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We consider the dynamical behavior of light in a cavity that contains birefringent elements with
time-dependent settings. The evolution of the two-dimensional polarization vector can be described
by an equation of the Schrédinger type if the intracavity elements change little on the time scale of
the round-trip time. A coupled-mode analysis is given, which models the multimode dynamics of
the optical system. We show that a description in terms of isolated two-level systems is justified if

the optical band gap is small.

PACS number(s): 32.80.Bx, 41.20.Bt, 03.50.De

I. INTRODUCTION

In a companion paper [1], experimental evidence is pro-
vided which confirms the applicability of Landau-Zener
[2] and hidden-crossing [3] models to transition rates be-
tween modes in a classical optical system. The broader
context of the work is that resonators containing opti-
cal elements with time-dependent settings provide useful
models for quantum systems in demonstrating phenom-
ena closely paralleling Rabi oscillations, Autler-Townes
doublet splitting, and other phenomena [4]. The back-
ground to the classical optical two-level model has been
developed in previous publications; details of the way this
classical model is set up and realized experimentally can
be found in Refs. [1,4].

An important restriction in the previous work on the
model of the cavity has been that the optical elements,
which, through their effect on the polarization vector,
mimic the interactions in two-level atoms, were limited
to the regime of small relative phase shifts. The com-
panion paper [1] demonstrates experimentally that this
is unnecessarily restrictive for the application of the clas-
sical optical two-level model. It is the purpose of this
paper to show theoretically that this restriction is not
fundamental to a Schrodinger description of the optical
cavity. If the settings of the optical elements change only
little on the time scale of the cavity round-trip time, the
complete multimode dynamics (polarization and longi-
tudinal modes) is governed by such an equation. The
regime in which the system decouples into two-level sys-
tems is explored, and we will show that if a two-mode ap-
proximation is justified, the Hamiltonian of the system
can be expressed in a time-dependent 2 x 2 Hermitian
matrix.

This paper is organized in the following way. In Sec. II
a general theoretical framework is presented. In Sec. III
the two-mode approximation is discussed. Conclusions
are drawn in Sec. IV.

II. DERIVATION OF THE EQUATIONS OF
MOTION

In this section we derive a Schrédinger equation for
the field evolution in an optical cavity, which contains
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optical elements with time-dependent settings. In the
description we shall ignore losses in the optical elements.
The transition from the Maxwell wave equation for the
electric field E (2,t) in an optical cavity,

8*E  ,8%E
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to an equation of the Schrodinger type,
8E  H .

1

B T (2)
where H is a Hermitian operator, requires a number
of steps (c is the velocity of light and T' = L/c is the
round-trip time in the cavity; L is the length of the cav-
ity). Since Eq. (1) is second order in time, it allows two
counterpropagating waves. For equal amplitudes and
polarizations, a superposition of these gives a standing
wave, where the field amplitude is zero at the nodes.
When looking at time-dependent phenomena in the cav-
ity, these nodes can shift in position, since the resonance
frequencies can change. Such a field evolution cannot
be described by Eq. (2), since for Hermitian H Eq. (2)
implies that E(z, t) remains normalized at any fixed po-
sition. Obviously this is not demanded by Eq. (1). If an
optical system can be described within the slowly varying
envelope approximation (SVEA), then the second-order
wave equation Eq. (1) is approximated by a first-order
equation. In that case a description in terms of Eq. (2)
could apply. The reduction to a first-order equation in
time implies that we consider light traveling in one direc-
tion, which applies to ring cavities. In a linear cavity two
counterpropagating light waves are necessary to describe
the complete field at a certain position in the cavity. This
problem for a linear cavity can be overcome by consid-
ering only one of the two propagation directions. In an
experiment this would correspond to the field which is
leaking through one of the mirrors, and which provides
the detection signal.

In the SVEA it is assumed that the electric field in the
cavity can be written as

E(z,t) = £(z,t)eikz=wt), (3)
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where g(z,t) is a slowly varying envelope, k = 2nn/L
with n a (large) integer, and w = ck. So the field propa-
gates in one direction, along the z axis, and variations of
£ on the time scale of the optical frequency w are negli-
gible. The wave equation which governs the evolution of

—

&(z,t) in vacuum is then given by

8 8f .

which is of the form of Eq. (2).

Consider now a cavity containing N time-dependent
optical elements (see Fig. 1). We assume that the op-
tical elements can be described within the Jones matrix
formalism [5], and that the optical elements are infinites-
imally thin [6]. Therefore the fields at either side of
a boundary between two sections are connected by an
unitary phase jump. For an electric field described by
Eq. (3), hence traveling in the positive z direction, £ at
the input and output side of an optical element are re-
lated by

£z, 1) = Si(t)E (2, 1), (5)

where the time-dependent 2 x 2 Jones matrix S;(t) is
J

f(z,t) :g(z,t), 0<z2<z,

z— 2z

F(z,t) = S (t— )5(z,t), 2 <z< 2y,

F(z,t) = 57 (t_z—czl>52_1 (t_z—czz)“_sj? (t—

It is easy to check that the phase jumps in £ have been

compensated by the inverse Jones matrices S; !, and that

F obeys the wave equation
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FIG. 1. The configuration of an optical cavity with
time-dependent optical elements S;(t) at positions 2z;; 2 = 0
and z = L indicate the origin of the z coordinate.

z

unitary. The z and y axis form the basis of the S;, and we
choose det(.S;)=1. This restriction can be made without
loss of generality. The position of the element 7 along
the optical path is measured by z;, and the — and +
denote the input and output sides of an optical element,
respectively (see Fig. 1). The cavity structure imposes
periodic boundary conditions,

E(L,t) = £(0,t) (6a)
and
o€ o€
%l =3 (6b)
L 0

To solve the differential equation for £ under the con-
ditions (5) and (6) it is convenient to transform the dis-
continuous £ field to a new continuous G field. To derive
the equations of motion for the G field we will make use
of an intermediate field , which is a continuous solution
c:f the wave equation (4). The transformation from the
£ field to the F field corresponds to the physical picture
that the optical elements are displaced to the end of the
interval [0, L], while accounting for the time retardation.

We define F by

(7)

_ZN) E(z,t), zn<z<L.
c

The effect of the S; is now expressed in the boundary
conditions for F,

F(Lt) = MTHB)F(0,0), (%)
and
OF| . OF|  1dM7(t) =
B2 -~ M=) o — o 7 (O0.1), (%)
where Egs. (6) and (7) have been used. The time-

dependent round-trip matrix M (¢) is defined by

M(t):SN(t— L_CZN) ---sz(t—y)
XSl (t— L:Zl) . (10)

The advantage of using the intermediate F field over
the £ field is that the terms which result from retarda-
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tion can readily be identified: they disappear in the limit
¢ — oo. In Eq. (10) retardation is merely a time displace-
ment, which can be easily compensated for. However, the
retardation term in the boundary condition for the first
derivative, Eq. (9b), cannot be easily compensated for.
Retardation effects become important if the elements S;
change on the time scale of the round-trip time 7T'. These
effects highly complicate an analytical treatment of the
time evolution of the optical field. Therefore we restrict
ourselves within the context of the present paper to the
case that the modulations of the S; are all slow on the
time scale of T'. This implies that the wavelength asso-
ciated with the time modulation of the optical elements
is much larger than the optical path length L. Hence no
information as to the position of the optical elements can
be obtained from the field leaking out of the cavity.

We take now the limit ¢ — oo in Egs. (9) and (10) and
apply the second transformation to remove the remaining
discontinuities at the boundaries [7]. This corresponds
to smearing out the effective optical element, which was
located at the end of the interval [0, L], over the whole

cavity. The new field G is related to the field F according
to

G(2,t) = e TTHOF (2 1), (11)
where the Hermitian matrix H(t) is defined by
e HH®) = M(¢). (12)

Notice that Eq. (12) defines H only mod 2.

The boundary conditions for G are found from Eqs. (9)
and (11),

G(L,t) =G(0,1), (13a)
and
G 8¢
% =3 (13b)
L 0

So, like the £ field, the G field is periodic in z. The
differential equation for G can be found by substituting
Eq. (11) into Eq. (8),

ag _

oy _iHeﬂ' =4
ot T

g, (14)

where the effective Hamiltonian H.g is given by

_ Lo T i:pf0 izm
Heff—H+'jL,—$+7€ L {5531‘ } (15)

For a given H, Eqgs. (13)-(15) give a complete descrip-
tion of the optical field in the cavity within the limit
TdH/dt <« 1. From Egs. (6), (7), and (11) it follows
that G(0,¢) = F(0,t) = £(0,t). Therefore, for z = 0
these equations also give the evolution of £.

To analyze the evolution of G we give an expansion
into longitudinal modes. We write G| (2,t) as

G(2,8) = 3 Gm(t)eiemtz=en), (16)
m
with k,, = 2mn/L, and m is an integer. Next, the g,
are rotated to the eigenvector basis of H,
@m = Dgn, (17)
where D is defined through
H = Do, D, (18)

with +¢ are the eigenvalues of H, the dagger denotes
Hermitian conjugated, and the Pauli matrix o, is given

by
azz((l)_ol). (19)

Note that by defining the mode amplitudes @,, in this
way, G is written at the time-dependent eigenvector basis
of H. The dynamical variables are given by the vector
components Gz m and ay m,

Gm = Qg m + Gy m¥ - (20)

Substituting Eqgs. (16)—(18) into Eq. (14) yields the evo-
lution equation for the @,,,

fl_ij = i%azﬁm + %i%‘?aza‘m
E DI S
+ ) Apminetolinmrmlt | (21)
with
Apm = %/OL dz e_i%V”‘D%eifwa‘ei(“"_‘M)z. (22)

The first term on the right-hand side (rhs) of Eq. (21)
would also be present if H would be time independent;
in this case, the time derivatives on the rhs of Eq. (21)
are zero. The second term is a correction to the first
term due to temporal changes in . The third term de-
scribes an interaction between two modes with the same
polarization. These latter two terms arise from the fact
that H has been diagonalized, not H.g. The fourth term
describes interactions between modes of different polar-
ization.

The second and third term on the rhs of Eq. (21) can be
neglected since we assumed that TdH/dt < 1. Moreover,
the third term displays a rapid oscillation at a frequency
2m(n — m)/T with n # m, which vanishes after inte-
gration of Eq. (21). The fourth term displays a similar
oscillation. However, in this term orthogonal polariza-
tions modes are coupled, where the difference frequency
can be close to integer multiples of 27 /T. The oscillation
frequency of the polarization modes is determined by the
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FIG. 2. The function fnn versus ¢; fnn(p) describes the
resonant transitions between the polarization modes belong-
ing to one longitudinal mode.

first term, where ¢ can have any value. So the equations
of motion for the @,, reduce to

da o —ic(Rm—rom)t 2

= [’L?a'zam + ;Anme ie(mn "m”an], (23)
which is a Schrédinger equation for the optical multi-
level system. The integral in the expression for the anti-
Hermitian coupling matrix A,, can be directly evalu-
ated, and yields

_ Abpm I“e‘i"’fnm(—go)
Anm = —i ( T for(9)  —Admmm » (29)

where 8,,,, is the Kronecker delta, A and T are functions
which depend on the explicit form of H, and

Fam () = sin ¢

P (25)

After a simple base transformation, the phase factors
exp(+ip) in the off-diagonal of A,,, can be shown to
have the same influence on the dynamics as the second
term on the rhs of Eq. (21). Therefore we may neglect
them. The function f,,, describes resonant coupling be-
tween mode n and mode m if ¢ ~ —7(n —m). In Fig. 2
fnn (@) is plotted. For ¢ close to 0 the two polarization
modes of n = m are resonantly coupled. For ¢ close to
m, the function fn.,,(+¢) describes resonant coupling to
the modes with n = m F 1.

III. TWO-MODE APPROXIMATION

In the discussion so far we only neglected terms which
influence the dynamics if H changes at the time scale
of T. We will now consider a special limit of Eq. (23),
in which the longitudinal modes decouple. In order to
neglect the influence of f,.,(¢) on the field evolution, the
function I' should only effect the dynamics when ¢ <« 1.
In that case f,, ~ 1 [8]. To illustrate that this is indeed
possible, we give a general form of H

A e A
H=(e_i7A - ) ) (26)

where A\, A, and v are functions of time. The function I'
then takes the form

RS g (,A,\—,\A LA )

¢ \'aryx T VAT (@7)

The resonant behavior of the denominators in Eq. (27)
shows that I' affects the dynamics if A < |A|. Hence if
A < 1 then T’ influences the dynamics where ¢ < 1,
since ¢ = v/ A2 + A2. Therefore, in the limit that A < 1
(small coupling) and —7/2 < ¢ < /2, we may set fn,, =
8nm, in which case the longitudinal modes decouple. At
the basis of the §,,, the equations of motion read
dgm (t H(t
) __HO,

(28)

Hence, if the coupling is small, and if —7/2 < ¢ < 7/2
then Eq. (28) describes to a good approximation the field
evolution in the cavity.

IV. CONCLUSIONS

A description in terms of a Schrodinger equation has
been given for the electric field in an optical cavity, which
contains time-dependent optical elements. In an unidi-
rectional ring cavity the complete electric field is modeled
by this equation. In a linear cavity, though, only one of
the two propagation directions is modeled. This differ-
ence is inherent to a description in terms of a Schrédinger
equation, since it is a first-order differential equation in
t, whereas the Maxwell wave equation is second order in
t.

Previous models were limited to a regime where all
the phase shifts of the elements were small, and slowly
varying (compared to round-trip time T'). We have ex-
tended this description and have shown that a descrip-
tion in terms of a Schrodinger equation is not restricted
to this particular case. The complete multimode evolu-
tion is also governed by an equation of the Schrodinger
type, provided only that the elements vary slowly on the
time scale of T'. There is no restriction as to the absolute
value of the phase shifts. If, in addition, the band gap is
small, then a two-mode description can be given. These
results allow for a proper interpretation of experiments
in which the phase shifts do not stay close to zero, as is
the case, for example, in optical experiments on Landau-
Zener transitions [1]. The restriction that the phase shifts
change slowly compared to T is necessary, in order to ne-
glect retardation effects. Inclusion of these effects in the
description of the optical system is interesting and will
be the subject of further examination.
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