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Electrostrictive generation of nonresonant gratings in the gas phase by multimode lasers
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Nonresonant gratings have been generated in gases using as excitation beams the second-harmonic
output of a multimode Nd:YAG (yttrium aluminum garnet) laser (pulse duration v=8 ns, coherence
time ~, =20 ps). The grating reAectivity is measured by scattering a probe beam off the grating. It
shows the damped oscillation of a standing acoustic wave (period T~}. By varying the time delay wd be-
tween the excitation beams, the inhuence of the temporal laser coherence is analyzed. The signal for in-
coherent excitation (r, « ~r„~ &&r) is nonvanishing and depends only weakly on rd It i.s reduced by
about a factor ~, /~ compared to coherent excitation, if T~))~. The measurements are interpreted
within a calculation of electrostrictively generated gratings from beams having Gaussian temporal pulse
shape, Gaussian statistics for the intensity, and a Gaussian frequency spectrum. Furthermore, the mea-
surement of acoustic quantities (sound velocity and attenuation) with the described setup is discussed.

PACS number(s): 42.65.Es, 43.35.+d, 42.25.Kb

I. INTRODUCTION

Two beams originating from a laser and intersecting at
an angle 0 form an interference pattern which, by various
resonant or nonresonant mechanisms, may result in the
formation of a dynamic grating. It is described by a
periodic complex refractive index [1—3]. Resonantly ex-
cited laser-induced gratings are generated by tuning the
laser to absorption lines of the medium under investiga-
tion. This technique, called laser-induced grating spec-
troscopy, has found many applications; see, e.g., Refs.
[4—8]. Acoustic gratings caused by electrostriction [9],
on the other hand, are formed at any frequency of the ex-
citation laser. Here sound waves are generated by the
electrostrictive force of the fields in any point of the over-
lap volume of the laser beams. The wavelength and the
direction of the sound waves match the interference
geometry. The resulting density change in the beam over-
lap volume, giving rise to a refractive index change, re-
sults from the superposition of the waves coming from
opposite directions. They form a spatially periodic densi-
ty grating which oscillates in time. Electrostrictive grat-
ings have been applied to study acoustic modes and their
attenuation and couplings in condensed matter [9,10].
Govoni et al. [11]emphasized that electrostrictive grat-
ings should be considered as a nonresonant background
in laser-induced grating spectroscopy.

Recently, interest arose in the electrostrictive grating
formation in gases [11,12). In this work, the formation of
electrostrictive gratings in gases for partially coherent ex-
citation beams is investigated theoretically and experi-
mentally. Additionally, examples of measurements of
acoustic quantities in gases are given (Sec. IV). A vari-
able optical delay line for one of the excitation beams, in-
troducing a time delay ~d, controls the partial coherence
in the experiment. The grating reAectivity is measured
by Bragg scattering a probe beam of a second pulsed laser
which can be stepwise time delayed with respect to the
excitation beams. In the case of coherent excitation

beams (rd =0), the reflectivity of an electrostrictive grat-
ing is given by the integrated intensity of the excitation
pulses, if the period T of the grating oscillation exceeds
definitely the pulse duration ~. For gases, a T of many
nanoseconds can easily be obtained. In argon, e.g., at an
intersection angle 0 of 2.9', T is about 16 ns. Therefore,
in contrast to experiments in condensed matter with
much higher sound velocities, the use of lasers with
nanosecond pulse duration is advantageous and results in
a stronger grating reAectivity. The mainly acoustic na-
ture of the gratings generated in the experiments is
confirmed by the time dependence of their reQectivity,
which is in a good approximation a damped oscillation.

In the case of temporally incoherent excitation beams
(Sec. V), the coherence time r, restricts the integration
time of the intensity. For multimode lasers with a small
~„ this results in a much smaller but still observable grat-
ing reAectivity. The stepwise delayed probe beam reveals
still the damped oscillation of a standing acoustic wave.
For small angles 0, corresponding to T &&~, it was found
that the ratio of the grating reAectivity from temporally
coherent and incoherent beams equals about ~/v„ in
agreement with the calculation of electrostrictive gratings
in Sec. III. The application of temporally incoherent ex-
citation beams could be useful in laser-induced grating
spectroscopy as it is a method to reduce the nonresonant
background, which is one of the limiting factors of the
sensitivity. The grating reAectivity as a function of the
time delay ~d, observed with an undelayed probe beam,
results in an approximately Gaussian temporal coherence
function for the used laser. For ~rd ~

))r„an approxi-
mately constant and nonvanishing contribution remains.

II. EXPERIMENT

The experimental configuration used to obtain and
study electrostrictive gratings in gases is schematically
shown in Fig. 1. Two frequency-doubled multimode
Nd:YACC (yttrium aluminum garnet) lasers (Continuum
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FIG. 1. Experimental setup. BS1 and BS2,
beam splitters (R =50%); EB1 and EB2, exci-
tation beams; D, beam dump; P1, P2, and P3,
polarizers; PMT, photomultiplier tube.
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NY81-20) with a pulse duration of about 8 ns [full width
at half maximum (FWHM)] and a beam diameter of
about 6 mm are used. The coherence length is measured
to be 6 mm; see Sec. V. The output of laser 1 is split by a
50%%uo beam splitter (BSl) into two excitation beams EB1
and EB2, which set up the grating. In order to achieve
equal path lengths for these two beams, EB2 passes a de-
lay line formed by two prisms before it is directed by a
second 50% beam splitter (BS2) into a gas cell where it
crosses EB1 at an angle 6. The gas cell has a variable
length and can be used up to a pressure of 5 bar. The out-
put of laser 2 provides the probe beam which is diffracted
off the grating into the signal beam. The probe beam is
perpendicularly polarized to the excitation beams and is
carefully aligned to be counterpropagating to EB1.
Hence the polarizers P1 and P2, which are crossed to
each other, can be used to protect the lasers against dam-
age from back traveling light. Satisfying the Bragg con-
dition, the signal beam is counterpropagating to EB2. In
previous work we found that the signal beam is also
phase conjugated to the excitation beam EB2 [12]. Part
of the signal beam passes through the beam splitter BS2.
Stray light, mainly caused by beam splitter BS2, is
efhciently suppressed by polarizer P3 in the path of the
signal beam. Furthermore, spatial filtering is achieved by
coupling the signal beam into a 200-pm-diam optical fiber
(15 m long), which is connected to a photomultiplier
tube. The two lasers were electronically synchronized.
The time delay between excitation beams and probe beam
could be varied by means of a digital delay generator
(Stanford Research Systems DG535). The variation of
the delay time and the data acquisition was under control
of a personal computer.

III. ELKCTROSTRICTIVE DENSITY GRATINGS
FROM STOCHASTIC FIELDS

Here 6 is the Laplacian, v is the adiabatic velocity of
sound, I" is the attenuation constant of sound from

viscosity, and p„ is the electrostrictive pressure

E2
Pst Xe~O 2

(2)

y, denotes the electrostrictive constant, which for dilute
gases equals the linear susceptibility ~. In the derivation
of Eq. (1) terms nonlinear in p' have been neglected. For
optical frequencies, E in (2) is replaced by the average
over an optical period. For an experimental setup with
two beams E& and E2 from one laser, intersecting at the
angle 0 and approximated by plane waves, the field E is
given by

citation beams. The scattering reAectivity of a density
grating is proportional to ~p'(t, r)~ . In addition, the
reQectivity depends on the size and the shape of the grat-
ing [13]. This latter dependence is outside the scope of
this work. Experimentally, for the setup described in Sec.
II and an excitation intensity of 90 MW/cm (EB1 and
EB2), reflectivities of the order of 10 are obtained in air
at 1 bar.

The linearized equations of Quid dynamics are applied
to calculate ~p'(t, r)

~

. Local equilibrium is given as the
grating spacing is large compared to the mean free path
at the chosen gas pressures and the mean time between
two collisions of a molecule is small compared to the
pulse duration of the laser and the attenuation constant
of the density wave. We consider the equation for
p'(t, r), which results for a viscous medium when heat
transfer is neglected [14]; later, in the discussion of the
attenuation of the sound wave (Sec. IV), heat transfer is
included phenomenologically:

dp ~p 2

Qt2 Bt
—I"5 ~ —v Ap'=4p„.

We define p'(t, r) to be the change in density generated
in the medium by the electrostrictive force of the laser ex-

E(r, t)=E,(r, t)+E (r, t2)

with

(3)
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i(k r —co)t)
E&(r, t)=e&E&u(t)A (t)e ' ' +c c.

i (k2.r—col t)
E2(r, t)=e2E2u(t ~—d)A (t)e ' ' +c.c.

The amplitude A (t) is assumed to be Gaussian,
1/2 1/4

(4)

R (t) the product of the u functions in the integral for
IK (t)

I
is replaced by the expectation value

(u(t$ )u(tp &d )u (t] rd )u (t2)) .
2A(t)= ln2 —2 1n2[( t —t ) /~)e 7

with the pulse width w [full width at half maximum
(FWHM)] and the normalization

f "
A '(t)dt =1 .

e; represents the polarization vectors, E; complex ampli-
tudes, and u (t) a complex stochastic amplitude with
(lu(t)l ) =1. k; are the wave vectors with lk;l=k, t is
the time indicating the pulse center, and ~d is a time de-
lay between E& and E2, assumed to be small compared to

From Eqs. (3) and (4) the spatially dependent part of
E (r, t) for parallel polarization, averaged over an optical
period, is

E =2E&E2u(t)u*(t ~d)A —(t)e'~ +c.c.

with

I' ' can be decomposed into a sum of I ' ' expressions

r"'(t, , t, —~„,t, g„—, t, )

if u (t) exhibits Gaussian statistics, which is a good ap-
proximation for frequency-doubled Nd:YAG laser light
[16]. The application of Eq. (11) leads also for non-
Gaussian U(t) often to an approximately correct result,
namely, when I' ' essentially is a single product of I' '

functions. R (t) can now be evaluated if the spectral line
shape, which determines I' ', is known. The result for a
Gaussian spectral line shape is given in (A13) and (A14).
For a time t, with t t )~"(—1+Ps") [see (13) for
definitions of P and r"], the expression (A13) is reduced
to

2

q= k1 —k2, q=lql =2k sin
2 Xe ~" ' '[P(t)+Q(t)J (12)

The x axis is chosen to be parallel to q. Expression (5) in-
serted into (2) leads to the following form of the wave
equation (1):

g2
Ubp'=e y—,q'E, E'u(t)u*(t —r„)

X A (t)e'~ +c.c.

2 ln2
t =

1/2
7 c

where

X [1—e ' ' cos[2Q(t —t')]],

2 Q 1I 2

P(t)=e ' [1—cos[20(t —t')]],

A solution of (7) of the form

p'(t, x) =e'~"K(t)+c.c. ,

representing a standing wave, is found if K(t} obeys the
equation

qr'
Q=qv 1—

2v

P= —,'q I",

2 1/2

K+q I"K+q v K=Eoy, q E,E2u(t)u*(t rd )A (t) . —

(9)

The solution of this equation is given in the Appendix
(A4).

In case of truly stochastic variables u (t) (multimode
laser) the phase of the right-hand side of (9) is in general
time dependent, induced by the random variables u (t).
K ( t } gets therefore a time-dependent random phase
which corresponds to a random motion of the grating
fringes. The phase of K (t), however, is irrelevan't for the
grating reflectivity, which is proportional to the square
IK(t)l [see Eq. (8)]. In the following, the expectation
value of IK(t)l,

(10)

will be considered [15]. R(t) is proportional to the
reAectivity, averaged over many pulses. To calculate

t'=t+Pr",
t"=(t+t')/2,

(13)

In the derivation of Eq. (12), it has been assumed that
lqI" /2U &1 and r, «P ', 0 ', r. The grating oscillates
at an angular frequency 20 and decays with the constant
2P=q I '. The ratio Q(t)/R(t) gives the reduction of
the grating reQectivity using temporally incoherent
( I rd I

))~, ) instead of temporally coherent (~d =0) exci-
tation beams. In the case of T )&~, where T~=+/Q is
the grating period, the reduction factor is approximately
the ratio of pulse duration to coherence time v/r, The.
reduction factor is smaller if T ~ z.

The amplitudes E, , which appear in Eq. (12), are relat-
ed to the pulse energies $V p
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~i, pulse PO

2S &o

1/2

(14)

where S is the beam cross section. The term with P(t) in
R (t) is, up to the factor F=exp[ (Q—r" ) ], proportional
to the pulse energies. The factor F expresses the superpo-
sition of the waves generated in any small time interval
during the pulse duration. For ~((T, essentially con-
structive superposition takes place, which is represented
by F= 1. For frequencies Q~ 1/~", the term P(t) de-
pends, due to F, very sensitively on Q. This derives from
the assumption of an exact Gaussian pulse envelope and
is to that extent not verified by our experiments (Sec. V).
[For Q~ I/r", already a small deviation from the as-
sumed Gaussian pulse envelope A (t) will result in a
strong change of the calculated R (t).] In Q(t) the factor
F is from the statistical average of the oscillations from
single pulses.

In the derivation of Eq. (1), we assumed linearity in p .
The maximum value of p' with respect to position x [see
Eq. (8)] is p', „=2~K(t)U. For argon at 5 bar, pulse ener-
gies 8'& „&„=73mJ and 8'2 „&„=37mJ, beam diameter
equal to 6 mm, and t9=2.9, which are experimental con-
ditions used later, p', „reaches a value of 3.0X10
Kg/m . This corresponds to a pressure disturbance of
3.1X10 bar, which is small enough to justify the as-
sumption.

The dependence of the signal intensity on the gas pres-
sure due to y, has been measured in air at room tempera-
ture. A quadratic relationship was found over the pres-
sure range of 80 mbar to 5 bar (slope of the double loga-
rithmic plot 2.089+0.005). The dependence of the signal
intensity I, upon the laser intensity I&„„was checked in
a setup with all three beams originating from the same
laser. In the range of 15—90 MW/cm, I, ~Il,„, ' was
found.

IV. VELOCITY AND ATTENUATION
MEASUREMENTS OF SOUND WAVES IN GASES

Electrostrictivity generated gratings can be used to
measure the velocity and the attenuation of sound waves
in gases. The nonresonant nature of these gratings allows
us to perform the measurements at any frequency, i.e., in-
dependent of the absorption lines of the medium under
investigation. In this section the method is used for mea-
surements in argon and nitrogen. The results are com-
pared to the theory given in the preceding section.

The signal obtained by diffracting a probe beam off a
grating is proportional to the reAectively of the grating.
By changing the delay between the excitation beams and
the probe beam the temporal development of the grating
can be studied. The measured signal is a convolution of
the grating oscillation and the temporal shape of the
probe pulse. Therefore, a sufFiciently small angle 0 be-
tween the excitation beams has to be chosen in order to
obtain an angular frequency 2Q of the grating oscillation
which still can be resolved by a probe beam with a pulse
duration of 8 ns. The probe beam was delayed in steps of
2 ns. For every time delay, the signal obtained during 25
pulses was averaged. To increase further the signal to

noise ratio, but minimizing the inhuence of a possible
long-term power drift of the lasers on the measured grat-
ing reQectivity, ten such time scans were averaged. Fig-
ure 2 shows the results obtained in Ar at 5 bar. The os-
cillations of the grating, confirming its acoustic nature,
are well visible. The dots represent the difference be-
tween measured values and a fit obtained from the convo-
lution of Eq. (A13) with a Gaussian temporal profile, as-
sumed to properly describe the temporal shape of the
probe beam. The slowly varying background of the sig-
nal intensity arises from the convolution of the broad
Gaussian probe pulse with the grating reAectivity. From
the fit one can extract the values for attenuation and
sound velocity. The values given below, however, have
been simply determined by measuring the temporal dis-
tance and the decay of the peaks.

The adiabatic sound velocity U is given in Eq. (13) by
v =Q/q[1+(p/Q) ]' . This can be written in the form

2 1/2
T

1+
27TT84T sin

2
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FIG. 2. Signal intensity vs time delay between excitation
beams and the probe beam in Ar at 5 bar. The angle between
the excitation beams is 8=2.926 .

Here T =m. /Q is the period of the grating refiectivity,
T= 1/2p is the decay time of the grating, and A, =2m. /k is
the wavelength of the laser. The largest error in the
determination of the sound velocity results from the mea-
surement of the angle 0. Its approximative determina-
tion, obtained by measuring the lengths in the geometry
of the two crossed excitation beams, has an estimated ac-
curacy of 0.05'. This corresponds to an accuracy of 2%%uo

in the determination of the sound velocity. Therefore, we
used the more accurate value from Ref. [17] of the sound
velocity of argon to calibrate 0 and the wave vector q.
The so obtained value for 0 was 2.926'+0.006'. The
acoustic frequency v= Q/2m is 30.8 MHz.

The decay time T of the grating was determined by
fitting the peak values with an exponential function.
Only peaks appearing at a delay of the probe beam that is
smaller than 0.5 IMs were considered. During this time
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TABLE I. Attenuation constants I" for Ar and N2 at 5 bar,
24'C, and a frequency of 30.8 MHz. I ' are the values rnea-
sured in this work, including the statistical error. I,'& are the
values calculated from Eq. (16) and Ref. [17].

Ar

1.0—

(10 m s )

I,', (10 m s ')
6.71+0.10

6.S0
8.24+0. 12

5.92 18.8a0.5 ps

the sound wave propagates about 0.15 mm. The sys-
tematic error due to the propagation of the sound waves
out of the overlap volume is then estimated to be less
than 2%%uo. The fit results in a decay time T =410+6 ns.
Usually the values for sound attenuation are given in the
quantity I ', which is related to T by I"=1/q T. For
pure monoatomic gases I" can be compared to the classi-
cal Kirchhoff-Stokes attenuation I,'&, which takes into ac-
count the effect of the shear viscosity p, and the thermal
conductivity ~:

r,', = —+ (y —1)
Ps 4

p 3 cpp~

Here p is the gas density, c and c, are the specific heat
capacities at constant pressure and constant volume, re-
spectively, and y =c /c, . In Table I the values of I,', ob-
tained from inserting in (16) the data of Ref. [17] are list-
ed together with our values for the attenuation of sound
determined from the experiment.

Measurements in nitrogen at 5 bar have been per-
forrned under the same experimental conditions. With
the angle 0 determined as described above, the velocity of
sound differs by 0.3%%uo from the value of Ref. [14], which
is within the accuracy of the measurements. The ob-
tained decay time is T =333+5 ns. In addition to
thermal conductivity and shear viscosity, further dissipa-
tion mechanisms have to be taken into account in order
to describe the sound attenuation in a polyatomic gas
such as nitrogen (see, e.g, [18,19]). Employing Eq. (16),
the calculated attenuation in nitrogen is a fraction 0.72 of
the measured value I" (Table I), which is in agreement
with the measurement of Greenspan [18].

V. COHERENCK EFFECTS

The calculation in Sec. III shows that the grating
reAectivity and therefore the signal intensity is propor-
tional to a sum of two terms P(t) and Q (t) [see Eq. (12)].
In essence they reAect the dependence of the signal inten-
sity upon the coherence time of the laser used in this ex-
periment. By measuring the grating reAectivity as a func-
tion of the time delay between the excitation beams it
should be possible to get some evidence for the correct-
ness of the assumption of a Gaussian frequency spectrum
of the laser which has been applied in the derivation of
Eq. (12). The diffracted light intensity (see Fig. 3) has
been fitted by the sum of a Gaussian and a constant (solid
line). A fit by the sum of a symmetric exponential func-
tion and a constant (dashed line), which would be expect-
ed in case of a Lorentzian frequency spectrum [15], has
also been tried, but gives less agreement. Therefore, the

0.0
—60 0

time (ps)

60

FIG. 3. Signal intensity vs time delay between the excitation
beams measured in ambient air (~ ). The delay between the first
excitation beam and the probe beam is zero. The relative error
of the measured signal intensity is about 10%%uo. The solid line is
the fit by the sum of a Gaussian and a constant. The dashed line
is the fit by the sum of a symmetric exponential function and a
constant.

assumption of a Gaussian frequency spectrum seems to
be justified. The measured FWHM of 18.8+0.5 ps, re-
sulting from the Gaussian fit, corresponds to a coherence
time ~, of 20. 1+0.5 ps, which translates into a coherence
length of 6 rnm and a bandwidth of 1.1 cm ' of the laser.
For a frequency-doubled Nd:YAG laser with a pulse
length of some 10 ps Eichler, Klein, and Langhans [20]
found that a Lorentzian is a more appropriate description
of its frequency spectrum. However, in our rneasure-
ments there is no strong evidence for a non-Gaussian
contribution to the frequency spectrum, which possibly
would lead, especially in the wings of Fig. 3, to a slower
reduction of the grating reAectivity with increasing time
delay between the two excitation beams than predicted by
the Gaussian. The ratio of term P(t) at rd =32 and 0 ps
was measured to be smaller than 0.02. Therefore, for a
time delay between the two excitation beams, largely
exceeding the coherence time, it is a reasonable assump-
tion that the grating refiectivity is entirely due to Q(t).
Figure 4 shows the signal intensity versus time delay be-
tween the probe beam and the excitation beam obtained
in Ar at about 5 bar, ~d =65 ps, and at a crossing angle
0=2.81'. Measurements of the signal intensity were
averaged as described in Sec. IV with five scans instead of
ten. Even for a slightly modified correlation function one
can expect that, under this condition, the contribution of
P(t) to the grating refiectivity is negligible. Considering
the interval 95—101 ns of the time delay between excita-
tion and probe beam, the signal intensity at ~d=65 ps
was found to be smaller by a factor (3.0+0.2) X 10 com-
pared to the signal intensity at ~d =0. This matches fair-
ly well the value 4.0X10 calculated from Eq. (12).
Another measurement of the grating reflectivity has been
performed at ~d =65 and at an angle 0=8.3' correspond-
ing to an acoustic frequency v=87 MHz. Figure 5 shows
the result obtained in Ar at about 5 bar. The data were
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averaged as described above. For this angle, T is small-
er than the pulse duration ~. The oscillation of the grat-
ing reAectivity is averaged out by the shape of the probe
pulse. At an arbitrarily selected time delay of 17 ns be-
tween excitation and the probe beam, the signal intensity
was found to be smaller by about a factor 120+20 corn-
pared to the signal intensity at ~d =0. For these experi-
mental conditions Eq. (12) predicts a smaller factor [cf.
comment on Eq. (14)].

VI. CONCLUSION

Two beams of a multimode laser with nanosecond
pulses intersecting at an angle 0 were used to form a non-
resonant laser-induced grating in the gas phase. Its
reAectivity has been investigated by scattering a probe

CO

I

1.00—

FIG. 4. Signal intensity vs time delay between the excitation
beams and the probe beam measured in 5 bar Ar. The delay be-
tween the excitation beams is ~d =65 ps and the crossing angle
is 0=2.81'.

beam from a second pulsed laser off the grating. The
temporal coherence function of the excitation laser has
been measured by changing the time delay between the
excitation beams. The grating reAectivity is fitted with a
Gaussian function rather than with a symmetric ex-
ponential function, indicating a Gaussian frequency spec-
trum of the laser. The wings of the coherence function
show an approximately constant contribution.

The time dependence of the grating was investigated by
delaying stepwise the probe beam with respect to the ex-
citation beams. The outcome shows the damped oscilla-
tion of a decaying standing acoustic wave. Also for tem-
porally incoherent excitation beams the formation of a
nonresonant acoustic grating has been shown. This cor-
responds to the contribution in the coherence function
which is independent of the time delay. The reAectivity
of the grating generated by temporally incoherent beams
is reduced for small angles 0, corresponding to large os-
cillation periods, by about the ratio of coherence time to
pulse duration compared to the reAectivity for coherent
excitation beams. The experimental results are interpret-
ed within a calculation of electrostrictive gratings, excit-
ed by laser beams having a Gaussian temporal line shape,
Gaussian statistics of the intensity, and Gaussian fre-
quency spectrum. The fourth-order coherence function
of the laser field is thereby evaluated. The calculated ra-
tio of the grating reAectivity of coherent to incoherent ex-
citation beams is in good agreement with the experimen-
tal value.

Electrostrictive gratings allow the measurement of
sound velocity and attenuation at nonresonant frequen-
cies of the medium. Measurements of these quantities
have been performed for Ar and N2. The application of
the technique for practical purposes is under investiga-
tion and will be published elsewhere.
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APPENDIX

The solution of the equation

G+q I"G+q v G =5(t)

vanishing for t (0 and, assuming ~qI" /2v
~
( 1, is

G (t) =—sinflte ~ e(t),1

Q

(Al)

(A2)

0.00
—30 30

time (ns)

60 90

where

A=qu 1— qI"
2U

2 ilj2

FICx. 5. Signal intensity vs time delay between the excitation
beams and the probe beam measured in 5 bar Ar. The delay be-
tween the excitation beams is ~d =65 ps and the crossing angle
is 0=8.3'.

(A3)
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4 2K(t) =coy, .q E&E2
1n2

X u t, u*t& —~d exp

'2

where

X sinQ(t t, )ex—p[ P(—t t,—) ]dt, , (A4)

Therefore, the solution of Eq. (9) is the convolution
1/2

The fourth-order correlation function

I '(t„t, 7—,, t, ~—, , t, )
(4)

= (u (t, )u(t, —~d )u *(t, —rd )u *(t, ) )

can be decomposed for a Gaussian u (t) into functions
I ' ' [2l]. For a Gaussian spectral line shape it takes the
form

I "(t„t, rd,—t, ~d, t,—)(4)

2(in2)in
'

R (t), defined in (10), is then

R(t)=4( e,y, q')'i E, 'iE, ', S(t),1 1n2

Qr

where

S(t)=f f (u(t, )u(t, —~d)u*(t, —rd)u*(t, ))

X e 'e 'sinO(t t, )sin—Q(t t2 )—
P(t t] ) P(t fpXe ' e ' dt&dt2

(A5)

(A6)

(A7)

—~(~„/7-, ) —7 [(t,—t~)/~, )

z, is the coherence time.
Equations (AS) and (A9) inserted into (A7) lead to

/S(t)=e " ' I +r Iz,
where

—x2 —p(~ —t )I, = f e 'e ' sin[Q(t t, )]dt&—,
—2x 2 —2P(g —t )I2= f e 'e ' sin [Q(t —t&)]dt, .

(A9)

(A10)

(Al 1)

(A12)

with

X
7-'

It has been used here that w, is small compared to the
other time scales. With the help of formulas (2.3.15.4)
and (2.5.36.8) of Ref. [22], the integrals I, and I2 [(All)
and (A12)] can be expressed by known functions

/7. )S(t)=~r" e ~" ' ' e " ' e ' ''C(t)+
1/2

2 1n2 ~c 1 Q tl 2
1 ——erfc6' —e ' ' ' D(t)

2
(A13)

where

2
erfc(z) = 1 —erf(z), erf(z) =, f exp( t )dt, —

C(t)=[1—
—,'Reerfc(6'")] Il —cos[2Q(t t')]j—

+ [1—
—,'Re erfc(6"') ]Im erfc(6"')sin[2Q(t —t')]

+ —,'[Imerfc(6"')] I 1+cos[2Q(t t')]], —

D (t) = [1—
—,'Re erfc(6")]cos[2Q(t t')]+ —,'Im erfc—(6")sin[2Q(t —t')],

(A14)

(8 ln2)'i

6"=6'+tQ~", 6"'=2-'"6", t'=t+p1"', T (t+t')l2.
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