribution function of
quasiparticles in the separation form of variables

fi(u) = N(u)g(R) exp [— (w — w°>2] : (35)

- E;(u)] few),  (3)

Wp

Here g(2) represents the direction distribution of quasi-
particles and must satisfy the spherical symmetry

g()=1,0<60<7 0<¢<2m. (36)

The average energy density of the em field is u = Er/V,
where Ey, is given by Eq. (32). Therefore, Eq. (32) deter-
mines the functional relation of N(u) to u. For inelastic
scatterings of quasiparticles, the crystal both absorbs and
emits energy, but the absorbing ability is higher than the
emitting one. The energy of the system of quasiparticles
will decay out as time goes on. In describing the energy
loss, we use, rather than w, time ¢ as the argument of the
function N. If the laser radiation into the resonator is
stopped at the instant ¢t = 0, we can write

N(t) = Noe™t/*, (37)
where £. is the quasiparticle lifetime. Nj is determined
by the em energy density uo at the initial instant through
Eq. (32).

It remains for us to calculate the order parameter of
the superguiding state. In the calculation, we neglect
the frequency dispersion in the dielectric response of the
crystal and consider the case of wo > wg. From Eq. (32),
one can acquire the expression of N(u)

Vg 4~ hwohwrGoV [ glee, 1]

E(wo,u)
R2Go  Z(u) + /Twows (%wg

1] w3

N(u) =

’

+ wj)

(38)
wo+wr hw
Z(u) = / dw [———— —
wWo—wR E(w7 u)
w—wo\>
— Wo
- (252
where E(w,u) = [(fw)? - Az(u)]% and Gy = nge,%/
m2hc® is the density of photonic states at the incident
energy fuwo. In the normal state where A(u) = 0, N(u)
increases proportionally with the em energy density wu.

In the superguiding state, Eq. (28) can be converted into
an integral form

wo+wr 2
1= Fwo +ﬁ/\N(u) do Y
E(wo,u) WRWO  Juo—wr E(w,u)
2
w — Wo
X exp ( " ) :| , (39)

where A = 2V,Gowpr/wo denotes the nonlinear photon-
phonon coupling strength. The order parameter A(u) of
the superguiding state is determined through the com-
bination of Eq. (38) with Eq. (39). It is found that for
Ao = (2wr/wo)?, the superguiding state can occur only
if Ao < A < 1. There are no quasiparticles in the super-
guiding ground state and so one demands N(uy) = 0.
Equation (39) gives the ground-state order parameter
A(ug) = huwo(1 — A2)2 and thereby Eq. (38) yields the
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ground-state energy density u, = (Awo)?(1 — A)/2VV,.
When N(u) > 0, the corresponding v must be larger
than u, for nonzero A(u). ug is the lower cutoff energy
density of the superguiding state. The order parameter
A(u) determined by Egs. (38) and (39) is a decreasing
function of u, which vanishes at the critical energy den-
sity u.. A simple expression for the critical energy density
is acquired,

—u |3 () 1| [exf [ 22 - (40)
Ye =% 13\ wo wp ’
where erf(z) is the error function. As a result, another

condition for superguiding is that vy < v < u.. For the
order parameter we also derive the limiting behavior

i) , U — U K U (41)

2(1— A
- 0 1
This result is characteristic of a mean-field theory.
Inserting Egs. (35) and (37) into Eq. (32), we find the

time evolution of the em energy density,
u(t) = wa () + un(w)e e, (42)

where the first and second terms represent the contri-
butions from paired photons and quasiparticles, respec-
tively. It is trivial to write the expressions for u,(u) and
Un(u) from Eq. (32). Under the condition Ag < A < 1,
whether the standing-wave superguiding state will occur
depends on the em energy density uo at the initial in-
stant. If ug < ug, the photon system is always in the
normal state. When u, < ug < u., the photon system
enters the superguiding state. For wp > u. the normal
state occurs first. Then the energy density u(t) of the
em field exponentially attenuates with time ¢ like Eq.
(37). Once u(t) is reduced below u., the superguiding
state appears. The photon system undergoes a nonequi-
librium phase transition from the normal to the super-
guiding state. The energy of the system of quasiparticles
is lost after a sufficiently long time ¢ > t.. Finally, the su-
perguiding state becomes the superguiding ground state.
The superguiding ground state is an equilibrium state in
which the physical variables are independent of time and
there are no macroscopic currents. If u,(7) represents the
ground-state energy density of the em field at position 7,
the em field exerts an isotropic pressure P = }u,(7) on
the surfaces of the resonator.

The macroscopic em field in the resonator is no longer
a transverse em one and the quantized em field is given
by Egs. (4) and (7). The expectation value of the electric
or magnetic field in the superguiding state corresponds to
the classical description of an em wave. Since the super-
guiding state |n) is not an eigenstate of the electric field
E, the single measurements reveal unavoidable fluctua-
tions of the measured field strength about the expecta-
tion value. We need to examine mean-square fluctuations
of the electric field in the superguiding state. For the pho-
ton operator aj, one may introduce two Hermit_i'an oper-
ators a,; and a,; by ap = a,; + ia,z, where k denotes

ko. a,z and a,; may be identified as the two quadrature

components of a mode field in the plane-wave expansion
of the electric field. The variances of the quadrature op-
erators in the superguiding state are
1 hwg
20\ -
(nl(Aasg)’in) = (l(Bazp)’ln) = g 5y (43)

The vacuum state is a minimum uncertainty state and
1

has the equal variance ; in each quadrature phase. At
the critical energy density u., the superguiding state be-
comes a coherent state whose fluctuations are equal to
the vacuum fluctuations. The fluctuations of the super-
guiding state become increasingly larger than the vacuum
fluctuations with decreasing of the em energy density. At
the ground-state energy density uy, Eq. (43) gives a max-
imum variance of about % at the incident frequency. The
reason for this is as follows. To have a higher degree of
order at lower u, the photon system makes adjustments
on a microscopic scale. These adjustments appear in the
form of excess fluctuations. However, the em field be-
comes a coherent light field when it leaves the resonator
into the vacuum. One can use various methods of non-
linear optics to generate a squeezed state from the co-
herent output state, which has fewer fluctuations in one
quadrature phase than the coherent state at the expense
of increased fluctuations in the other quadrature phase.

We may remove the four lateral mirrors of the en-
closed resonator and retain only the two perfectly re-
flecting mirrors in the zy plane. Therefore we form an
open optical resonator. If the open resonator contained
an ordinary dielectric medium, the em energy in the res-
onator would suffer diffraction losses. In fact, our open
resonator contains a nonlinear polar crystal. In Sec. V
we will show that the em field in such an open resonator
exists in the form of optical vortex solitons and has no
diffraction losses. The photonic superguiding theory in
the enclosed resonator applies basically to the open res-
onator. In the following we just point out the two dif-
ferences. Since scattered quasiparticles can escape out
of the open resonator, the quasiparticle lifetime ¢ in the
open resonator is much shorter than that in the enclosed
resonator. If u,(7) represents the ground-state energy
density of the em field at position 7, the em field ex-
erts a pressure P = u,(7) on the end faces of the open
resonator.

Now we estimate the orders of magnitude of the
relevant physical quantities. The pair potential
Vo is found from Egs. (13) and (22) as V, =
(arhwo/€oenwr)?/2V Qm, where we have ignored the re-
pulsive term from the fluctuations in Eq. (22). Q is the
volume of primitive cells and m and a; represent the
mass and the differential polarizability of one basis an-
ion, respectively. Thus an approximate expression for the
nonlinear photon-phonon coupling strength is obtained
as

ma 2
PO o s S (44)
ero\/e_hcz’ﬂme
We take CaF; crystals, for example [32]. CaF, crys-

tals have a wide band gap E;, = 12.2 eV. In CaF5, the
frequencies of the TO and the Raman-active mode are
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hwr = 33.10 meV and Aiwgp = 40.92 meV, respectively.
If we use wp = 20wg, the prerequisite for superguiding
that Awr <« fwe K E, is satisfied. The cell volume is
given by Q = a3/4 with the lattice constant a. The pa-
rameters concerned are given as follows: a = 5.4629 A,

= 18.9984 u, and €, = 2.047. To the author’s knowl-
edge, the differential polarizability values of anions in
the fluorite-structure crystals are unavailable at present.
Therefore, we regard «; as an adjustable parameter and
set @; = 2.510 x 1072* F m. These values specify a
certain crystal of the fluorite structure. The calculation
yields A\p = 0.316 and A ~ 0.536. One can find that
Ao < A < 1. This shows that the superguiding state can
indeed occur in this crystal. For the ground-state energy
density we also get an approximate expression

ug = (1 — \)Qm(eoerwr/a1)?. (45)

Putting the above parametric values into Eq. (45) yields
ug = 0.120 J/m3. The energy density of blackbody radi-
ation up in the resonator is determined by Stefan’s law
upg = 40T*/c, where the coefficient o is called the Stefan-
Boltzmann constant. At room temperature T' = 300 K,
up = 6.138x107% J/m3, and so ug < uy. The omission
of blackbody radiation is therefore reasonable. Although
the critical energy density u. is an increasing function of
temperature, u. has an order of magnitude of 1 J/m?3, at
the most. In the standing-wave configuration, the thresh-
old energy density of stimulated Brillouin scattering of
light has an order of magnitude u; ~ 10* J/m3. Thus
we see u, < u;. The superguiding state is meaningful
only in this case.

IV. TRAVELING-WAVE
SUPERGUIDING STATE

Having studied the standing-wave superguiding state,
we are able to discuss the traveling-wave superguiding
state in what follows. As shown in Fig. 2, the traveling-
wave configuration is determined by a cylindrical dielec-
tric waveguide whose core is occupied by the first crys-
tal and whose cladding corresponds to the second crys-
tal. The physical quantities in the first and second crys-
tals are marked with subscripts 1 and 2. The two high-
frequency dielectric constants must satisfy the inequality
€n1 > €nz. The laser light field is normally incident on
the end face z = 0 of the core at the instant ¢ = 0. In Sec.
II we assumed the incident light field to be a monochro-
matic field. Now the incident light field is required to be
a quasimonochromatic field of a central frequency wq .
The incident light field excites a macroscopic em field in
the waveguide, which propagates with a group velocity
vg. At time t we investigate a length of waveguide in the
interval z to z 4+ Az, where z + Az = vgt. Az is so small
macroscopically that the em field has the same intensity
in this interval. The vector potentials A1 and Az of the
em field can be expanded into the form of Eq. (7). The
inequality €7 > €p2 limits the plane-wave modes appear-
ing in the expansion (7) to the guided modes. Each wave
vector of the guided modes is separated into kE=K+ Q,

FIG. 2. Section of a cylindrical dielectric waveguide. The
z axis coincides with the waveguide axis of symmetry and p
is the the core radius.

where K and Q are the components parallel to and trans-
verse to the z axis. The axial wave vector K is real ev-
erywhere. @ is real in the core, but imaginary in the
cladding. For a fixed K, the values of allowed @ in the
core are in the range 0 < Q < K tan@., where 6. is the
complement of the critical angle of total internal reflec-
tion defined by ,/€n1cosf. = ,/€n2. While propagating
in the core, a guided wave undergoes a series of total
internal reflections at the core-cladding interface. Conse-
quently, the energy carried by the guided modes is con-
fined to the vicinity of the core and diffraction effects
are eliminated. The axial wave number K is a function
of the incident frequency w. The function K (w) must
be specified by the Maxwell equations together with the
boundary condition at the core-cladding interface,

ﬁX(Ez—El)zﬁ, ﬁx(§2_g1)=6’ (46)

where 7 is a unit vector normal to the interface [33]. Next
we introduce the waveguide frequency F' = wop(en1 —
€h2) 3 /c, where p is the core radius, and the profile height
parameter A = (en1 — €n2)/2€p1. If 0 < F' < 2.4048, the
waveguide supports only the fundamental mode. Un-
der the weak-guidance approximation A < 1, the prop-
agation constant Ko = K(wg) of the fundamental mode
is the largest value of K, determined by the eigenvalue
equation

J1(0)
Jo(U)

K,(W)
Ky,(wW)’

U =W (47)

where U = p(ehlwg/cz—Kg)% and F? = U? + W2
Jo(z) and Ji(z) are the Bessel functions of the first
kind, while Ko(z) and K,(z) are the modified Bessel
functlons of the second kind. By the definition vyl =

(0K/ 3w)w_w , the group velocity vy of the fundamental
mode is obtained as

vg=ﬁ{1+A [ 2?2%;]} (48)

The fundamental mode photons of wave vectors K +Q
and K — Q always occur simultaneously and have an equal
number. By exchange of virtual optical phonons, the
fundamental mode photons can experience an attractive
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effective interaction. Such an interaction leads to the
traveling-wave superguiding state, in which a propagat-
mg photon pair is the combination of (K + Q, o) with
(K g, —o) and thus has the comp051te momentum 24K .
The propagating photon pair is created by the opera-
tor a5 G.oOR_G—o In general, the creation operator
of a propagating photon pair is a‘;(+k tff—ié,—o’
k is an arbitrary wave vector. If k has a nonzero ax-
ial component, however, the pairing probability of these
two photons is almost zero. The two photons with differ-
ent axial wave vectors propagate independently. Where

U t T _A
Og i oSR_ 1s concerned, we therefore let £k = Q. In

Eqs (16) and (19) we set k = K + Q, k=K - Q, and
o' = —o. Next K + @ is used for (K—i—Q,o) and K — Q
for (K Q, —0). The pair Hamiltonian of the photon
system in the core region reads, consequently,

1 t t
Hy= 3 3 Mreg (2k gk 4a + 0k -g*k-)
%3

, where

<al t . Qs
+ Z V1GR3 15Ok _GOR-GIR+G > (49)
R,
3

SO

Mz 5(Q' - Q))wr
A(wgio — wgyg)? — Wkl

+%%9£;—?INR+Q(Q_" — Q). (50)

VG R1G =

Here the pair potential is real and satisfies the symmetric

properties Vg 5 2.5 = Vg_g r_g and VK+Q R+q' =
Vs It will be supposed that Vg, 5 g1 =

E+Q',K+G@"
_ wo‘Jvand 1“’R+Q' - w;J < wp; otherwise

~Vp if ‘wmé
VIZ’+(§,I?+Q' = 0. We also need the Hamiltonian of the
em field in the core region, which from Eq. (8) takes the
form

The double sums over K and @ in Eqs (49) and (51)
represent a sum over wave vectors k = K + (? in three di-
mensions. The direction Q of k = K + Q is specified by a
polar angle f and an azimuthal angle ¢. The double sums
are calculated in the following way. For a fixed K we
first find the sum over Q in the region 0 < Q < K tan#f,

and 0 < ¢ < 27. Then we find the sum over the axial
wave vectors K (w) in a small interval near K o. The sum
over K (w) reflects the fact that the incident light field
is a quasimonochromatic field of a central frequency wo.
Since Q" is a two-dimensional wave vector, the sum over
Q' in Eq. (49) is inconsistent with the three-dimensional
photon system. The reason for this is that in deriving
Eq. (49) we replace a small three-dimensional wave vec-
tor k' with Q’ Therefore Q’ is replaced self-consistently
by k' in the end.

We now consider the diagonalization of the pair Hamil-
tonian (49) following the Bogoliubov transformation

=0g.5 COSh(pR+Q' +a}(‘»c§ Sinh<pk'+Q* y

AR +G
al =al, .coshpgp, s5+az_gsinhpz. 5
E+3 KE+§ K+Q K-Q K+Q >

(52)

where the parameter gz, 5 is real and has the symmetry
PRiG = PR-G The state vector |n) of the photon
system should satisfy az,5ln) = mz,gln), where the
parameter 7z, 5 is complex and meets ng 5 =ngz_g -
Therefore |n) may be constructed as

*
- nK+Q'aI?+C}'>]

_"'1?+Q'a1?—(j>] [0). (53)

The mean quasiparticle number of the (K +C§)-wave field

2

in the state |n) is Ng+g| = fg+c§(u), where f}?+c§(u)
is still given by Eq. (35). Now, in Eq. (35), g(Q) =1
for 0 < 6 < 6. and the Gaussian frequency distribution
is due to the quasimonochromatic incident field itself as
well as the intrinsic scatterings. Putting Eq. (52) into
Eq. (49), we obtain the diagonalized pair Hamiltonian

Hy = B,(w)+ 5 3 B

1
X (aﬁ+éak+é+aﬁ_éak'_é) . (54)

Here E,(u) denotes the energy of the system of propa-
gating photon pairs. The excitation energy E +Q(u) of
a quasiparticle is defined by the equations

x [1 +2fz.m (u)] : (56)

In Eq. (56) the two-dimensional wave vector @’ has been
replace§ self-consistently by the three-dimensional wave
vector k'. In calculating Eq. (56) welet K+k' = K'+Q'
and convert the sum over K’ into the double sums over
K’ and @'. The transformation (52) is also inserted into
Eq. (51). Then the expectation value of the Hamiltonian
(51) in the state |n) gives the energy of the em field in
the core region
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*9) feg(w). (57)

In the above we only present some useful descriptions
and expressions. Some other results are similar to those
in Sec. IIT and will be neglected for brevity.

In the traveling-wave superguiding state the order pa-
rameter Az, 5(u) still has the form in Eq. (29). Adopt-
ing the method in Sec. III, we can find the order param-
eter A(u). The argument u is the em energy density de-
fined by the relation w = Er,/V, where V = mp2Az is the
volume of the core region. The double sums over K and
@ in Egs. (56) and (57) are converted into the double in-
tegrals over frequencies w and Q For a fixed w, one finds
the integral over Q in the region 0 < Q < w,/eprsinb./c
and 0 < ¢ < 2m. If we introduce the density of photonic
states G at the central frequency of incidence by

3

2.3
Vwgen,
272 hc3

then Egs. (57) and (56) are transformed into Egs. (38)
and (39), respectively. The evaluation of the simultane-
ous equations (38) and (39) comes to the order param-
eter A(u) of the traveling-wave superguiding state. In
solving the equations, we also obtain the ground-state
energy density u, and the critical energy density u. for
the traveling-wave superguiding state. Since the em en-
ergy density u is not a good physical quantity for the
waveguide, we introduce the light intensity I in the core
region by the relation I = uv,. The ground-state light
intensity I, and the critical light intensity I. are given
by

Go = (1 —coséb.), (58)

I, = (Fwo)*(1 = )y /2V Vo,

2 —_
I. =1, |é (ﬁ) +1 [erf (w—R)]
2 \ wo wp
For the nonlinear photon-phonon coupling strength A de-
fined in Sec. III, the traveling-wave superguiding state
still requires that \g < A < 1. If I, < I < I, then the
traveling-wave superguiding state is realized.

In the traveling-wave superguiding state, a macroscopi-
cally large number of photon pairs occupy every quantum
state of wave vector 2K and zero spin, where K varies
only in a small interval near Ko. This forms a conden-
sate. The condensate travels without scattering losses
and is called superlight. However, individual quasipar-
ticles are scattered and a scattered quasiparticle devi-
ates from its former travel direction. A part of scattered
quasiparticles escapes out of the core, while the other
part is reflected from the interface back into the core due
to partial and total internal reflections. Therefore, the
quasiparticle number passing through the cross section

(59)

of the core per unit time exponentially decreases with
the transit time ¢ = z/v,. For this, Egs. (35) and (37)
are substituted into the expression (57) of the em energy
in the core region near the position z. Through the rela-
tions v = Er/V and I = uvy, the light intensity I(z) at
the propagation distance z can be expressed as

I(z) = L(I) + In(I)e™?*, (60)

where 8 = 1/t.v, is the absorption coefficient of quasi-
particles in the superwaveguide. I,(I) is the superlight
intensity and the second term gives the intensity of quasi-
particles. According to Eq. (57), I,(I) and I,(I) are
functions of the light intensity I. Under the condition
Ao < A < 1, whether the traveling-wave superguiding
state will occur depends on the incident light intensity
Iy at the end face z = 0. If Iy < I, a propagating
photon system is always in the normal state. When
I, < Iy < I, the photon system arriving at each position
z enters the superguiding state. For I, > I., the normal
state occurs first. Then the light intensity I(z) falls like
I(z) = Ine=P%. Once I(z) is reduced below I.., the su-
perguiding state appears. The intensity of quasiparticles
becomes zero after a sufficiently long distance z > /1.
Finally the superguiding state becomes the superguiding
ground state. The ground state of the traveling-wave su-
perguiding state is a steady state in which the physical
variables are independent of time and the em field prop-
agates with the persistent superlight intensity I, in the
core.

We need to examine quantum fluctuations of the
light field in the traveling-wave superguiding state. For
the photon operator ay , 5 determining the light field,

one may introduce two Hermitian operators a, g +3 and

ARG by aK+Q = az,5+ sz+Q7 where K + Q
denotes (K + Q, o). a,z,g and @y represent the
two quadrature components of a wave field. Note that
Q < K under the weak-guidance approximation. The
variances of the quadrature operators in the traveling-
wave superguiding state are thus found as follows:

(nl( ) In) = —exp (2¢K+Q)

Gl (Aaz1'{'+c}')2 ) = ;i— exp (—2<P1?+c§) ;

where tanh(2<pK+Q) Ag,g(I)/hwg, 5- This equation
tells us that the variance of one quadrature phase is less
than that of the vacuum, whereas the variance of the
other quadrature phase is increased. The traveling-wave
superguiding state has the squeezing property. At the
critical light intensity I.., the traveling-wave superguid-
ing state becomes a coherent state and so the squeezing
effect vanishes. The squeezing effect becomes more and
more strong as the traveling-wave superguiding state ap-
proaches the ground state. The squeezing mechanism
of the traveling-wave superguiding state is as follows.
Since photon pairs propagate without scattering losses,
the photon pairs with a composite momentum 24K have
a well-defined particle number. Phase and particle num-

(61)
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ber are conjugate observables and thus obey the Heisen-
berg uncertainty principle. As they are not simultane-
ously measurable, the phase experiences quantum diffu-
sion during propagation. There are interference effects in
the quantum phase diffusion. The quantum fluctuations
are reduced in certain quadrature phase due to the de-
structive interference. In a term squeezing arises due to
self-phase-modulation.

The nonlinear photon-phonon coupling strength in the
traveling-wave configuration can be expressed as A =
As(1 —cosf.)/2, where A, denotes the nonlinear photon-
phonon coupling strength in the standing-wave config-
uration and is given by Eq. (44). If we determine the
first crystal in the core as the fluorite-structure crystal
chosen in the numerical calculation of Sec. III, the first
crystal can be superguiding in the standing-wave con-
figuration. Since A; = 0.536, A <« A¢ under the weak-
guidance approximation. Therefore, the first crystal does
not support the traveling-wave superguiding state. In or-
der to support the traveling-wave superguiding state, the
first crystal must have a much higher nonlinearity than
the fluorite-structure crystal in Sec. III. In the follow-
ing numerical calculation, we determine the first crystal
in the core as another crystal of the fluorite structure.
The differential polarizability of anions in this crystal
has a value a; = 3.559 x 10722 F m. The values of
the relevant parameters given in Sec. III continue in use
here; for example, €5; = 2.047. For the second crys-
tal in the cladding, we only require it to be a dielectric
with high-frequency dielectric constant e, = 2.014. The
core radius of the waveguide has a typical value p = 2.10
um. One acquires the waveguide frequency F = 1.576
and the profile height parameter A = 0.008, so that the
single-mode and weak-guidance conditions are satisfied.
We solve numerically Eqs. (47) and (48) and gain the
group velocity vy = 2.097 X 10® ms~!. The calculation
gives A = 0.433 and therefore Ay < A < 1. Consequently,
the first crystal can be superguiding in the traveling-wave
configuration. Because of A, >> 1, however, the first crys-
tal cannot be superguiding in the standing-wave configu-
ration. Since I, = ugv,, the ground-state light intensity
can be estimated from the approximate expression (45)
as Iy ~ 15.34 W/cm?. Although the critical light inten-
sity I. is an increasing function of temperature, I, has
an order of magnitude of 102 W/cm?, at the most. In
the traveling-wave configuration, the threshold intensity
of stimulated Brillouin scattering of light has an order of
magnitude I; =~ 107 W/cm?. Therefore we see I. < I.
The traveling-wave superguiding state is meaningful only
in this situation.

At the end of this section, let us inspect the propaga-
tion of the laser light field in a single crystal placed in the
vacuum. In Sec. V we will show that the studied crys-
tal is a self-defocusing medium. Recently, Swartzlander
and Law have observed that in a self-defocusing medium
the em field can propagate as optical vortex solitons [34].
Therefore the propagation of the laser light beam in the
crystal can carry no diffraction losses. There are two
prerequisite conditions for forming bound photon pairs
in any traveling-wave configuration. The first one is that
the traveling-wave configuration has no diffraction effect.

The second one is that the traveling-wave configuration
confines the em energy density near the propagation axis.
In the waveguide configuration the two conditions are
satisfied. In the present configuration, the second condi-
tion is rather difficult to meet when the first one is met.
The reason for this is as follows. The energy density of
an optical vortex diverges from the vortex axis and so
the beam area becomes very wide. Since there are no
bound photon pairs, the propagation of the laser light
beam in a single crystal accompanies scattering losses.
In conclusion, the traveling-wave superguiding state can
hardly occur in a single crystal.

V. WAVE PROPERTIES
OF SUPERGUIDING STATES

Sections II-IV have discussed the particle properties
of the superguiding state by using the Hamiltonian ap-
proach. Because of the wave-particle duality of light, one
wants to know the wave properties of the superguiding
state. The wave properties must be determined from
the Maxwell equations. If we can write the constitutive
equations of the crystal under study and find the solu-
tion for the resulting Maxwell equations with appropriate
boundary conditions, then all the wave properties of the
superguiding state will be predictable.

As we have seen, the pair Hamiltonians (21) and (49)
lead to the standing- and traveling-wave superguiding
states, respectively. The pair Hamiltonians (21) and (49)
are expressed by the operators a;_ and a~ of circularly
polarized photons with spin ¢ = 1. Now we _need the
pair Hamlltoma.g in terms of the electric field E and the
magnetic field B. The electric and magnetic fields are
related to the vector potential through Eq. (4) and the
quantized vector potential in terms of a;_ and a,c is
glven by Eq (7). With these transformations, in terms
of E and B the pair Hamiltonians (21) and (49) can be
cast into the same form

H, / [6°E2 ;E AL 4

BZ+ E.P

Alw

(62)

where P(1) is the linear polarization and P®) is the third-
order nonlinear polarization. At this point, it is useful to
note that the linear dielectric function €(|E|) introduced
in Sec. II is actually an even function of the bare pho-
ton frequency w; = c|k|/\/_h, namely, €(|k|) = e(wg) =
€(—wg). Then the constitutive equations of P(V) and P(3)
are deduced as

PO = ¢, / dt' [e(t —t') — 6(t — t')] B(t)),
(63)
PO = cox B,
€(t) reflects the noninstantaneous dependence between
the linear polarization and the electric field and its
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Fourier transformation €(wy) represents the material dis-

persion. x(® is the third-order nonlinear susceptibility
defined by the relation

3R2xPwrwi, o Y2
— SR F )54+ 2 —‘;l K’ * Xo (k =Vio ko »
8Veoe(k)e(k’){ [X (K) - %o )] } ko bler

(64)

where wy is the renormalized photon frequency and § = 0
and 1, respectively, for the standing- and traveling-wave
configurations. We have neglected the weak dependence
of x(® on wave vectors and spins. x(3) is negative in
the high-nonlinear ion crystal and so the high-nonlinear
ion crystal is a self-defocusing medium. The nonlinearity
here is a quantum effect of the interaction of photons with
the crystal and can not be inferred from any classical
theory. In the above, E and B are ¢ numbers. Here we
consider their expectation values in the state vector |n)
of the photon system. In the following, E and B are
still used to denote the expectation values and are thus
¢ numbers. E and B must obey the classical Maxwell
equations in connection with the constitutive relations
(63). The Maxwell equations can be reduced to the wave

equation for F

$p- L8 g 0% s pe (65)
2oz Mgz [ ]

The wave equation can describe nonlinear optical effects
in the crystal. The solution of the wave equation has to
be carried out under certain boundary and initial condi-
tions, which are imposed by the physical nature of the
problem to be treated.

The em field in the superguiding state is formed jointly
by photon pairs and quasiparticles. However, the linear
superposition principle of fields fails because of the non-
linearity of the wave equation (65). In what follows we
consider the case when the photon system approaches
the superguiding ground state. In this case, the intensity
of quasiparticles tends to zero and the em field corre-
S_Ponds to a condensate. Concomitantly, the electric field
E evolves without scattering attenuations. In contrast,
the em field in the normal state is formed completely
by quasiparticles, or photons, and so the electric field E
evolves with scattering attenuations.

We first investigate the wave properties of the super-
guiding state in an open optical resonator. With refer-
ence to Fig. 1, the open resonator consists of two plane
mirrors set parallel to one another and separated by a
distance d. If the dimensions of the plane mirrors are
far larger than the distance d, the plane mirrors can be
regarded as infinitely extended. Therefore, the open res-
onator become a (2+1)-dimensional resonator. Under the
scalar-wave approximation, the em field in this resonator
is assumed to be a transverse electric wave. Since the
incident light field is a monochromatic field of frequency
wg, the electric field excited in the (2+1)-dimensional res-
onator may be written as

E(7,t) = &Re [¥(F)e™™"] (66)

where €, is a unit radial vector orthogonal to the z axis
and the complex amplitude ¥(7) must vanish at z = 0
and z = d. Putting Eq. (66) into Eq. (65) yields the
differential equation for ¥ (7),

. enwd  x®Pw?
This is the Ginzburg-Landau equation investigated thor-
oughly [35-38]. In cylindrical coordinates (r,¢,z), Eq.
(67) possesses single-vortex solutions of the form

() = A sin (257 Frn(r), (68)

where m = £1,4+2,+3, ..., and n is a positive integer such
that nm/d < \/Eflwo/c. fmn(r) is real, fmn(0) = 0, and
fmn(00) = 1. The exact solution for f,,,(r) has to be
found numerically. A is the background amplitude. The
vortices with |m| and n > 1 are energetically unfavorable
and only the vortices with |m| and n = 1 can really ex-
ist. To a good approximation we have f(r) = tanh(r/ro),
where 79 is a fit constant. Equation (68) can be inter-
preted as the wave function for a vortex in the conden-
sate. The em energy density u,(7) of the vortex is deter-
mined by the amplitude of ¥ as u, = €gex|¥|2. We will
show that the phase of ¥ determines the vortex velocity.
The line » = 0 is known as the axis of the vortex and 7o
is its outer radius. The arbitrariness of the z axis means
that there are a series of parallel straight vortex lines in
the condensate. Since the condensate has no rigid-body
rotation, the vortex lines with m = +1 always occur in
pairs. An optical vortex is highly stable and can be called
a soliton. The transverse Laplacian 61 accounts for
diffraction. The effect of diffraction is to produce a trans-
verse flow of the em energy and thereby the field intensity
tends to become low. In the self-defocusing medium the
refraction index decreases with intensity and, owing to
the law of refraction, the em field spreads into regions
of low intensity. The formation of optical vortex solitons
is due to the counterbalanced effects of diffraction and
nonlinear refraction. Therefore, optical vortex solitons
have the desirable property that they do not suffer from
diffraction.

Then we discuss the wave properties of the superguid-
ing state in the waveguide shown in Fig. 2. The light
wayve incident in the waveguide is assumed to be a quasi-
monochromatic light pulse with central frequency wq and
duration 7. The waveguide supports only the fundamen-
tal mode with propagation constant Ky so that the modal
dispersion is absent. Under the weak-guidance approxi-
mation, the fundamental mode is a nearly transverse em
wave. The electric field in the fundamental mode may be
written in the form

E(F,t) = XRe [R(r)¢(z, t)eﬂKoz-wof)] , (69)

where ¥ is the unit polarization vector orthogonal to the
z axis and r is the radial coordinate. R(r) is the dimen-
sionless transverse profile of the electric field and ¥(z,t)
is its slowly varying envelope. The electric field given by
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Eq. (69) must obey the wave equation (65). R(r) is the
solution of the Bessel equation of order zero. Continuity
of R(r) and dR(r)/dr throughout the waveguide gives
rise to the eigenvalue equation (47) for Ko = K(wo). To
reflect the material dispersion, in Eq. (47) we replace €,
and €, with the linear dielectric functions €;(wo) and
€2(wp) of the core and the cladding, respectively. K(w)
represents the waveguide dispersion and can be written
in terms of the effective linear dielectric function e*{w)
of the waveguide as K2(w) = €*(w)(w/c)?. The group
velocity dispersion is due to the material dispersion and
the waveguide dispersion. Within the framework of the
slowly varying envelope approximation, %(z,t) satisfies
the dynamical evolution equation

i 19
l(a-f-ga)d’—

where I' is a geometrical factor given by

Kz a ’(ﬁ KOX _

(70)

/0021rrdr|R('r)]4
= .0 . (71)

/ omrdr|R(r)|?
1]

= (0K /8w)w —w, 18 the group velocity of the funda-
mental mode and K, = (821{ /sz)uzwu describes the
effect of group-velocity dispersion. x(3)* is the effective
third-order nonlinear susceptibility of the waveguide and
describes the effect of self-defocusing. Below we change
into a reference frame moving with the light pulse by the
transformation of variables

s~1 t 2 m——@z
T r vg ) T 2127

3)x H
y=1 KO X( r
2¢* (wo) | Kz|

(72)

Equation (70) then reduces to the dimensionless form

dy 8%y
za—+aﬂ+2|y| y=0, (73)
where 0 = +1 stands for the normal dispersion K5 > 0
and o0 = —1 for the anomalous dispersion K, < 0. Equa-

tion (73) is the nonlinear Schrodinger equation investi-
gated thoroughly [39-42]. In the normal dispersion re-
gion of ¢ = 41, the boundary condition in Eq. (73) is
|yl — 0 at s — +oo. In this case, Eq. (73) possesses
solutions of temporal bright solitons and the one-soliton
bright pulse is given by

exp[—4i(£2 — n?)z — 2i€s)
cosh[2n(4€z + s)] ’ (74)

where 27 and —4¢ are the soliton’s amplitude and ve-
locity. In the anomalous dispersion region of o = —1,

y(z,s) =27

the boundary condition to Eq. (73) becomes |y| —
Yo =const at s — £oo. In this case, Eq. (73) admits
solutions of temporal dark solitons and the one-soliton
dark pulse has the form

(A—iw)2+expZ

y(@,5) =10 l1+expZ

exp(2iy2z),

(75)
Z = 2vyo(s — 22yoz), A% =1-1?2
where the parameter v characterizes the soliton intensity.
Both temporal solitons have the desirable property that
they do not suffer from dispersion. The physical mecha-
nism for this is simple: The self-defocusing nonlinearity
in the waveguide may compensate for the group-velocity
dispersion and therefore leads to propagation of solitary
waves without distortion.

A final problem is to determine the flow pattern of
the em energy in the superguiding state. As shown
before, the em energy in the superguiding state is the
sum of the energy of the condensate and that of the
quasiparticle system. Since there are no scatterings, the
condensate has a definite propagation direction at each
position 7. Therefore, the energy flow of the conden-
sate can be described by the Poynting vector S (7,t). In
contrast, the Poynting vector cannot be defined for the
quasiparticle system, for the system experiences scatter-
ings and has many propagation directions at each posi-
tion. The Poynting vector can be written as S| (7)) =
Uy (7, 1)V, (7, t), where u,(7,t) and U,(7,t) are the energy
density and propagation velocity of the condensate at po-
sition 7. The condensate satisfies the conservation law of
energy,

ou, = z
5 = -V.S. (76)

In the preceding paragraph, we have seen that the con-
densate in the traveling-wave superguiding state has no
vortices. This indicates that in the travehng-wave super-
guiding state there is no vorticity, that is, V x @, = 0.
The expulsion of the vorticity field in the travehng—wave
superguiding state is an analog of the Meissner effect in
the superconducting state. For the (2+1)-dimensional
resonator, we assume that the photon system approaches
the superguiding ground state. In this case, the Poynt-
ing vector can be expressed in terms of the electric and
magnetic fields as § = o 'E x B. Using Eq. (66) for E
and the Maxwell equation for B, we obtain a quantum-
mechanical expression of S

1
2ipowo

S =

(\II*WI - \W\Iﬂ) : (77)

The insertion of Eq. (68) into Eq. (77) yields the rotation
velocity of the condensate round a vortex axis

. cz

UB = m e¢ ) (78)

ERWoT

where €y is a unit vector parallel to the azimuthal direc-
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tion. For any contour round the vortex axis, we can find
the circulation

€EpWo

2
fﬁ; Al =m2 (79)

This last equation reveals that the circulation is quan-
tized and the circulation quantum is 2wc? /€nwo. The
quantization of the circulation in the standing-wave su-
perguiding state is similar to the quantization of the mag-
netic flux in a type-II superconductor.

For the enclosed optical resonator, the nonlinear wave
equation (65) is rather difficult to solve. Therefore, we do
not know the wave properties of the superguiding state
in the enclosed optical resonator. This is a subject for
future study. In the present section we have seen that the
wave properties of the superguiding state depend greatly
on the third-order nonlinear susceptibility x(®). An ap-
proximate expression for x(3) is obtained from Eq. (64)
as

4(01/0)3)2
3e0tm(d +2)°

In contrast to the nonlinear photon-phonon coupling
strength A, the third-order nonlinear susceptibility x(3)
depends only on the characteristic parameters of the crys-
tal. By using the values of the characteristic parameters
given in Sec. III, the third-order nonlinear susceptibil-
ity has an order of magnitude x(®) ~ —9.545 x 10—1!
m? V=2 The crystal that can show the standing-wave
superguiding state has thus a high self-defocusing non-
linearity. If we use the value of a; given in Sec. IV, the
third-order nonlinear susceptibility has an order of mag-
nitude x®) & —1.279 x 10~® m? V~2. The crystal that
can show the traveling-wave superguiding state has an
even higher self-defocusing nonlinearity.

x® ~ - (80)

VI. DISCUSSION

There has been a deep interest in superfluids and su-
perconductors. For some time it has been recognized
that there is a marked similarity between the two [43].
The chief characteristic of both is their ability to sustain
particle currents at a constant velocity for long periods
of time without any driving force. The common phys-
ical mechanism is that below transition temperature a
macroscopically large number of particles condenses in a
single-quantum state. These effects for helium atoms and
electrons in the condensed-matter systems have a certain
generality and many important concepts are certain to
be applicable to photons in nonlinear polar crystals. In
this paper we have explored the idea of the photonic su-
perguiding state in nonlinear polar crystals. The pho-
tonic superguiding effect is similar to, but not congruent
with, the electronic superconducting effect. The electron
system undergoes a second-order phase transition from
the normal to the superconducting state, while the pho-
ton system undergoes a nonequilibrium phase transition
from the normal to the superguiding state. All the dif-
ferences originate from the fact that the crystal electrons
are in an equilibrium state, while the laser photons are far

away from thermal equilibrium. We have constructed the
microscopic theory of the photonic superguiding state.
The heart of the theory is that the repulsive photon-
photon interaction from Rayleigh and spontaneous Bril-
louin scatterings is overcome by the attractive interaction
via optical phonons, leading to photon pairs which incor-
porate the optical phonons and hence are not hampered
by them. Consequently, photon pairs do not suffer such
intrinsic scatterings as Rayleigh, Brillouin, and Raman
scatterings. For the sake of convenience we have used
the idealized single crystals for the object of study. The
object of study can be the real single crystals that in-
clude imperfections. Furthermore, the object of study
can be polycrystals, mixed crystals, and glassy solids, in
which there are microcrystalline disorder, substitutional
disorder, and bond network disorder, respectively. Im-
perfections and kinds of disorder cause extrinsic scatter-
ings of light. Nevertheless, the system of photon pairs
is a highly stable condensate and the condensate is not
quickly destroyed by extrinsic scatterings.

The transition of the electron system from the normal
to the superconducting state is connected with a change
in the gauge symmetry of the system’s state. In the su-
perguiding transition of the photon system, what sym-
metry is broken? In order to answer the question, we
introduce the density matrix of the photon system p. In
Secs. III and IV the photon system in the normal state
was assumed to be in an ideal coherent state of many
modes |n) = D(n)|0). In this case, p = |n)(n|. In fact,
there is the thermal phase noise in the normal state and
80 p = |n){n|, where the overbar denotes the average over
some randomness of the phase angles. Because of this av-
erage, the density matrix of the normal state has a phase
angle rotation invariance [44]. The superguiding ground
state is a pure state |p) = U|0) and the density matrix
of the state takes the form |p) = |n)(n|. The density ma-
trix of the superguiding ground state apparently lacks
phase angle rotation symmetry. We conclude that in the
transition from the normal to the superguiding state, the
phase symmetry is spontaneously broken. The symmetry
change of the photonic system accompanies a variation of
the system’s entropy. The relation between the entropy
and the density matrix is given by S = —kgTr(plnp).
Obviously, the entropy S decreases in the transition from
the normal to the superguiding state and S = 0 in the su-
perguiding ground state. The fact that the entropy of the
superguiding state is less than that of the normal state
demonstrates that the superguiding state has a higher
degree of order than the normal state.

Now we summarize the macroscopic properties of the
photonic superguiding state. (i) If a configuration can su-
perguide an em wave, then the nonlinear photon-phonon
coupling strength A must satisfy the relation A\g < A < 1.
(ii) The standing-wave superguiding state occurs if the
em energy density u is in the range u, < u < u. and the
traveling-wave superguiding state occurs if the light in-
tensity I is in the range Iy < I < I.. (iii) The system of
photon pairs evolves without scattering attenuations, so
that the standing-wave superguiding state has a persis-
tent em energy density and the traveling-wave superguid-
ing state has a persistent superlight intensity. (iv) Quan-
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tum fluctuations of the standing-wave superguiding state
exceed the vacuum fluctuations, while the traveling-wave
superguiding state has the squeezing property. (v) The
superguiding crystal is a self-defocusing medium. (vi)
In the open resonator the em field can exist in the form
of vortex solitons without diffraction and in the super-
waveguide the em wave can propagate as temporal soli-
tons without dispersion. (vii) The superguiding state in
the open resonator reveals the quantization of circulation
and the traveling-wave superguiding state expels vortic-
ity fields. The observation of the superguiding state re-
quires that the superguiding crystal is ideally perfect and
that the incident frequency is well below the electronic
transition frequencies, but well above the TO phonon
frequencies. According to the above properties, one can
devise many experiments to check the superguiding state.
Here we consider a low-temperature optical transmission
experiment in the superwaveguide. At low temperatures,
thermally induced fluctuations in the superwaveguide are
very small and so the superguiding state is easy to real-
ize. The superguiding state is characterized by the crit-
ical light intensity I.. The absorption coefficient of the
superwaveguide drops suddenly at I, and becomes zero at
the ground-state light intensity I;. For a sufficiently long
propagation distance, the intensity of quasiparticles al-
ready decays into zero and only the persistent superlight
intensity propagates in the superwaveguide. If we find
this persistent superlight intensity, we can assert that
the superwaveguide is indeed superguiding.

In the present optical communication systems, the
transmitters all use coherent pulses of laser light and the
transmission media are highly flexible waveguides, i.e.,
optical fibers. There are three physical effects which limit
the transmission of pulses in optical fibers: scattering,
dispersion, and noise. Scattering reduces the intensity of
pulses in optical fibers and so places an upper limit on the
propagation distance of pulses. For a long haul system
larger than the limiting distance, one needs repeaters to
amplify the signal. Dispersion causes the pulses to spread
out and eventually overlap to such an extent that all of
the information is lost. This imposes an upper limit on
the transmission rate of pulses. Noise degrades the signal
and impairs the system performance. The quantum noise
is a limitation on the signal-to-noise ratios. The present
optical fibers are almost exclusively made from polar ma-
terials with a self-focusing nonlinearity. The scattering
losses such as Rayleigh scattering exist inevitably in these
fibers. For example, a well-fabricated silica fiber has a
loss of 0.2 dB/km at 1.53 pm, which almost corresponds
to its intrinsic scattering-loss value. If we want to sup-
press the scattering losses of optical fibers it is necessary

to develop the superwaveguides, which are made from
polar materials with a self-defocusing nonlinearity. The
propagation of light pulses in the superwaveguides gets
rid of the dispersion effect. In fact there is no limitation
on the transmitted power in the superwaveguides. If the
incident light intensity exceeds the threshold of stimu-
lated Brillouin scattering, initially the laser light field is
in the coherent state. During propagation, the laser light
field evolves into the traveling-wave superguiding state.
The information is carried by the quadrature phase of
the superguided light field with reduced quantum fluctu-
ations. Utilization of the superwaveguides as the trans-
mission media enables us to realize repeaterless optical
communications with a high bit rate and a large signal-
to-noise ratio. At the receivers of such optical communi-
cation systems, one can perform quantum nondemolition
measurements without destroying the signal. The pre-
sentation of the photonic superguiding state is based on
the experimental fact that infrared optical fibers have ex-
tremely low scattering losses compared with silica fiber
[45]. Halides are considered to be the most appropriate
candidates for the superwaveguides because their band
gap is large and their multiphonon absorption is located
in a longer wavelength region than that for silica glass.

In conclusion, photons in a polar crystal with a self-
defocusing nonlinearity can sense an attractive effective
interaction by exchange of virtual optical phonons. The
coherent input state of photons is unstable with respect
to such an interaction and a superguiding state is formed
through the association of photons in pairs. In the
standing-wave superguiding state the two paired photons
have opposite wave vectors and spins. In the traveling-
wave superguiding state a propagating photon pair is the
combination of the two photons with opposite transverse
wave vectors and spins. The photon system undergoes a
nonequilibrium phase transition from the coherent to the
superguiding state. The system of photon pairs evolves
without scattering attenuations. The traveling-wave su-
perguiding state has the squeezing property and supports
quantum solitons without dispersion. If the photons
propagating in a superwaveguide enter the superguiding
state, at the same time we can obtain an ultralow energy
loss, a high transmission rate, and a large signal-to-noise
ratio.
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