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Photoionization by a bichromatic field: Adiabatic theory
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Atom photoionization by the superposition of a fundamental field and its second harmonic
is considered. The finite analytical expressions for the photoionization probability are obtained
using the adiabatic approximation. They demonstrate that the photoelectron angular distribution
has a polar symmetry when the electrical field strength has a maximal polar asymmetry and the
distribution is asymmetrical when the field is symmetrical. A strict proof of the polar symmetry
of the photoionization probability in the case of the electrical field with maximal asymmetry is

deduced using the Keldysh-Faisal-Reiss theories. The obtained results are in agreement with the
experimental data available.

PACS number(s): 42.50.Hz, 32.80.Rm, 32.80.Fb

I. INTRODUCTION

Ionization of atoms and photodecay of negative ions in
a bichromatic field have recently received more attention,
in both experiment and theory. The polar asymmetry of
the photoelectron angular distribution by the two-color
laser radiation atom photoionization, observed first in
Ref. [1] (see also [2,3]), is of special interest. The linearly
polarized laser field consisting of the coherent superpo-
sition of the fundamental field and its second harmonic
was used in these experiments. The observed efFect es-
sentially depends on the phase harmonic shift and is the
consequence of quantum interference of several ionization
paths. A similar efFect was found in Ref. [4] by two-color
photocathode irradiation.

The considered efFect was analyzed theoretically in the
range of validity of the perturbative treatment for laser
field in Refs. [4—6]. The strong field region was studied
using numerical simulation in Refs. [7,8], but a numerical
experiment can not contribute much to the understand-
ing of the behavior of that efFect. The analytical expres-
sions for atom ionization probability in the strong bichro-
matic field were obtained using tunneling approaches:
the "imaginary time" approach [9] (before the first ex-
perimental results [1] appeared) and the estiination by
tunneling probability [10]. The so-called Keldysh-Faisal-
Reiss (KFR) theory was employed in [10] as well. The
tunneling approaches used in Refs. [9] and [10] are incor-
rectly founded since they are based only on a qualitative
semiclassical picture of the photoionization process. The
quantum interference is not included in such approaches.

In the present paper the photoionization probability
of a atom by the bichromatic field is obtained using the
KFR theory. Nowadays such theories (see Refs. [11—
15] and a review in [16]) are the only analytical non-
perturbative approach to the qualitative description of
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the observed photoionization behavior. Using such the-
ories the energy and the angular electron spectra for the
ator~s ionized by monochromatic field [12,13] and above-
threshold photoelectron spectra (see, for example, Refs.
[17,18]) are obtained.

The paper is organized as follows. General expres-
sions for the evaluation of the photoionization probability
using the I andau-Dykhne adiabatic approximation are
given in Sec. II. The photoionization probability in the
limiting tunneling case is considered in Sec. III, and. the
limiting multiphoton case in Sec. IV. It is demonstrated
that in both limiting cases the photoelectron angular dis-
tribution has a polar symmetry at the phase shift when
(E ) g 0 and (A ) = 0 and that this symmetry disap-
pears in the case when (Es) = 0 and (A ) g 0 (the an-
gular brackets denote time averaging). Hence the polar
symmetry of the photoionization probability is correlated
to the polar symmetry of the vector potential rather than
the electrical field symmetry. An interesting analogy to
the well-known Aharonov-Bohm effect (see [21]) may be
drawn here.

To validate such a paradoxical result, a strict analysis
of the particular case of the antisymmetrical vector po-
tential [A(—t) = —A(t)] has been performed in Sec. V
(the antisymmetrical vector potential corresponds to the
maximal polar asymmetry of the electrical field). The
polar symmetry of the photoelectron angular distribu-
tion by photoionization in this field is proved by applying
only the adiabatic approximation without using any ad-
ditional approximations. This statement is also proved
using the Nikishov-Ritus-Faisal-Reiss approach, making
no use of the adiabatic approximation.

The obtained result is in contrast with the tunneling
approaches [9,10], but it is in agreement with the KFR
theory [10] and with the perturbation theory computa-
tion [4]. It is also in accordance with the experiment
[2], the only experiment where the absolute value of the
phase shift was measured. It does not conflict with the
experimental data [1,3], where the absolute value for the
phase shift was not measured (for more details, see the
discussion in Sec. VI).
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As in any KFR theory, the analysis of the present paper
is applicable only to the case when the photoelectron
interaction with an ion core may be neglected. However,
there are reasons to believe that the inBuence of such an
interaction on the considered effect is small (Sec. VI).
The atomic system e = 5 = m = 1 is used below.

A(ti, )/c = —
pll 6 i ~~+ 2K,

where pll = (p e), p& ——p —pll.
2 — 2 2

Nevertheless, the transcendent equation (5) has to be
solved to determine the transition points tI, . Even in the
case of the bichromatic field

II. ADIABATIC APPROXIMATION C
A(t) = —— Ei sin ut + sin(2ut + p)

(d 2
(6)

The present analysis of atom photoionization in the
asymmetric field is based on the approach of Ref. [18],
where the Landau-Dykhne adiabatic approximation (see
[19,20]) was employed to evaluate the atom photoioniza-
tion probability by the monochromatic field, taking the
photoelectron primary kinetic energy into account. The
photoionization probability per unit time is expressed by p'/2+ K « U& (7)

this equation may be reduced only to an algebraic equa-
tion of the fourth degree. Because of this, the two lim-
iting cases (tunneling and multiphoton) will be analyzed
further. As shown in [18], the tunneling limiting case
takes place when the inequality

W = ) Wiv(p)b(p /2+ K+ U„—¹r),
N) Np

where K is the ionization potential of the atom, p is the
photoelectron canonical momentum, Uz ——(A )/(2c ) is
the pounderomotive potential, A(t) is the vector poten-
tial of the electromagnetic field, iso ——[K/w] + 1 is. the
minimal number of photons required for atom ionization,
and [X] denotes an integer part of the number X. The
photoionization probability with the energy absorption
%cd is

is satisfied and the multiphoton case occurs when the in-
verse inequality is satisfied. This classification may be
reduced to the traditional classification in according to
the Keldysh parameter value by neglecting the photo-
electron momentum p in Eq. (7).

III. TUNNELINC LIMIT

Since the vector potential A(t) is a periodic function
with no constant component, it has zeros gi, on a real
axis

Wiv(p) = Cp ) exp(iSi, ) (2) A(gA,.) = 0. (8)

where Sy is the classical action

1 1
Sg = — p+ —A(t) + K dt

p 2 c (t. —(.)E(C.) =
pll + i ~~+ 2K, (9)

In the considered case the transition points tI, are in the
vicinity of gi, (the closeness criteria will be presented be-
low). Therefore, Eq. (5) may be written in the form

and tJ, are transition points in complex time where the
initial and final state energies are crossed. These points
are the roots of the equation

where

1
E(4) = ——A(CA, )

C
(10)

1 1p+ —A(t) + K = 0, —7r/~ & Reti, & vr/~ (4)
2 c

in the upper half of the complex t plane. It should be
noted that in the adiabatic approximation, one fails to
determine a preexponential factor for WN that can de-
pend on various parameters. In the following, we will
assume that this dependence is weak and an unknown
preexponential factor, together with other variables, will
be incorporated into the constant C in (2). The factor
p in (2) describes the phase volume expansion with an
increase in energy of the translational photoelectron mo-
tion. The expressions used in Ref. [10) are identical to
Eqs. (1)-(4).

The linearly polarized field A(t) = eA(t) (e is the unit
vector by the polarization direction) is considered below.
In this case the Eq. (4) can be reduced to the quadratic
equation in A(t), which can be solved as

ti, = ~~ + pll/E(~g) + i g + 2K/IE((&) I. (11)

The sign on the right-hand side of Eq. (9) was chosen
in accordance with the sign of E((g). Using the A(t)
expansion in terms of (ti, —(i, )/w, Eq. (3) integrates to
the expression

1 / 1
S& = —

I
p+ —A(t)

I
+K dt

)
Pll (

I
2K~p ——

pll I

Z 2 3/2
(12)

It is evident from Eq. (9) that the transition point in
upper half complex t plane corresponds to every (i, .
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The power series for A(t) is used within the region of size
tI, —(g', this size is small in comparison with the Beld

period when the inequality (7) is satisfied.
The adiabatic approximation is applicable when the

imaginary part of the classical action is suKciently large.
Therefore, only the terms corresponding to the maximal
lE((g) l

value should be retained in the sum (2); the other
terms will be exponentially small in relation to them.

Let us consider the bichromatic field (6). Equation (8)
may be solved exactly only for some special p values. In
the case of y = 0 and Ei ( Ez, four solutions of Eq. (8)
may be written:

E
1.5- 2,4

1.0-

0.5-

1,3 —1.5

—1.0

—0.5

(z ——0, (4 ——vr/u), E((z 4) = Ez + Ei,

2 +2
gr r = y —(c —arccoc rr'), E(Q r) =—

When y = 0 and Ei & Ez, Eq. (8) has two solutions:

0.0
0 30 60

0.0
90

g (cleg}

Ci = —~/~, Cz = o, E(Ci,z) = Ez W Ei. (14)

In the case of p = vr/2, Eq. (8) can also be solved exactly.
When Ei ( Ez/2, the solutions have the form

FIG. 1. Plots of ei g = E((i z)/QEi + E'~ (solid line) and

Es, 4 = E((3 4)/cv/Ei + E~~ (dashed line) versus phase har-
monic shift. Numbers on the curves are values of the pa-
rameter ( = E, /(Ei + Ez).

1 . /QEi+2Ezz —Ei 1

(i = —7l /lrJ —gz, (z ———al'cslil ~~(p) = t-"pexp
l

— (2&+pL)3E,~ ) ' (i6)

E((i,z) = W 2E, ( ~ +

where E,s = lE((z)l. The numerical calculations of E,fr
are presented in Fig. 2. From this figure we see that E,g
and hence TVN have a maximum at p = 0. They decrease
as p varies &om 0 to vr/2. Notice that E,fr and hence
Wiv(p) have even symmetry and period z in p.

1 . QEiz+ 2Ezz+ Ei)
s ———ar csin i =7I (d-

2Ez )
' 1.5—

E((s,4) = W Ez
2

1.4-

1.3-

When Ei ) Ez/2, only two of these solutions ((i z) are
retained.

Only a numerical solution of Eq. (8) may be obtained
at other p values. Obtained in such a manner, the plots of
E((y)/ QEi + Ez versus rp are shown in Fig. 1 for several
values of the parameter ( = Ei/(Ei + E&) (the ratio
between intensities of the fundamental &equency and the
total field). As follows &om Eqs. (6) and (10), E((I,) has
period vr and even symmetry in y. Thus only the interval
0 ( y ( 7r/2 has to be considered in the following. As
may be seen &om Fig. 1, the lE((z) l

value is maximal
&om all lE((s)l for all p and ( values, and lE((i)l
lE((z)l at p = z/2 only. Thus only one term may be
retained in the sum (2) for all p values, except for those
close to 7r/2. Therefore, at rp g z /2 the photoionization
probability takes the form

1.2-

1.0'
0 30 60 90

Q (d.eg }

FIG. 2. Plots of e = E,s/QEi~ + E~~ versus phase har-
monic shift. Numbers on the curves are values of the param-
eter ( = Ei/(Ei + E~) (the ratio between intensities of the
fundamental frequency and total the field).
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Equation (8), defining (;, as well as Eq. (10), defining
E((,), lacks the photoelectron momentum. Therefore,
E g is p independent and the photoionization probability
(16) has polar symmetry in p. The polar asymmetry may
be associated only with the terms omitted in the sum (2);
consequently it is exponentially small. This result seems
to be paradoxical since the electrical Geld strength has
polar asymmetry at all p g m/2, just in the range of
applicability of Eq. (16).

Now let us consider the case when p = n/2 —b (8 « 1)
and the contributions &om both transitions points tq and
t2 must be taken into account in Eq. (2). In this case the
A(t) roots corresponding to the maximal electrical field
strength may be written in the form

1 ~ Ei
C, ,, =C.,.+

2~ ( QEi2+ 2E22)

as b N )) 1, and a E,s/u .Thus even minor varia-
tions in the Geld intensities cause the value of 6 to vary by
vr, resulting in the change in sign in Eq. (20). Hence, in
the considered limiting case at Eq E2, the polar asym-
metry of the photoelectron angular distribution may be
observed only within a narrow range of the harmonics
phase shift and for high laser intensity stability.

A difFerent situation occurs when the intensity of one
harmonic is suKciently larger than that of another. In
this case, as Eq. (18) shows, BE,rr/Bh « Ei + E2 and,
according to Eqs. (20) and (21), the polar asymmetry
does not vanish at small b. Let us consider a particular
case of E2 « E~. This case is interesting in view of
the interpretation of the experiinental results [1], where
E2 « Eq in the &inge area of laser focus. In this case
the solutions of Eq. (8) and E((i,) have the form

1
(i, = —[(k —2)vr —(—1)"E2/(2Ei) sing], k = 1,2

The corresponding electrical field strength values are ex-
pressed as:

Ei 4Ei(Ei —QEi2 + 2E22) + 5E2
2E QE2 + 2E2

Provided

E(gi, ) = (—1)"Ei+ E2 cosy . (22)

(18)

where ('i 2 and E((i 2) are given in Eq. (15). The inte-
gral in (12) is evaluated using the upper limit given in
Eq. (17). Substituting Eq. (12) into Eq. (2), one may
obtain the following expression for the photoionization
probability:

~N(p) = &p exp
~

— (2K + p&)'
3Eee )

x cosh Im(S2 —Si) + (—1) cos(ap~~ —b)

(»)
where E,rr = E((2) [see Eq. (15)], and ay~~

—b

Re(Si —S2) + N7r. The relative polar asymmetry of the
photoelectron angular distribution may be evaluated as

Wiv (p) —Wiv (—p)
Wiv(p) + Wiv( —p)

Im(S2 —Si) = —(2K+ p~) ~ E,~
'

b. (21)

When this quantity becomes large, the polar asymmetry
of the photoionization probability becomes exponentially
small [see Eq. (20)]. In the case when Ei E2, Eq. (18)
gives BE,rr/Bb = E,fr, which is why the polar asymmetry
may be observed only at

b & E,fr/(2K+ p~) ~ = ~lnW~

Without presenting elaborate expressions for a and 6, we
note that for small b and E~ E2 they may be estimated

(—1)~ sin b sin ap~~ . (20)cosh Im(Si —S2) + (—1) cos b cos ap~~

In the Grst nonvanishing order with respect to b,

Wiv (p) = 2&@exp
~

— (2K + p J )

x [1 + (—1) cos(ay~~ —b)],

a = 2Ei/u)' —(2K+ p' —2pii/3)/Ei,

b=
~

N+
~

sing.(
Ei E 4~s)

(23)

The analysis of these expressions shows that WN has ex-
tremes at p = +sr/2 + 2nm (n is an arbitrary integer).
The extreme can be maximum or minimum, depending

E2
on the N parity and the pII value. If ~& N+ 4 ',

3/2vr, an additional extreme of W~ in the range —vr &
p & vr appear. This effect was observed experimentally
[1] at some N values. The polar asymmetry of the photo-
electron angular distribution vanishes [see (20) and (23)]
at y = 0, when (E2) is maximal and (As) = 0, and
peaks at p = n/2, when (Es) = 0 and (As) is maximal.
The direction of the preferential photoelectron emission
depends on the N parity and the values of Eq, E2, and

&II

IV. MULTIPHOTON LIMIT

Let us consider the case when the transition points tg
are a large distance &om the real axis, so that cuImtA, )) 1.
The following expressions may be written in this case:

Im(Si —Sq) = (2K+ pz) cosy « 1
3Eg

is satisfied, using Eqs. (12) and (2), one can obtain the
following expression for the photoionization probability:

sin(utg ized/2, sin(2(utg + rp) izqe '+/2, (24)
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where

zi, = exp( —i(utg), ~zA,
~
)) 1. (25)

Wiv(p) = Cp ) zk ——Cp(Ei/Ep) f~(y, tl, p),

According to Eq. (24), Eq. (5) with the vector potential
(6) takes the form of the quadratic equation

E2
z& + 2 e'+zi, —oiy ze'(~ ' ) = 0, o'i ——+1, (26)

2 2

where

+.(1 —Ql + criye —*'(&+~~~)
)

'1V( + 8) (33)

y
—EzEo/E2 E —4~+pz + 2K

The solution of Eq. (26) has the form

(27)

The parameters y, E;/Eo, 8 and the condition (31) may
be written using ordinary units

NI2
y 10

1

E,/Ep = E;/(v 32N(u ) = 10 QI;As/N

zi, = — e'~ 1 —o.2/1+ oiye —'(&+ ~o), o.z =+1.E 6 = p(~)/~N (34)

In the case of y (( 1,

(28)
= arcsin

0.8K% + 0.75 x 10—"(I, + ~1, ) As

N

yEp
zi, = (o.z —1) e' + o.ioz e

2E2

Absolute values of the roots zA, corresponding to u2 ———1
far exceed those corresponding to o2 ——1. Therefore, the
points tJ, at o2 ———1 are more distant from the real axis
and may be neglected in the evaluation of the transition
probability. The absolute values of the roots taken into
account may be written in the form

x(p e), Ii+ Iz/4 « 2.1 x 10 K/A

where Ii and Iz are the harmonic intensities in W/cm,
A is the fundamental harmonic wavelength in pm, and K
is ionization potential of the atom in eV.

Equations (33) and (34) are rather simple and may be
used to estimate the photoionization probability for the
multiphoton limiting case. The plots R'~ versus p are
shown in Fig. 3 at several values of y and 8. It is evi-
dent that the location of the photoionization probability

~zi,
~

= 2~/p&+ 2K/E, . (29)
0

In the case of y )& 1, all the roots

(z )
= (4id/Ez) (p + 2K) /

(30) 0

have been taken into account.
As seen &om Eqs. (29) and (30), the validity conditions

of the applied approximation may be written in the form

p /2+ K = N(u )) E, /(8(u ) + Ez/(32(u ) = UJ /2

When this condition is satisfied, &om Eq. (3) one can
obtain

-90 -60 -30 0 30 60 90

fIl (cieg)

SA, = N~tI,

and write the photoionization probability in the form

FIG. 3. Plots of photoionization probability W&4 (in arbi-
trary units) versus phase harmonic shift for 8 = 7r/8 (solid
line) and 8 = z /12 (dashed line). Numbers on the curves are
values of the parameter y.
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maximum varies with variation of y and 8.
For p = 0 the inversion of the photoelectron emission

direction leads to a change in sign of 6 and to the com-
plex conjugation of the sum terms in (33). Therefore,
fN(y, —6, 0) = fN(y, 8, 0) and the photoelectron distri-
bution has polar symmetry at y = 0. This statement may
be proved in terms of more general assumptions as well
(see Sec. V).

Let us expand the sums in the Nth powers in Eq. (34)
and represent fN as the square of modulus of polynomial
in y. This allows us to obtain the following representation
for O'N..

(E ) 2N2

W2N, +i(p) = SCpN
4Eo)

E
x ' [1 —(—1) ' cos(2N2 + 1)8]

E0

x sin]2Ns + 3)8] sin y) . (4o)

where

0

(Ei') " (E2)' '
x cos(N —j)(8 —m /2) (

&Eo) &EO)
(35)

[N/2]

and C~ are binomial coefficients. Equation (35) has the
following physical meaning: the total transition ampli-
tude is a sum of the transition amplitudes with absorp-
tion of N —2j quanta of frequency cu and j quanta of
&equency 2~. The p dependence of the photoionization
probability is a result of the interference of these transi-
tions.

Simpler analytical expressions for TVN may be obtained
for some limiting cases. Provided the condition

V. THE ELECTRICAL FIELD
WITH MAXIMAL POLAR ASYMMETRY

A(t*) = A*(t), A(-t) = -A(t). (41)

The first of these conditions expresses the function A(t)
analytically; the second one is valid for

As shown in the previous sections, the photoelectron
angular distribution has polar symmetry when p = 0 and
polar asymmetry of the electrical field strength is at a
maximum. To check this paradoxical result, a strict anal-
ysis of the photoionization by such a field is carried out
in the present section. The approximations employed in
previous sections for considering the tunneling and mul-
tiphoton limiting cases are not used now.

Hereafter let us consider such A(t):

E, « E,'/(NE, ) (36)
A(t) = —c ) sinnut,

Fl 4)
(42)

WN(p) = 2Cp
i i

[1+ (—1) cos2N8]
(2Ei1 '
E Eo)

2(N —1)

0 Eo)
x sin(2% —1)8] sin is) .

In the case of

(37)

E,' « E,E,/N (38)

we could retain two terms with minimal E2 powers in Eq.
(35) and write WN in the form

(E ) 2'
W, N, (p) = 8Cp

&Eoi
(E s) 2' —i E2—4N2

~ ~ 2 [sin 6+ (—1)

x

sin�]

2iiis + 1)8] sin is ),

[1+ (—1) ' cos 2N2v9]

(39)

is satisfied, the polynomial in E2 in Eq. (35) may be
truncated to two terms and the following expression may
be obtained:

which leads to the time dependence of the electrical field
given by the expression

E(t) = ) E cosn(ut. (43)

A, A; (44)

The integrals of analytical even E+(t) and odd I" (t)
functions have the properties

Maxima of the electrical field strength for all harmon-
ics coincide in time with each other for this dependence.
Such a choice corresponds to the largest electrical field
asymmetry. For example, in the case of two-color field
(6) the asymmetry index (Es) as a function of phase shift
peaks at the phase shift, corresponding to the dependence
(42).

Let us consider the photoionization probabilities for
two photoelectron momentum values p and p' = —p.
From Eqs. (5) and (41) it follows that the transition
points tI, and t&, corresponding to the above-mentioned
momentum values, are related by the equation
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t
F+ d = — E+ d

A strict analysis may be carried out for the case of the
odd time dependence of the vector potential

(45) A( —t) = —A(t). (51)
t

F ((,')d( = I' (()d(
0

This may be proved by substituting the power series for
E~(t) into the integrals. Hence

1 1 1
I
k

S„' = —p" +,A'(t)+K+ —A(t) p' dt
0 2 2c C aiv( P) = aN (P). (52)

The above considered field (42), as well as the super-
position of linearly polarized harmonics with arbitrary
polarization direction, satisfies this condition.

Let us consider the change in a(p) on the p inversion.
Changing the integration variable in Eq. (50) from t' to

t' an—d taking into account that the integrand in Eq. (50)
has a zero time average, we obtain f (—p, t) =—f (p, t).
This leads to the relation

—p+ A t+K dt

ta 1
+p —A(t)dt

0

(46)

The expression (2) for the photoionization probability
can be transformed to the form

Rex(p) = Cp() exp( —2IceSe)

+2 ) exp( —ImS)„—ImSi„)

x cee(ReSe, —ReSe, )). (47)

W~(p) = 2~(~~ —U~)'lv" (p) I'la~(p) I' (48)

where Po(p) is the wave function of the discrete state in
the momentum representation

2m/~

aiv(p) = dt exp{i¹rt+ if (p, t) ) (49)
27t 0

and

t

f(p, t) = dt' —A(t') p + A (t') —U~ . (50)
C 2c

Equation (2) may be derived from (49) by using the
steepest-descent method for the calculation of the inte-
gral (see [10]).

From (46) we see that ImSI, is unchangeable and ReS~
changes its sign upon replacement of p by —p. Thus,
according to (47), W~( —p) = WN (p), which is what we
set out to prove.

One could suppose that this result is a consequence
of the inaccuracy of the adiabatic approximation. To
demonstrate the invalidity of this supposition let us em-
ploy the Nikishov-Ritus-Faisal-Reiss approach [12, 14, 15]
where the adiabatic approximation is not used. As shown
in these works, the transition probability per unit time
with Nu energy absorption is given by the expression

The &ee-atom Hamiltonian has spherical symmetry and
its wave function Po(p) has a certain parity. As a result

Iv o(-p)l' = IPo(p)l' (53)

and, according to Eq. (48), again WN (—p) = Wiv(p).
Thus the absence of the polar asymmetry of photoelec-
tron angular distribution for ionization by the field with
maximal asymmetry is now supported by the Nikishov-
Ritus-Faisal-Reiss approach.

VI. DISCUSSION

The probability of atom multiphoton ionization by the
bichromatic laser field consisting of the fundamental field
and its second harmonic as a function of the harmonics
phase shift has been obtained in the present paper. The
results are applicable to the case of the strong field, when
the perturbation theory is inapplicable. Only one exper-
imental research of multiphoton ionization in the strong
bichromatic field [1] is known to us; the subject of study
in [2] and [3] was the two-photon processes in a rather
weak field. It is evident &om estimations that the ex-
pressions for the tunneling limit &om Sec. III may be
used under the conditions of experiment [1]. The period
2m in the p dependence of the photoionization probabil-
ity was observed in that experiment with approximately
equal intensities of two colors. At a first glance our the-
ory disagrees with that experimental result because it
predicts the period m in the p dependence of the pho-
toionization probability at Ei = E2 [see Eq. (16)]. But
one should take into account that the intensity used in
that experiment greatly exceeds the saturation intensity
and the contribution to the signal &om the &inge areas
of large volume, where Eq (( E2, may exceed the contri-
bution &om the central area of small volume. Therefore,
Eq. (23) rather than Eq. (16) should be used to interpret
the experimental results [1]. Equation (23) predicts not
only the period 2', but also faster oscillations experimen-
tally observed for some peaks of the energy photoelectron
spectrum. To compare quantitatively the theoretical de-
pendences with the experimental data the averaging over
the spatially inhomogeneous laser focus should be per-
formed, taking the saturation eQ'ects into account. Un-
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fortunately, the lack of information on the focus size and
shape gives no way for such a comparison.

It seems natural to assume that the polar asymmetry of
the photoelectron angular distribution is the consequence
of the polar asymmetry of the electrical Geld strength;
that is, the polar asymmetry of photoionization prob-
ability and (E ) are at maxima for the same p values
and the photoionization probability has polar symmetry
when (E ) = 0. Nevertheless, as it is demonstrated in
the present paper that the photoionization probability
has polar symmetry when (E ) is at maximum and the
polar asymmetry of the photoionization probability is at
maximum when (Es) = 0. Although this result seems
paradoxical, it is in accordance with experimental data.
The matter is that the absolute difference of the harmonic
phase shift was not measured in the experiments [1, 3]
and the assumption that the photoionization probability
peaks at p = 0 was used. The absolute difference of the
harmonic phase shift was measured in the experiment
[2]; the photoelectron signal plot versus p, presented in
this work, shows that the photoionization probability is
at maxiinum for rp = vr/2 and at minimum for p = 3z /2
(this means that for p = 3'/2 —vr = z /2 the photoioiuza-
tion probability with the photoelectron emission in the
direction opposite a detector is at minimum). The pho-
toelectron signal is for p = 0 and y = ~ have the same
value if a systematic error is taken into account; i.e. , for

p = 0 the asymmetry of the photoelectron angular dis-
tribution is small.

The polar symmetry of the photoelectron angular dis-
tribution for y = 0 results not only from the analysis of
the tunneling (Sec. III) and multiphoton (Sec. IV) lim-
iting cases. A strict proof of such symmetry was deduced
in Sec. V using two KFR theories: the Nikishov-Ritus-
Faisal-Reiss approach and the adiabatic approximation.
We believe that this result is the consequence of neglect-
ing the photoelectron-ion core interaction in any KFR
theory. This interaction was taken into account using the
zero-radius potential approximation in the computation
of the negative ion photodecay [4], where the perturba-
tion theory for the interaction between the electron and
bichromatic radiation was applied. It is evident from Ref.
[4] that the photodecay probability becomes symmetric
for some p value that does not exceed 0.15 rad in the case
of linearly polarized radiation. In the case of strong radi-
ation the influence of the photoelectron-ion core interac-
tion is suppressed [16]; thus one can expect that taking
this interaction into account leaves the present paper's
results unchanged.

It is interesting to note that there is a correlation be-
tween the polar symmetry of the photoionization proba-
bility and that of the vector potential. As noted above,

polar asymmetry of the photoionization probability is
the consequence of the quantum interference of transition
amplitudes. The analogy with the well-known Aharonov-
Bohm effect [21], conditioned by the quantum interfer-
ence of potential-dependent amplitudes as well, can be
drawn.

Quantum interference is not included when the pho-
toionization probability is evaluated as the tunneling
probability in Refs. [9] and [10]. That fact seems to be
a cause of the discordance between our results and the
predictions of photoionization probability asymmetry at
p = 0 in Refs. [9] and [10]. Note that this result, obtained
in [9] and [10], disagrees with the experimental data [2]
and perturbation theory calculations [4]. The photoion-
ization probability calculation in the multiphoton limit-
ing case [10] is also in agreement with the present paper's
result rather than that of the tunneling approaches.

VII. CONCLUSIONS

The Landau-Dykhne adiabatic approximation is ap-
plied to the problem of atom ionization by the bichro-
matic radiation consisting of the fundamental Geld and
its second harmonic. The Gnite expressions for the pho-
toionization probability versus harmonic phase shift are
obtained in the tunneling and multiphoton limiting cases.
The case when one of harmonics is weak is considered as
well. It is demonstrated that the photoelectron angular
distribution has polar asymmetry in the case of symmet-
ric electrical field strength, whereas it has polar symme-
try in the case of the Geld with maximal polar asymmetry.
This result is in agreement with the experimental data.

A strict proof of the polar symmetry of the photoion-
ization probability in the case of the time-antisymmetric
vector potential (corresponding to the electrical field
strength with maximal asymmetry) is derived using the
adiabatic approximation as well as the Nikishov-Ritus-
Faisal-Reiss approach.

The results are applicable to the case when the
photoelectron-ion core interaction may be neglected.
Note that there are reasons to believe that this interac-
tion has little inHuence over the dependence of the pho-
toelectron angular distribution on the phase harmonic
shift in the case of the strong laser field considered. This
justifies the approximation we have done.
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