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Physical origin of dynamical stimulated Brillouin scattering in optical fibers with feedback
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The role of spontaneous scattering and nonlinear refraction on the nonlinear dynamics of stimulated
Brillouin scattering with feedback is investigated. We find that feedback suppresses stochasticity in the
amplification process of the Stokes emission, giving rise to deterministic behavior, the forms of which
are found to be critically dependent on the strength of the nonlinear refraction, which is shown to de-

pend on the polarization-preserving properties of the medium. Our results provide an explanation of the
chaotic dynamics observed in polarization scrambled fibers and also account for the simpler forms of
dynamical behavior reported using polarization-preserving fibers.

PACS number(s): 42.65.Es, 05.45.+b, 41.20.—q, 42.79.—e

Recent experimental investigations of stimulated Bril-
louin scattering (SBS) in single-mode optical fibers with
external feedback have established the Stokes emission to
exhibit highly deterministic dynamics from the onset of
SBS oscillation [1—5]. Periodic and quasiperiodic
behavior is found to be common in fibers with various po-
larization properties, while in non-polarization-
preserving fibers chaos evolving from the quasiperiodicity
has also been recently observed [1]. These features con-
trast with the aperiodic behavior of the Stokes emission
observed in fibers without feedback [2,3,6], the stochastic
nature of which has been attributed to the role of spon-
taneous Brillouin scattering, which initiates the SBS pro-
cess [3,7]. Conversely, for SBS with feedback, spontane-
ous scattering would seem to have little inAuence on the
temporal structure of the Stokes emission, the dynamics
of which nevertheless appears to be critically dependent
on the fiber type. In this paper we address theoretically
these issues by accounting for spontaneous emission and
the role of nonlinear refraction [8,9], in particular, the
enhanced effect of the latter arising from the
polarization-preserving properties of the medium. Our
findings show that over broad operating conditions feed-
back (even weak) does indeed suppress stochasticity in
the arnplification process of the Stokes emission, giving
rise to deterministic features, the forms of which, wheth-
er simple or complex, are found to be critically dependent
on the strength of the nonlinear refraction. Our results
provide an explanation of the chaotic dynamics observed
in polarization-scrambled fibers [1] and also account for
the simpler forms of dynamic behavior reported using
polarization-preserving fibers [3].

Stimulated Brillouin scattering is described classically
as a three-wave parametric coupling process between two
electromagnetic waves, the pump and Stokes, and an
acoustic wave [10]. In an optical fiber, only the backward
scattering is involved because the frequency shift of the
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Stokes wave vanishes in the forward direction. A gen-
eralized description of this interaction accounting for
nonlinear refraction was analyzed by Lu and Harrison
[8]. With the inclusion of noise initiation and weak feed-
back, the full model description in normalized form be-
comes

+ +—PA = gBC+—iu[ A '+21BI']A
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+ +—PD =2tu [I A I'+ BI']D, (4)

where for the case of weak feedback (R,R2 «1) the
boundary conditions are simplified to

D(q, /=0) =QR iB(g, /=0),
B(q,g= 1)=QR2D(ri, g= 1), (6)

where A, B,C, and D are the slowly varying amplitudes of
the forward-going pump, backward-going Stokes fields,
the acoustic wave, and the forward-going Stokes field
normalized to incident pump amplitude Ao at z=0, re-

spectively. f (ri, g) is the Langevin noise source describ-
ing the random thermal fluctuation of the density in or-
der to include the effect of the Csaussian white noise [6,7].
q = t /T„and g =z /L are normalized time and space
coordinates and T„=nL/c is the transit time of the light
waves in the fiber of the length L. p=aL and

Pz =~6,v&T„are the normalized power loss of light
waves and the relaxation rate of sound in the medium
and a and Eve are the loss coefficient and the spontane-
ous Brillouin linewidth, respectively.

In obtaining Eqs. (1)—(4), two contributions to non-
linear polarization are considered, namely, electrostric-
tion and intensity-dependent refraction, as in Refs. [8,9].
The former causes the nonlinear gain of the Stokes wave
and the latter results in self- and cross-phase modulations
due to the presence of the light fields. They are deter-

1050-2947/95/51(1)/669{6)/$06. 00 51 669 1995 The American Physical Society



670 DEJIN YU, WEIPING LU, AND ROBERT G. HARRISON

mined respectively through the control parameters g and
u in these equations and depend not only on the material,
but also on the polarization-preserving properties of the
fiber, whether polarization preserved or scrambled. The
gain g is given by

PogoKL
2 A,~5,

(7)

where Po is the incident pump power, A,I is the effective
area of the acousto-optic interaction, and go is the con-
ventional peak Brillouin gain coefficient, which in our
analysis is modified to gb =goIC/5„where 5, is the en-
largement factor of Brillouin bandwidth in the fiber
[11,12]. K is a depolarization factor defined in the litera-

ture as X =(e&.e2), in which e, and e2 are the local unit
vectors of the pump and Stokes waves in the fiber. In this
paper we restrict our considerations to the cases of
polarization-scrambled and polarization-preserving
fibers, for which we show below K =

—,
' and 1, respective-

ly. In order to understand the dependence of u on the
depolarization factor K, we consider the third-order non-
linear polarization component P of the two orthogonally
polarized components of a single light wave in a fiber.
This is given by [10,13]

'X"'[IE.I'+-,' IE, I']E. , (8)P =

(3) 2+
4 X 3 x x (10)

As can be seen Eq. (10) gives an enhancement factor
5~ = ( 2+~ ) /3a =

—,
' in the polarization-scrambled fiber

compared with the case for only x-polarized light in the
polarization-preserving fiber, in which K =~=1 leads to
5z =1. This simplified analysis is valid and is consistent

where the first term is associated with self-phase modula-
tion and the second one is responsible for cross-phase
modulation. For the polarization-scrambled fiber, the
polarization direction of an initially linearly polarized
field becomes random over a short propagation distance
and, as a result, statistically ~E

~
=~E»~ and E„E» =0.

For the polarization-preserving fiber, we assume the field
to be polarized in the x direction and E E*=0 is natu-
rally satisfied. Defining a polarization factor K to de-
scribe the proportion of the intensity in the x direction as

IE. I'

IE.I'+IE I' '

it ranges from —,
' to 1, the two limits corresponding to

polarization-scrambled and polarization-preserving fiber,
respectively. The relation between K and ~ is easily ob-
tained according to their definitions to be
K =sc +(1—x) for the two cases X=

—,
' and 1 to be con-

sidered below. By substituting Eq. (9) into Eq. (8) we ob-
tain

where

4povg A,p Eve
Uo= n2

Foll P )2
(12)

and U, is the acoustic velocity, po the equilibrium density
of the medium, p &2 the longitudinal elasto-optic
coefficient, A,z the wavelength of the pump field, and
n2=3y' '/8n the nonlinear index coefficient. y„ is the
ratio of the optic-optic to the acousto-optic interaction
cross sections, which is approximately equal to 1.0 in a
single-mode fiber. It is seen from Eqs. (7) and (11) that
the factors 5& and K enhance the effect of phase modula-
tion at the expense of the pump intensity in polarization
scrambled fiber. Therefore K, together with 5, gives the
total enhancement factor

2+~
3~[~ +(1—x) ]

(13)

with values of —", and 1 for the two special cases we con-
sider. It therefore follows that phase modulation is
strongest in polarization-scrambled fibers and weakest in
polarization-preserving fibers.

We now investigate the boundaries for dynamic insta-
bility through numerical linear stability analysis using the
pump g and reAectivity R, =Rz=R as variables. We
choose uo, as the control parameter, to describe the
inhuence of the polarization effects discussed above. The
physical parameters chosen, as detailed below, are those
for commonly used optical fibers of Ge02-doped SiOz
core and a pure SiOz cladding pumped at 1.06 pm. Re-
sults are shown in Fig. 1, where the curve for uo =0 cor-
responds to that predicted by Bar-Joseph et al. [5]. As
can be seen, the instability threshold at low pump intensi-
ty is not sensitive to uo and is only slightly upward shift-
ed on increasing uo. At high pump intensity, a large uo
can, however, lead to a notable extension of the unstable
region through an upshift of the upper boundary. For
example, the amount of shift of the boundary is hg =3.7
for an increase of uo from uo=0 to 0.4. The effect of
nonlinear refraction, however, is not only to increase the
unstable region, but also to considerably enhance the
complexity of dynamic behavior that exists in these re-
gions as described below.

The time-averaged outputs of the transmitted pump
and backscattered Stokes signals are shown in Fig. 2 as a
function of incident pump signal strength g. As can be
seen, the signal strength of the transmitted pump exhibits
a plateau, indicative of saturation, while that of the
Stokes emission increases almost linearly with the input
signal. Here the parameters for polarization-scrambled

with that based on tensor analysis for these two cases
[14]. We note, however, that tensor analysis is required
in describing the general case of partial polarization-
preserving fibers, which nevertheless is not considered
here. Accounting for the enhancement factor and ex-
pressing the phase modulation parameter as u =uog, the
coefficient u o is then given by

uo = U05~y„/X,
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fibers are used for which the enhancement effect gives rise
to a value of uo =0.4. A most interesting phenomenon is
the pronounced shoulder in the transmitted pump curve
where the onset of strong Stokes emission begins. This
feature, which is absent in the steady-state solution, is
therefore a direct result of the dynamics of SBS. Further,
the shoulder effect is found to increase with the value of
uo, implying that increasing the phase modulation slows
down the saturation of the pump in this region. The
physical constants used in our simulations are those for
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FIG. 1. Instability boundaries in the g-R plane. The dot

curves (a) and (b) are calculated using the truncated intensity
model by Bar-Joseph et al. [5], while the solid lines (a') and (b')
are obtained using the full model in Eqs. (1)—(4).

the silica fiber mentioned above: po=2. 21X10 kg/ m,
U, =5960 m/s, pt2 =0.286, n = 1.4616, and n2 =3.85
X 10 m /V [15]. The spontaneous Brillouin band-
width for bulk silica is taken as Ave=33. 35 MHz at
A,p=1.06@m. Due to enhancements in the fiber, this
bandwidth can be enlarged by a factor 5, of 1 —2. 5

[11,12]. In this analysis we take 5, =2.36 at
A p

= 1.06pm, giving a value for Uo of 0.12. We note that
5, is an adjustable parameter in our analysis and its
value, which lies well inside the above range, is chosen to
give a best fit with our experimental data [1]. We use a
fiber length of 124 m corresponding to experiments [1],
for which P=0.0414 for a=1.45dB/km at an operating
wavelength of 1.06 pm and the corresponding P~ =148.
Using these constants, we have go =4.825 X 10 ' m/&
and A,z is calculated to be 27.01 pm for the optical fiber
of the core radius a =2.75 pm.

The dynamics of the Stokes emissions in the vicinity of
and above the threshold for SBS are found to be very dis-
tinct in the five regions identified in Fig. 2. In region I,
on increasing the pump strength in the vicinity of the
threshold g=3.5, the Stokes signal emerges from sto-
chastic high-frequency noise to exhibit randomly-
amplitude-modulated periodic oscillations at the funda-
mental period 2T„, an example of which is shown in Fig.
3. This random feature is attributable to the effect of
aperiodic phase modulation induced by the nonlinear re-
fraction, in the absence of which only limit cycle
behavior is obtained. In Fig. 4 we show time series and
their corresponding phase portraits obtained in regions
II—IV. The boundary between regions I and II, located
at g =5.5, marks the onset of strong SBS and a transition
to stabilized periodic emission (period 2T„) in region II
[Figs. 4(a) and 4(b)]. The transition to region III at
g=6.4 marks the emergence of quasiperiodic motion
[Figs. 4(c) and 4(d)] with fundamental frequencies
f t

= 1/2T„and f2 being slightly less than f„the incom-
mensurability of which is evidenced in the complex
features of the power spectra, arising from their various
linear combinations. Further bifurcation from this re-
sults in aperiodic motion which spans over a parameter
window of 6.72&g &9.5 within region III. A typical
time series for g =7.0 and the corresponding phase por-
trait are shown in Fig. 4 [traces (e) and (f)]. Correlation

(a)

III O

oo

0 I I I

2 4 6 S 10 12 14

pump Strength g

FIG. 2. (a) Time-averaged Stokes signal and (b) transmitted
pump intensity as a function of input pump strength g. The re-
gions I—V mark parameter windows of different dynamical
behavior.
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FIG. 3. Time series of the Stokes emission showing random

modulation induced by nonlinear refraction for g =4 in region
I.
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FIG. 4. Time series (left-hand column) and
corresponding phase portraits (right-hand
column) of the Stokes signals in regions II—IV
of Fig. 2. (a) and (b) Periodic motion for
g=5.9 in region II; (c) and (d) quasiperiodic
motion for g=6. 5 in region III; (e) and (f)
chaotic motion for g =7.0 in region III; and (g)
and (h) quasiperiodic motion for g = 10.0 in re-
gion IV. The abscissa and ordinate in the
phase portraits are SBS intensities I(t;) and
I(t;+ T), respectively, in which T is the delay
time.
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dimensional analysis of this data set using the
Grassberger-Procaccia algorithm [16] is shown in Fig. 5
and is seen to give a correlation dimension D2 ——2.5. The
collective dynamic features over regions II and III sug-
gest a Ruelle-Takens route to chaos [17]. On further in-
crease of the pump strength an inverse bifurcation se-
quence takes place, with chaos collapsing through a nar-
row window of quasiperiodicity [Figs. 4(g) and 4(h)] to
steady state. We also find limit cycle behavior in a limit-
ed parameter interval within this region. In the region
marked IV ranging from g =9.6 to 12.3, the quasiperiodi-
city in general comprises two incommensurate frequen-
cies, one being 1/2T„and the other located close to its
higher-order harmonics. The second to fifth orders have
been identified in our simulations, each of which depends
sensitively on the pump condition. The transition to
steady state occurs with a gradual reduction in the ampli-
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FIG. 5. Correlation dimension D2 versus embedding dimen-
sion m using a data set corresponding to that in Fig. 4(e).
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FIG. 6. Stokes signal intensity as a function of time t show-

ing a train of transient random bursts toward the intensity
stable state for g = 14.0 in region V.

tude of the dynamics. The steady-state emission is found
to be preceded by a long transient process, with a typical
time scale of many thousands of T„, in some parameter
windows exhibiting a train of randomly distributed tem-
poral bursts, a typical example being shown in Fig. 6. It
is interesting to note that in region V the Stokes field is
periodically modulated even when the intensity output is
constant, indicative of the persistence of phase modula-
tion in this process.

Toward establishing the generality of these findings, we
have investigated in this theory the dependence of the
SBS dynamics on the length L of the fiber, through the
parameter p~, and on the refiectivity R. Numerical
simulation shows that there is a critical p„dependence of
the dynamics on the gain g and reAectivity R. Below the
critical length, the SBS system is stable. We note that the
dynamical behavior is not sensitive to the change of P„
when p~ is well above its critical value. Therefore the
fiber length is not critical to the dynamics as long as this
condition is satisfied; typically p~ ) 10 (1.) 8 m) at g = 8
for the fiber we use. In generating complex temporal
structures, lower reAectivities at the two ends are pre-
ferred, so a higher pump intensity is required for SBS os-
cillation, thereby enhancing the effect of phase modula-
tion. In our main analysis we have, however, restricted
our consideration to Fresnel rejections so as to interface
our results with existing experimental findings.

Our further analysis has established the important
dependence of the SBS dynamics on the nonlinear refrac-
tive strength uo. First, in the limit uo=0 corresponding
to the conventional model description of SBS [4,5], we
find the dynamics to be restricted to periodic oscillation
with period 2T„ from threshold, which evolves, on in-
creasing the pump parameter, to quasiperiodic motion.
The latter motion, confirmed by measuring correlation
dimension D2 =2, has not been previously reported,
though in our analysis we find that it persists over a wide
range of parameter values. On further increasing the
pump, the quasiperiodicity transfers to steady state at
g=8.6. More generally, similar dynamic behavior is
found to exist for uo %0. However, above a critical
value u o =0.3, aperiodic oscillatory behavior is also
found to prevail, evolving via a Ruelle-Takens sequence
similar to that described above. We have further investi-
gated the inhuence of noise initiation of spontaneous Bril-
louin scattering on the SBS dynamics. We find that from

the onset of the SBS oscillation, the noise has no effect on
the dynamics of the Stokes emission for both the truncat-
ed and our more generalized model descriptions. It fol-
lows that (even weak) external feedback is decisive in
suppressing the noise which otherwise appears to dom-
inate the emission as evidenced by the stochastic
behavior observed in fiber experiments without external
feedback [3,7].

Further, we compare our results with earlier experi-
mental findings [2], notably those recently reported on
regular and chaotic dynamics [1]. In comparing the
time-averaged outputs of the transmitted pump and
Stokes emission with those of Ref. [1] we find very good
qualitative agreement in regard to their general features
and significantly the "shoulder" effect. Quantitative
agreement with experimental measurements is also good
for both the threshold pump signal and the transmitted
time-averaged pump signal in the plateau region. The
five regions of dynamical behavior also appear to be in
accord with experimental findings for both the transition
from randomly modulated oscillation s to limit cycle
behavior and then the quasiperio die route to chaos.
However, the subsequent quasiperiodicity in region IV as
predicted by our theory has not so far been identified in
experiments, which show instead only the limit cycle
behavior of similar high-frequency contents. While the
latter is also predicted by our analysis in this region, its
operating window is substantially smaller than that ex-
perimentally observed. Beyond this region (in region V),
while in theory the Stokes emission tends to stable emis-
sion on a time scale of thousands of T„ in some parameter
windows exhibiting several transient bursts, in experi-
ment it shows an irregular, sustained train of bursts, the
duration of the bursts decreasing and the interval be-
tween them increasing with pump strength; an asymptot-
ic tendency toward stable emission, though on a consider-
ably longer time scale. These differences preclude a
direct comparison in this region. We note that in other
experiments [3] similar sustained bursting has been ob-
served; though, as this was shown to be suppressed by ac-
tive stabilization of the fiber optic system, the authors at-
tributed this particular feature to environmental noise.

Finally, our theoretical results may help explain the
dynamics experimentally observed in polarization-
preserving fibers. For such a fiber as used in the experi-
ment in Ref. [3], IC=a= 1. Using 5, =2.36, we obtain
uo =0.12, which is far below the critical value for
aperiodic behavior (uo=0. 3). We find indeed the dy-
namics in this system to be qualitatively identical to that
obtained in the truncated model from the onset of strong
SBS emission, showing limit cycle and quasiperiodic
behavior for the case of natural reAectivity and only limit
cycle behavior for higher reAectivities, e.g. ,
R &R2 ~0.5%, the latter of which is consistent with the
experimental findings in Ref. [3]. On the other hand,
even for the case of uo(0. 3, differences of temporal
behavior for systems with and without nonlinear refrac-
tion are obvious in the vicinity of the SBS threshold; limit
cycles of 2T„ for the case of uo=0 are randomly modu-
lated in the presence of nonlinear refraction (uoAO), the
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depth of which increases with uo. This provides a further
indication of the role of nonlinear refraction even in
fibers for which chaotic dynamics is not observable.

In conclusion, we have provided a reasonably complete
description of stimulated Brillouin scattering in single-
mode optical fibers in the presence of external feedback.
The physical model, which accounts for the interplay be-
tween the gain, the weak external feedback, and the non-
linear refraction, shows that complex dynamic behavior
exists in stimulated Brillouin scattering in polarization-
scrambled fibers due to the enhanced nonlinear refractive

effect, which includes periodic, quasiperiodic, and chaot-
ic emission as observed in experiments. The theoretical
findings can also fairly well explain the various forms of
simpler stimulated Brillouin scattering dynamics experi-
mentally observed in polarization-preserving optical
fibers.
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