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Collisional transfer of electronic state coherence
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The role of collision-induced transfer of electronic state coherence on the spectral response of an
atomic vapor is investigated. It is shown that such collisional effects can lead to the appearance of nar-
row resonances in the nonlinear spectroscopy of three-level systems. Collisional transfer between
different multipoles of electronic state coherence is shown to lead to a breakdown of several percent in
Becquerel's relation between the Faraday rotation and dispersion of a vapor. All calculations are carried
out in the impact limit of pressure broadening theory. Particular emphasis is given to the order in which
the various averages over the velocity distributions of both the active atoms and perturbers must be per-
formed. In particular, for the effects described herein, the various collisional transfer rates vanish when
averaged over the active atom velocity distribution. It is essential, therefore, to obtain the final line-
shape formulas, including velocity-dependent collisional transfer rates, before carrying out the average
over the active atom velocity distribution. The experimental observation of these spectral features
would provide direct evidence for the existence of these collisional transfer processes.

PACS number(s): 32.80.—t, 32.70.Jz, 42.50.Gy

I. INTRODUCTION

It is well known that collisional processes can
significantly modify the spectral response of atomic va-
pors. The collisional broadening of spectral profiles and
collision-induced mixing of magnetic state sublevels have
been studied extensively. On the other hand, investiga-
tions of collision-induced transfer of electronic state
coherence (CITEC) have received only limited attention
[I—4]. In this paper, several aspects related to the
collision-induced transfer of electronic state coherence
are examined. In particular, it is shown that CITEC can
lead to new features in the spectral response of atomic va-
pors. The appearance of such features would, in turn,
provide evidence for such collisional processes.

It is not surprising that CITEC has not been studied as
extensively as other collisional effects. Nature seems to
conspire to guarantee that the transfer rates associated
with CITEC are either small or identically zero. Consid-
er, for example, the level scheme shown in Fig. 1. A cir-
cularly polarized laser field propagating in the z direction
drives an atomic transition between a j =0 ground state
and a j =1 excited state. If the field is o. polarized, it
creates an electronic state coherence between the ground
state and the m = —1 sublevel of the excited state. Is it
possible for collisions to transfer this coherence to a
coherence between the ground state and the m = 1 sub-
level of the excited state?

At first glance, one might think that such transfer rates
must vanish owing to random phases that accompany the
collisional transfer of electronic state coherence. Al-
though there is a phase change associated with the col-
lisional transfer, it is not sufficient, on average, to totally
destroy the electronic dipole phase that has been created
by the laser field [5]. As a consequence, it would seem
that the collisional transfer can occur. At this stage,
however, one points out that, owing to symmetry con-

siderations [5,6], the collisional transfer rate for the pro-
cess indicted in Fig. 1 vanishes when averaged over a11

possible collision orientations, provided that the per-
turber velocity distribution is axially symmetric with
respect to the quantization axis (taken along the z axis).

Although the average transfer rate vanishes, there can
still be modifications of spectral profiles that result from
the coherence transfer. To illustrate this point, let us
consider the atomic level scheme shown in Fig. 2. Levels
1, 2, and 3 have angular momentum j =0, 1, and 0, re-
spectively. Density-matrix elements are written as
pJ. .J. —=p~ (i, k). The atom is prepared in level l and

,Jk m mm

is subjected to two counterpropagating laser fields. The
first field is o polarized and is detuned from the j& to j2
transition by a frequency that is greater than the Doppler
width associated with that transition, but smaller than
the inverse duration of a collision. The second field is also
cr polarized and the population of level 3 is measured as
a function of the second laser field's frequency. Suppose
now that a resonance appears when the sum of the in-
cident laser frequencies is equal to the frequency spacing
between levels 1 and 3. Such a resonance can result only
from the type of coherence transfer process described
above. In other words, the first field creates the coher-

j, =0

FIG. 1. o.-polarized radiation creates a coherence between
the ground state and the m = —1 sublevel of the excited state.
The question under investigation is whether or not collisions
can result in a transfer that leads to a coherence between the
ground state and the m.= 1 sublevel of the excited state.
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FIG. 2. A three-level scheme in which the field having fre-
quency Q drives the j&

=0 to j2 = 1, m 2
= —1 transition and the

field having frequency Q' probes the j2=1, m2=1 to j3 0
transition. As a result of the collisional transfer of electronic
state coherence, a resonance appears when (Q+Q') =co» if the
upper state population is measured as a function of Q' for fixed
Q. The detuning (Q —co» ) is assumed to be large compared with
the Doppler width and collisional width associated with the

j) =0 to j2 =1, m~ = —1 transition.

ence po i(1,2). Collisions must transfer this coherence
to produce po, (1,2) so that the second field can complete
the two-photon excitation of level 3. Does such a reso-
nance occurs

As shown in detail below, the two-photon resonance
appears as a result of the collisional coherence transfer.
In this case, the contribution to the line shape depends on
the absolute square of the coherence transfer rate I „(v),
averaged over the active atoms' velocity distribution
W(v). The rate I"„(v) contains an average over the per-
turber velocity distribution for an active atom mouing
with velocity v (for details, see Sec. II). For active atoms
having v along the quantization axis, 1"„(v ) vanishes, but
for active atoms moving in other directions, 1 „(v} is
nonzero. As a result, the average of ~I „(v)~ over 8'(v)
leads to a nonvanishing contribution to the line shape.
This is the first class of CITEC processes considered in
this paper, those for which CITEC contributes to the line
profile despite the fact that (I'„(v)), the average of
I „(v) over W(v) (1„(v}),vanishes. The limited experi-
mental observation of atomic or molecular dipole coher-
ence transfer has been in systems for which (I „(v))%0
[2—4].

A second class of CITEC reactions has been studied,
motivated in large part by the recent work of Kristensen,
van Eijkelenborg, and Woerdman [7]. Working with Rb
active atoms in a high-density (-10 cm ) Xe buffer
gas, these authors observed a deviation from Becquerel's
relation between the Faraday rotation and dispersion in
an atomic vapor. The deviations were attributed to
effects related to the breakdown of the binary collision
approximation. It is shown below that, as a result of
CITEC, a breakdown of Becquerel's relation also occurs
at perturber pressures where the binary collision approxi-
mation is valid. It is unlikely that the CITEC reactions
to be discussed in this paper are responsible for the obser-
vations of Kristensen, van Eijkelenborg, and Woerdman
[7], but they can, nevertheless, lead to experimentally ob-
servable effects.

The modification of Becquerel's law is seen most easily

if one expresses density-matrix elements in an irreducible
tensor basis. The density-matrix elements are then
identified by multipole order k and component q
[ —(2k + 1)~ q ~ (2k + 1)]. A breakdown of Becquerel's
relation occurs if collisions result in a transfer of elec-
tronic state coherence between different multipoles (for
details, see Sec. IV). In contrast to the first class of
CITEC processes, this effect depends linearly on the mul-
tipole transfer rate to lowest order (there is always a
small, but nonvanishing, violation of Becquerel's law re-
sulting from contributions that are second order in the
transfer rates). Since the multipole transfer rates vanish
when averaged over an isotropic active-atom velocity dis-
tribution and to first order in the external fields, the
active-atom velocity distribution is isotropic, one might
think that any corrections to Becquerel's law that vary
linearly with the transfer rates would vanish. This con-
clusion is not valid, however, since the linear atomic
response depends on the dipole coherence density, which
is not an isotropic function of active-atom velocity owing
to the fact that the Doppler shift in an active atom's rest
frame is an anisotropic function of its velocity. As a
consequence, multipole transfer of atomic state coherence
can lead to corrections to Becquerel's law. Although mul-
tipole transfer within a state of given angular momentum
has been studied both theoretically and experimentally
[8—11], there does not appear to be similar studies of
multipole transfer of electronic state coherence.

This paper is organized as follows. A qualitative dis-
cussion of the problem and the approximations of the
theory are given in Sec. II. In Sec. III the line shape cor-
responding to the configuration shown in Fig. 2 is calcu-
lated and in Sec. IV the role of multipole transfer in
modifying Becquerel's relation is examined. A summary
and discussion of the results is given in Sec. V. Details of
the collision models and derivation of the various col-
lisional transfer rates are presented in the Appendixes.

II. QUALITATIVE DISCUSSION
AND APPROXIMATIONS

The physical system consists of "active" atoms in a va-
por cell which interact with one or more external laser
fields. The active atoms also undergo collisions with per-
turber atoms (which are unaffected by the laser fields).
The incident laser fields all propagate along the same
axis, which is chosen as the quantization axis for the sys-
tem. It is also possible that a static magnetic field is ap-
plied in the direction of the quantization axis.

Calculations are carried out to lowest nonvanishing or-
der in the applied radiation fields. Collisions are treated
in the impact approximation, requiring that

I r, «1, ib, ~r, «1, kur, «1, yr, «1,
(1)

5mw, «1,
where ~, is the collision duration, I the collision rate, 5
the atom-field detuning, ku the Doppler width (k is the
laser-field propagation constant and u the most probable
active atom speed), y the atomic decay rate, and 5co the
frequency spacing between sublevels within a state of
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given electronic angular momentum j (including any Zee-
man splitting of these levels). On the other hand, it is as-
sumed that

cow, »1, coFsw, »1,
where co is the optical frequency and coFs is a frequency
spacing between fine-structure levels within a given elec-
tronic state. In other words, collisions can mix hyperfine
levels and magnetic sublevels within a state of given j, but
do not mix states of different j.

In the impact approximation, collisions result in a time
rate of change of density matrix elements given by

Pq(Ji J2'v) ~ '(ji J2)Pq'A(J2'")~ k ~ ~ . kk' ~ ~ k'

where

1" (ji,j2)= & I "(j i j 2,'v) &

= f W(v)r,",",'(j J;v)dv .

(8)

(9)

quantum numbers of states j &
and jz, cannot change for a

perturber velocity distribution that is axially symmetric
with respect to the quantization axis.

As a simplification, the rates appearing in Eq. (4) are
sometimes preaveraged over the active-atom velocity dis-
tribution W(v) to obtain [5,9—11]

I

P~~ (J i,J2,v) ——P~m (J i,J2', v)P„„.(J i,J2', v) (3) For an isotropic active-atom velocity distribution
where v is the active atom velocity and I""" (j„j2',v) is
the (complex) collisional decay or transfer rate. In Eq. (3)
and all subsequent equations, a summation convention is
adopted in which all repeated indices on the right-hand
side of an equation are summed over unless the indices
also appear on the left-hand side of the equation. Expli-
cit expressions for the transfer rates are given in the Ap-
pendixes, derived under the assumption that the colliding
atoms follow straight-line paths. All effects related to
collision-induced changes in atomic velocity are neglect-
ed in this paper.

Equation (3) may also be written in an irreducible ten-
sor basis as

Pq( J 1,J2,v) = —
Pqq (J»J2; v)Pq. (J i,J2)v)kk' ~ ~ . k'

where
I

pq(j i j2'»)=( 1) '
& jim j2 m'Ikq &

Xp (ji,j2,v)

(4)

and &j,m, j2m'Ikq & is a Clebsch-Gordon coe%cient. In
kk'an irreducible tensor basis, the I "".(j„j2', v ) possess some

simple symmetry properties [6,8 —11].
It is important to note that the I (v)'s have already

been averaged over the perturber velocity distribution, on
the assumption that each time an active atom undergoes
a collision, it does so with a reservoir of perturber atoms
that has been affected negligibly by all previous collisions.
The collision rates still depend on the active-atom veloci-
ty since active atoms having different velocities "see"
different perturber velocity distributions in their rest
frames. The larger the ratio of perturber to active atom
mass, the more pronounced the dependence of
I ".(ji,j2', v) on v.

For v=0, the perturber velocity distribution is isotro-
pic and one finds [6]

lqq (A J2)=I (A J2)5qq5kk
kk' ~ ~ k (10)

I "" (ji,j2;v)=( —1) "&j,m j2 —m'Ikq &

x &j,n, j2 n'Ikq &I (ji j2'v) (12)

Coherence transfer is possible if ( m ' —m ) = (n ' n). On—e
can then distinguish coherence transfer processes that are
diagonal in k and q [Eq. (12)] from those that are nondi-
agonal in k or q (or both). Experimentally [2—4], coher-
ence transfer diagonal in k and q has been observed. The
coherence transfer processes to be described in secs. II
and IV are nondiagonal in k and/or q.

while, for an active-atom distribution that is axially sym-
metric with respect to the quantization axis,

I,","'(A j»=l',""'(A j2I
For many instances, Eq. (8) can be used without intro-

ducing significant error. Consider, however, a situation
in which I

q
. (j„j2)= & I ""

(j„j2',v) & =0, but one for
which the final expression for the sIiectral line feature un-
der investigation dePends on & II'qq (ji,j2, v)I &%0. Use
of Eq. (8) would then lead to a null result, whereas the ac-
tual spectral feature does not vanish. For the atom-field
configurations to be discussed in Secs. III and IV,
I "(j„j2)=0 for krak' or qAq'. If Eq. (8) rather than
Eq. (4) were used to calculate the signals, none of the
spectral features to be derived would emerge from the
calculations. It is essential to use Eq. (4) and defer the
average over the active-atom velocity distribution until
the end of the calculation.

It may be worthwhile to point out that there can be a
collisional transfer of electronic state coherence even if
I "".(j„j2,'v)=l "(j„j2',v)5

q 5kk. From Eqs. (3)—(5), it
follows that, in the m basis, the corresponding transfer
rates would be

Pqq (ji,j2,0)= I "(J'i,J'2', 0)5,5kI, (6)

For atoms moving along the quantization axis, the axial
symmetry of the perturber velocity distribution seen in
the atoms' rest frame leads to the relationship [8]

'(A J2'v="~)=l (J»J2'v)5 (7)

that is, different multipoles can be coupled, but the q
component, which is related to the difference in magnetic

III. COHERENCE TRANSFER
IN NONLINEAR SPECTROSCOPY

I first consider the atomic level scheme in Fig. 2, since
it is conceptually the easiest to illustrate the coherence
transfer process. Variations on this level scheme which
are more practical from an experimental viewpoint are
discussed at the end of this section. A o. -polarized laser
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field drives the j, =0 to j2 =1, m2 = —1 transition and a
counterpropagating o. -polarized laser field probes the
j2 = 1, m2 = 1 to j3 =0 transition. The transition frequen-
cies differ suSciently to ensure that each field drives only
a single transition. The fields are detuned from their
respective transition frequencies by an amount that is
larger than the Doppler widths associated with the tran-
sitions, but the sum of the two laser frequencies is close to
that of the two-photon frequency between levels 1 and 3.
The first field's frequency is held fixed and the upper state
population p33 is probed as a function of the second field's
frequency.

In the abse™iceof collisions there is no excitation of lev-
el 3. Collisions lead to excitation of level 3 via two dis-
tinct (but interconnected) processes. First, collisions
transfer coherence from pp t(1,2) to po, (1,2), which al-
lows the second field to complete the two-photon transi-
tion to level 3. There is a competing process in which the
first field (aided by collisions) creates a population in the
m = —1 sublevel of state 2; collisions transfer this popu-
lation to the m =1 sublevel and the second field com-
pletes the transition to level 3. The first process can be
referred to as a two-quantum (TQ) contribution and the
second a stepwise (SW) contribution to the final-state
probability p33 [12]. The calculation is conveniently car-
ried out using density-matrix elements in the m basis. In
perturbation theory, the density-matrix chains responsi-
ble for the TQ and SW processes are shown in Fig. 3.

Let us first concentrate on the TQ chain since it in-
volves the coherence transfer. In the first step of the per-
turbation chain, one must calculate pp, (1,2;v), which,
in the rotating-wave or resonance approximation, evolves
as [12,13]

po, (1,2;v) = [(y2/2) t ct)]pp t('1 2'v)

—I p', (l,2;v)pp (1,2;v)

iy*W—(v) exp[ i(kZ —At)], —(13)

where y2 is the decay rate of state 2, co=co2, is the 2 to 1

transition frequency,

(14)

is the Rabi frequency, p is the dipole moment matrix ele-
ment between states (j2, —

1~ and
~ j„O},and E, A, and k

are the amplitude, frequency, and propagation constant
of the field propagating in the z direction. The time

I

Two-Quantum (TQ} Chain

Ppp(1 1 )—pp, .i ( ' ) ~ poi (1*2) poo(1 3) P-i,o(2 3) ~ Pio(2, 3) Pop( )33

+ c.c.

Stepwise (SW} Chain

X Po, -&(1,2)

Poo(~ ~)

XL P-t o(2 1) +X

+X' Pio(2 3) ~X
P-i,-i(»2) ~ P«(2 2) Poo(3 3)

X p (3,2) X

FIG. 3. In lowest-order perturbation theory, these are the
two chains that lead to the excitation of level 3 in Fig. 2. The
cross indicates a collisional interaction.

and

p&(v)=(y2/2)+I p' I(1,2;v)+i(A kU, )—(16)

The next step is to calculate the collisional transfer of
this electronic coherence. The density-matrix element

po t(1,2;v) evolves as

po, (1,2; v) = —[(y2/2) —ice]po, (1,2; v)

—I' ', (1,2;v)p (1,2;v) . (18)

Using the fact that the nondiagonal I"s are small relative
to the diagonal ones and the fact that
I p'I(1, 2;v) = I p':I(1,2;v), one finds

pp, (1,2;v)= —[I p, '(1,2;v)/iu, ,(v)]po t(1,2;v) . (19)

as
The next step is to evaluate pp o(1, 3;v), which evolves

derivative in Eq. (13) is a total time derivative
=8/Bt +v V. It turns out that the off-diagonal
I p', (1,2;v)'s are small compared to the diagonal ones.
Thus, to a good approximation, Eq. (13) can be solved to
yield

pp, (1,2; v) = —[y*W(v) /p, (v) ] exp[ i (kZ—cot )],—
(15)

where

pp o(1,3;v) = —[(y3/2)+i (co+co')]pp p(1, 3;v) —I oo(1, 3;v)pp o(1,3;v)

i (y')' ex—p[i (k'Z + At) ]p p(1, 2;v )+iy' exp[ i(kZ —A—t) ]p, o(2, 3;v), (20)

where y3 is the decay rate of state 3, co'=co32 is the 3 to 2
transition frequency,

y' =g'E'/2', (21)

p' is the dipole moment matrix element between states
(j3,0~ and

~ j3, 1), and E', A', and k' are the amplitude, X exp[i (k'Z+ A' t) ]pp, ( 1,2;v), (22)

I

frequency, and propagation constant of the field propaga-
ting in the —z direction. Note that the last term in Eq.
(20) does not contribute to this order in perturbation
theory. Equation (20) can be solved to yield

ppp(1 3'v)= i[(g ) /pt3(v)]
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where

p, 3(v) =(y3/2)+ I Oo(1, 3;v)+i [(b,+ b, ' —(k —k')U, ]

(23)

where

I,2(v) =(y2/2)+Re[I 0', (1,2;v)],
I 23(v) =(yz+y3)/2+Re[I', o(2, 3;v)],

(28)

and

X[I O', '(3,2;v)]*/[y3[p, (v)] p, 3(v)[p2(v)] ]

+C.C. (25)

where

p&(v) =(y, +y, )/2+ I Ioo(2, 3;v)+i (b, '+ k'u, ) (26)

and the relationship I i o' (2, 3;v)=[I o'i '(3,2;v)] has
been used. An analogous calculation for the stepwise
contribution yields

p (v)=4lgg'I W(v)G(v)l, (v)

(27)

The remainder of the calculation proceeds in a similar
fashion and one arrives finally at a two-quantum contri-
bution to p33(v) =—poo(3, 3;v) given by

P33 (v)

W(v)10', '(1,2;v)

and G(v) is a factor that gives the fraction of population
that is transferred from the m = —1 to the m = 1 sublevel
by collisions. Note that the TQ contribution arises solely
from a collision-induced transfer of electronic state
coherence. Moreover, since both I 0 i

'( l, 2;v) and
I 0', '(3, 2;v) are proportional to the spherical harmonic
Fz(8„,$, ), the TQ contribution would have vanished had
we used the average value for these collision rates in the
equations for P (ji j2). The TQ contribution depends
on a bilinear product of these rates which does not vanish
when averaged over the spherical angles e„and P, of the
velocity v relative to the quantization axis.

Equations (25)—(27) are valid for any ratios of collision
rates and detunings to Doppler width. For the limiting
case of interest in which

I
b,

I
» ku, Re[I o', (1,2; v) ];l~'1»k'u Re[1,'o(2, 3;v)]; and Ik —k'lu«Re [I Oo( 1,3 ) ] the equations simplify considerably. An

additional simplification is possible since the diagonal
collision rates depend only slightly on the direction of v
(see Appendix B). One can then replace I iz(v) by
r„(u)=(r„(v)) and I 23(v) by I 3(u)=(I 3(v)) to
reduce Eqs. (25) and (27) to

p3P(v) = lay'I'(I 0,', '(1,2;v)[l;, , '(3, 2;v) ]*) /[y, b.'(b. ')'p, „]+c.c. ,

P33 (v) 4IXX I ( G (v) ~~12(u)~23(u)/[y2y3~

p, ,3=(y3/2)+i (b, +b, ') +I oo(1,3;v)

(29)

(30)

(31)

and the average is over 8'(v).
In the region where 5= —b, ', the TQ contribution ex-

hibits a resonant structure with width of order
I »(u)=(y3/2)+Re([I oo(1,3;v)]), while the SW con-
tribution provides a nearly constant background. The ra-
tio r of the TQ to SW contribution is of order

r=p ~/p —I(I ', '(1,2;v)[I, '(3, 2;v)]')
I

Xyq/[2(G(v))r»(u)1 $3(u)r„(u)] .

(32)

The actual value of the ratio is model dependent, but it is
possible to estimate its value using the calculations of Ap-
pendixes A and B. For a dipole-dipole collisional interac-
tion and for perturber pressures suKciently high such
that the diagonal collisional decay rates are greater than
the spontaneous decay rates, the ratio r is estimated as

collision-induced phase shifts of the various levels have
opposite signs to 0.4 if there is a fortuitous cancellation of
phase shifts having the same sign and comparable magni-
tudes. In deriving Eq. (33), I set (G(v)) =

—,
' since, in the

limit of collision rates larger than spontaneous decay

1.0

0.8

0.6

0.4

0.2

where m and m are the active atom and perturber
masses, respectively, and A,(x) is a function plotted in Fig.
4 as a function of x = (m~ /m). The coefficient c i is
model dependent and ranges from a value of 0.0042 if the

0.0
0

FIG. 4. The parameter A, as a function of the ratio of the per-
turber to the active-atom mass ratio. The collisional processes
considered in this work are favored by higher values of A, .
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tYI
m=-3/2

m=1/2 m=3/2

j, =3/2

m=-1/2
) —1/2

rates, collisions totally redistribute the population in the
jr=1 level. In a spherical basis, both I 0'& '(1,2;v) and
I 0, '(3, 2;v) appearing in Eq. (32) represent terms that
are nondiagonal in the index q. As noted in Sec. II, the
magnitude of these elements depends on the degree of an-
isotropy of the perturber velocity distribution seen in the
active atom's rest frame. The degree of anisotropy is
larger for larger ratios of m to m. This fact is reAected in
the dependence of the ratio r on the function
A, [(m /m)'~ ].

Since y2/I &3(u) « 1, the ratio of the TQ to SW term is
small. This condition can be remedied if we can find a
system in which the density-matrix element p (1,3) is
unaffected by collisions and decays at a rate much slower
than y2. Such systems are readily available. If instead of
the three-level scheme of Fig. 2 we use a A scheme in
which levels 1 and 3 are now different ground-state sub-
levels of an alkali-metal atom, the collisional decay rate
associated with density-matrix element p (1,3) is small
compared with the excited-state decay rate yz. The ratio
of the TQ to SW contribution will then scale as (y2/y, ),
where y, is the inverse time that the atom spends in the
interaction volume. Since values of (y2/y, ) ~ 1000 can
be realized, the TQ contribution can dominate the spec-
tral response. As such, the signal can be a direct measure
of the existence of CITEC.

Consider, for example, the level scheme of Fig. 5,
which corresponds to an alkali-metal atom. Only the
j,=

—,
' to j2= —,

' transition is shown since all nondiagonal
decay rates vanish for a j, =

—,
' to j2= —,

' transition. The
cross section for m-changing collisions in the ground
state is negligibly small, since the ground state is an S
state. To approximate a "three-level" atom, it is assumed
that a static magnetic field has been applied along the z
axis and that the resulting Zeeman splitting is large com-
pared with the Doppler width associated with the j, to j2
transition and with the hyperfine splitting of the levels,
but small compared with the inverse collision duration.

r=c2[y2/y, ][A[(m /m)'~ ]I (34)

where c2 is a model-dependent factor that ranges from
0.0064 to 0.130. For Na-Xe collisions, A, =0.60; one
should be able to see the TQ contribution for
(y, /y, ) ~100.

There is an addition complication associated with A, -

type level schemes that has been neglected in writing Eq.
(34). Spontaneous emission also populates the final state
under consideration. The contribution from the span-
taneous emission terms can provide a Aat background
that is much larger than that from the TQ terms. To iso-
late the TQ terms, the fields should be modulated at fre-
quencies that are larger than y„but smaller than I,2(u).
If the difference of the modulation frequencies of the two
fields is taken to be of order y, and if only that part of the
signal modulated at twice the difference frequency is
monitored, it should be possible to isolate the TQ contri-
bution.

IV. FARADAY ROTATION

In this section, the role of CITEC on the Faraday rota-
tion in an atomic vapor is calculated. A laser field,
linearly polarized in the x direction, propagates in the z
direction and drives a transition between sublevels of
ground and excited states having electronic angular
momentum j, and jz, respectively. It is assumed that
collisions do not mix the magnetic sublevels of the
ground state. On the other hand, it is assumed that the
collision rate I,2(u) is sufficiently large to neglect the
hyperfine splittings in the ground and excited states [14].
A static magnetic field is applied along the z axis; the
Zeeman splitting associated with this field is smaller than
all relevant frequencies in the problem.

As a result of the application of the magnetic field, the
index of refraction seen by the two circularly polarized
components of the linearly polarized field is different and
the plane of polarization of the light can rotate as it
passes through the vapor. The incident field is written as

Two copropagating, 0.+-polarized fields are used. The
one having frequency Q is nearly resonant with the
j, (m = —

—,
'

) to j2(m =
—,
'

) transition frequency. The
second field's frequency 0' is chosen such that the
ditference (0—0') is nearly resonant with the
j,(m = —

—,
'

) to j, (m = —,
'

) transition frequency. The atom
is initially prepared in the j, (m = —

—,
'

) sublevel and the
population of the j&(m =

—,') sublevel is measured. The
calculation proceeds as above and one finds the ratio of
TQ to SW contributions to be

FIG. 5. An atomic level scheme, appropriate to an alkali-
metal atom in an external magnetic field, which can be used as a
"three-level" system. The magnetic field splitting is larger than
the Doppler width, such that each of the incident fields can be
assumed to drive a single transition. The field having frequency
0 drives the j&= z, m2= —

2
to j2=2, m&=2 transition and

the field having frequency 0' probes the j&=2, m&=2 to

j2= 2, m&=
2

transition. The atom is prepared in the m& = ——1

sublevel and the population of the m, =
2

sublevel is monitored

as a function of Q' for fixed Q.

E(R, t)= —,'E(Z)[e (e )*]exp[i(kZ —Qt)]+c.c.

,'E+ (Z)(e )' exp—[i(kZ At)]+c.—c.
= —,'E+(Z) exp[i (kZ —Qt) ]+c.c. ,

where

e+, = + (e

+i@~~

)/V2, Eo=e,

Ey) = + (x+iy)/v 2, Eo=z

(35)

(36a)

(36b)
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and e= (e„,e, e, ) is the (complex) polarization vector of
the field. For a field linearly polarized in the x direction,
one has

Eqs. (35) and (43) as

E(L, t)= ,'E—(Z=0)[e ' (ei)*+e ' (e i)*]

e =( —5q, +6q, )/&2 . (37) X exp[i (kL —Qt) ]+c.c. (45)

This field gives rise to a polarization in the sample which
can be written as

In general, the field is elliptically polarized. The plane of
polarization is rotated by an angle

P(R, t)=P+(Z) exp[i(kZ Qt—)]+c.c. (38) Pf = —Im[(a, —a i)L/4], (46)

BE,(Z)/Bz=(4~ik)P (Z) . (39)

The polarization, in turn, is equal to the average dipole
moment per unit volume, which can be related to
density-matrix elements in an irreducible tensor notation
by

In the slowly varying amplitude and phase approxima-
tion, Maxwell's equations can be used to relate the elec-
tric field and polarization through

Pf ——Im[da/db, ]co,L /2, (48)

measured from the x axis toward the y axis.
Becquerel's law is valid if

a+, =a+, (b,+co, ),
where 6 is the atom-field detuning and co, is a Zeeman
splitting produced by the magnetic field. If condition (47)
holds, then

P(R, t)=(1/&3)(e )*(—1) ' 'Np*[p (j, ,j2)]"
X exp [i ( kZ At ) ]+—c.c. ,

where

a=—a+, (co, =0) . (49)

XNp*[pq(J'„J'z)]' . (41)

It is shown below that, if the initial state is unpolarized,
then to first order in the incident field

[pq(J J2) l' =C,E+,(» .

As a consequence,

(42)

where+ is the reduced density-matrix element of the di-
pole moment operator between states j2 and j„N is the
active-atom density, and the tilde indicates a field interac-
tion representation to be defined below. By combining
Eqs. (35)—(40), one finds

BE (Z)/Bz =(1/v 3)(4qrik )( —1) '

Since Im[da/db, ] is proportional to dn
—0/db„w here

no is the index of refraction in the absence of the magnet-
ic field, one finds that

Pf -(dnoIdb. )co,L/2, (50)

which is Becquerel's law. Insofar as p+, (j„jz) is not a
function of (b, +co, ), there can be a breakdown of this
law.

In an interaction representation defined by
p"(j„j2,v)=p (j „j2,v)exp[ 'i(kZ ——Qt)], the steady-
state solution for pq (j„jz, v ), to lowest order in the ap-
plied field (35) for an initial state that is unpolarized can
be obtained from [15]

BE (Z) IBz = —(a /2)E (Z),
where

aq =(2/&3)N(4~ik)( —1) ' 'p'C

(43)

(44)

[I "(v)+i(b, —ku, —co")]p (j„j2;v)
=g'[ I

qq (1,2, ;v)+iraq ]pq (j i,j 2 ,v)+Sq'(v)

(51)

The field exiting the sample at Z =I. is obtained from where

I q(v) =(y2/2)+I qq(1, 2;v), (52)

I

coq" =(13()BI%')(—1) ' ' (2k'+1)'~ (k'q, 10~kq ) g [j2(j2+1)(2j2+1)]'~

k' 1 k—( —1)'+"+"g [j,(j, +1)(2j,+1)]'~
1 1

J& J2 J&
(53)

k — kk (54)

S"(v)=i (g*/2v'3A')( —1) ' '(2ji+ 1) '(E+ ) W(v)5k i, (55)
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PQ is the Bohr magneton, g is the Lande g factor, B is the
magnitude of the magnetic field applied along the z axis,
[„"„"J is a 6-j symbol, E+ is the spherical component
of the incident field defined by Eqs. (35) and (36),
I "~ (1,2;v) is the collision rate given by Eq. (Al) of Ap-
pendix A, and the prime on the summation indicates that
the sum excludes diagonal terms with both k =k' and
q =q'. For an incident field polarized in the x direction,
E+ is nonvanishing only for q =+1.

We are interested in a solution of Eq. (51) to first order
in co . Clearly, if the off-diagonal collisional transfer
rates are set equal to zero [that is, preavera~ed over
W(v)], the solution of Eq. (51) to first order in co

" is

p~, (j„j2;v)=[I,(v)+i {b,—ku, cu, )] 'S~i,
where

I,(v)=—I",(v)=I ' i(v), co, = —coi=cu' i .

(56)

It follows immediately from Eq. (56) that Becquerel's law
is satisfied since p+,(j„jz,v) is a function of {b, co, ).
From Eqs. (56), (42) —(44), and (46) one finds a Faraday
rotation given by

P/= —AIco, Re{[I,(v)' i (6 —ku, )]—), (58a)

(58b)

I ""(8,)—= I "(1,2;v)~„=„. (59)

It follows from Eqs. (Al) and (A13) of Appendix A that
there is no multipole transfer unless k or k' is greater
than or equal to 2; consequently, there is no multipole
transfer for a j& =0 to jr=1 or a jl = —,

' to j2= —,
' transi-

tion. As a simplification, all collision rates are evaluated
at U =u.

Multipole transfer can occur for a j,=
—,
' to j2 =

—,
' tran-

sition, typical of the alkali-metal atoms. The appropriate
I'""(8„)'s are given by Eqs. (59) and (B16). The cross
section for m-changing collisions in the ground state is
assumed to be negligibly small, which is a good approxi-
mation for alkali-metal —rare-gas collisions [16]. For a
jI =—,

' to j2 =
—,
' transition, k and k' can be equal to 1 or 2

in p~(j„jz,'v). Equation (56) can be solved for p ( —,', —,';v)
in terms of P'( —,', —,';v) since S =0. The solution is given

by

AI =N Q~ (4m.k)L/12iri,
where { ) indicates an average over 8'(v).

Deviations from Becquerel's law can occur when the
off-diagonal CITEC rates I "".(1,2;v) are nonvanishing.
Since the off-diagonal rates are typically much smaller
than the diagonal ones, a solution of Eq. (56}to first order
in I ""(1,2;v) (krak', qAq') is sought. The I "

~ (1,2, ;v)
(k&k', qXq') are proportional to F~ (8„$,) with lc an
even integer ~2 [see Eq. (Al)]. On averaging over P„
any contribution to p~, (j„ji',v) will vanish to first order
in I

~~ (1,2;v) if qWq'. As a consequence, we need con-
sider only those terms involving multipole transfer for
the same q, i.e.,

where

coz — cui — co i
— cuI — cil i

—( v 3/7)coz (62)

When this solution is substituted back in Eq. (36), Eq.
(62) is used, and terms linear in I, and co, are retained,
one finds

p', ( —,', —'„v)= I,(v)+i(b, —ku, +co, )

2icu,'r, (8, )+
I 2(v)+ i(b, —ku, )

S+i(v) . (63)

As an algebraic simplification, one can set
I,(v) =I 2(v) = (1 &(v) ) =I, which is approximately true
(see Appendix B).Since

~ I, /I
~

&& 1 and ~co, /I ~
&& 1, one

can expand (63) to obtain

i co, 2i co,'r, (8, )

pu, pv, (v)2

where

p(u, )=r+i(b, —ku, ) . (65)

Combining Eqs. (64), (46), (42) —(44), and (55), one can
obtain the Faraday rotation as

4/ =4/i+ 0/i (66)

Pfi Afro, Re( [p(u, )*] } (67)

is that part of the Faraday rotation satisfying Becquerel's
law and

$/~=2A/cu,
' Re{[l,(8, )p(u, ) ]') (68)

is a correction. Note that one can write

r, (8„)=r, ,'(1,2; v) =r,P, [cos(8, ) ] . (69)

For 8'(v)=(vru ) exp( —u /u ), the integrals im-
plicit in Eqs. (67) and {68) can be evaluated in terms of
the plasma dispersion function Z(1(t) defined by

Z(g)= —(m. } ' f dz e ' [1it+z] ', Im(1it)) 0 . (70)

One finds

I 2(v) = I i(v) = I i(v), co,z
———cui =co i

=—9cu, , (61)

I,(8„)=I,'(1,2;8„)=—I ', (1,2;8„)
=I '(1 2 8 )= —I ' (lt2;8, ),

i~;+r, (8, )
P+1 2t yt r ( )/ ~ (g k ~ ~ )P+i{Pt 2}tt

(60) and

2 Aye() [1+Re [riZ(ri) I ] (71)
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0.02 where

q=(ir*+a)/ku . (73)
0.01

0.00
9-
6-

-0.01

The maximum contribution from Pf@ arises when
Irl-ku. For Irl «ku, &f2/pf~ —Ir, l/ku «Ir, /r,
w»1«« lrl »ku, pf /haft-lr, l(ku)'/lrl'« Ir, /rl.
The ratio Pz/P& is proportional to I, /I . From Appendix
B we have

I, /Re(l )= —c3A[(m /m)'/ ](1+0.73i) (74)

-0.02

hfRe(I )
FIG. 6. The deviation of the Faraday rotation from

Becquerel's law (PB«—PF«)/Ps«= —P2/P~ as a function of
[6/Re(I )], where P, is evaluated at [b, /Re(I )]=—0.73. The
perturber to active atom mass ratio is 5.8, the ratio of Re(I ) to
the Doppler width ku is 0.9, and the value of c3 is 0.1 (see text).
A 2% deviation from Becquerel's law is predicted.

Q) Af
Re(I )

(ku)

X [i[I,*/Re(I )]

X [r)(4r)~ —10)+(4g —12' +3)z(g)]j, (72)
I

and c3 is a model-dependent coefficient that ranges from
0.063 to 0.28. In Fig. 6 the correction to Becquerel's law
I Ijkf 2/Pf & [b, = —Im( I ) ] j is plotted for
Re[I ]/ku =0.9, a mass ratio of 5.8 corresponding to
Na-Xe collisions, and c3=0.1. The correction is of the
order of several percent and should be accessible to ex-
perimental verification.

In the limit of very high pressures such that
I
I

I
))ku,

$2 scales as [Re(I )/ku] «1. Even though Pz goes to
zero, there is still a correction to Becquerel's law of order
(I, /I ) . If Re(I )/ku ))1, one can neglect the ku, term
in Eq. (51), solve that equation to second order in the off-
diagonal collisional transfer rates, and combine the re-
sults with Eqs. (64), (46), (42)—(44), and (55) to obtain a
contribution to the Faraday rotation given by

/f3= —Af Re (I +id ) 2','(I, '(1,2;v)[I",,(1,2;v) —I ] ) +2',g'(I', "(1,2;v)I ",'(1,2;v) )

kk'( rlk( 1 2. )I k'1( 1 2. ) ) (75)

Note that terms with qWq' contribute in second order.
For the parameters chosen in Appendix B, one finds

0.04

/f3= —
( Af /5) [A[(m /m)' ] j

XRe[[(I +i5) (ico, )(0.0546+0. 170i)]' j

(76a)

0.02—

6- 0.00 =

S-
-0.02—

for the model in which the collision-induced phase shifts
in the levels have opposite signs and -0.04—

-3.5
I

-2.5 -1.5
I

0.5
I

1.5 2.5

/f3= —( Af /5) {A[(m~/m )' ] j

X Re[ [(I + ib, ) (iro, )(0.304+0.934i)]*j

(76b)

for the model in which the phase shifts have the same
sign and are of comparable magnitude. The correction to
Becquerel's law [

—/f3/Pf, [b,= —Im(I )] j ranges from
0.2% to 4% for a mass ratio m~ /m = 1.55 corresponding
to Rb-Xe collisions, so it is unlikely that this contribution

FICi. 7. The deviation of the Faraday rotation from
Becquerel's law (Ps« —PF„)/Ps«= —P3/P, as a function of
[5/Re(I )], where P, is evaluated at [6/Re(I )]=—0.73. This
graph divers from Fig. 6 in that the pressure is assumed to be
sufficiently high [Re(I ) »ku ] that terms linear in the collision-
al transfer rates are negligible, and only terms quadratic in these
rates contribute in this graph. The perturber to active atom
mass ratio is 1.55. The deviation of 4% is for a model in which
there is a fortuitous phase cancellation of collisional shift. If
the collisional phase shifts associated with the ground and excit-
ed states have opposite signs, the correction would be of order
0.2%.
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is dominating the experimentally measured deviation
from Becquerel's law measured by Kristensen, van
Eijkelenborg, and Woerdman [7]. Moreover, the line
shape of the correction as a function of detuning (see Fig.
7) differs qualitatively from the experimental results.

V. SUMMARY AND DISCUSSION

It has been shown that collisional transfer of electronic
state coherence can lead to new features in the spectral
response of an atomic vapor. Two examples were con-
sidered, the nonlinear spectroscopy of a three-level atom
and the deviation from Becquerel's law in an atomic va-
por. In both cases, collisional transfer rates I,(v) are re-
sponsible for the observed features, despite the fact that
these rates vanish when averaged over the active-atom
velocity distribution. To properly account for the col-
lisional transfer, it is necessary to calculate the appropri-
ate line shape as a function of I,(v) before carrying out
the average over the active-atom velocity distribution.
Since the collisional transfer rates are generally much
smaller than the "diagonal" decay rates these effects tend
to be relatively small.

All effects related to collisional velocity changes have
been neglected. Such effects must be included for a con-
sistent picture of angular momentum conservation, since
any changes in the internal angular momenta of the col-
liding atoms must be compensated by a corresponding
change in the angular momentum associated with the
center-of-mass variables of each of the atoms. (In the
work of Bacon et al. [4], a velocity dependence of
I ' '(1,2;v) [(m', —m, )=(mz —m2)] was included in

2

the analysis. ) Although formal expressions are available
[17] that treat both the internal and external variables in
a consistent manner, little progress in a practical evalua-
tion of these formulas has been made. It is known that
the retention of electronic state coherence following col-

I

lisions is often associated with diffractive scattering [18].
Since scattering in the diffractive cone is inconsistent
with changes in angular momentum much greater than A,
additional calculations are needed to prove conclusively
that I "".(1,2;v) does not vanish for qXq' when effects
related to changes in the atoms' center-of-mass velocities
are included.

Collisional transfer of electronic state coherence can
play a role in modifying signals in both the frequency and
time domains. For signals that are proportional to the ab-
solute square of the atomic polarization, it is important
to remember that the polarization is averaged over the
active-atom velocity distribution before the absolute
square is taken. As a consequence, effects linear in the
transfer rates I,(v) vanish. For example, it would be im-
possible to observe a photon echo on the j &

=0 to j2 =1,
m2=1 transition of Fig. 1 since the rate of coherence
transfer to these levels from the coherence po, (1,2;v)
is, on average, zero. On the other hand, in stimulated
echo and four-wave-mixing experiments, where the signal
can be proportional to ~1,(v)~, collisional transfer of
electronic state coherence can lead to new features in the
line shapes.
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APPENDIX A: RATE COEFFICIENTS

Expressions for I
~~ (j,j;v) have been derived previ-

ously [8—11]. The corresponding derivation for
I

qq (j~,j2,v) is identical and the result can be stated as

I ""'(j&j2,v)= Ã( —1) ' ' —
& j&m„j2—m2~kq" &&j,m', ,j2 —mz~k'q" &

X & k —q",k'q" ~I&0& & k q, k'q'~rag &[4—~/(2' +1)]' 'r&(e„,y„)ix(m „m'„m„m,'),

where

II-(m& m i m2 m2)

=(au~ )
~ Idv„Ex(2uu„/uI )exp[ —(u„+u )/u~ ]

I I

X f (2rtbdb)v„M ' '( bv„, Q)o,

(A2)

1Fx(a)= —,
' dx e ' Pz(x),—I

(A3)

X is the perturber density, u is the most probable per-
turber speed, O„and P, are the polar angles of v relative
to the laboratory frame, Pz is a Legendre polynomial,
and

=S,(j,;b, u„,Qo)[S, (j 2; b, v„& Qo)]'

—6,6
m/m] m2m2

(A4)

where the S .(j;b,v„,Qo) are S-matrix elements for an
m to m transition in state j for a collision geometry Ao
in which the impact parameter lies along the x axis and
the initial relative velocity is in the z direction. Gaussian
velocity distributions have been taken for the active
atoms and perturbers. One notes immediately that if'

(8„$„)=(0,0), I""".(j&,j2,'v) vanishes unless (q —q') =0;
an active atom moving along the quantization axis ex-
periences an axially symmetric perturber velocity distri-
bution which cannot, on average, change its z component
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of angular momentum. It is assumed throughout that the
atoms move on straight-line paths. For (u/u~) &&1, the
active atoms experience an isotropic perturber velocity
distribution; in that limit, Fz(a) ~5xo and, as a conse-
quence, the decay rates I qq. (j„jz,O) = I "(j„jz)5qq 5kk
are diagonal in k and q and are independent of q [6].For
q =q', one sets

I I I

™'(j&,jz', v) =( —1) ' '& j,m„j z
—mz lkq &

X & jim & jz —mzlk'q'&r""'(j„jz, v) .

(A6)

In many cases of practical interest, collisions do not
change the value of m in the ground state, that is,

r,""'(A,jz', v):—r" (A, jz;v) . (A5) S,(j,;b, u„,QO) =S (j, ;b, u„,QO)5 (A7)

In the magnetic state basis, one has In that case, Eq. (A 1) reduces to

I ""
(j&,jz', v;5m, =0)= N( ——1) ' ' '[(2k+1)(2k'+1)]'~ & jz mz—,jzmz ~ISO&

k k' K
X &k q&k'q—'~EQ &

'. . . [4'/(2'K+1)] Y&(g„,g, )I&(mz, mz),j2 j2 ji (AS)

where Ix is now evaluated by replacing S,(j, ;b, u„, Qo) with S (j, ;b, u„, Qo) in Eq. (A4). The corresponding equationmlml
in the m basis takes on the remarkably simple form

r ™'(A,jz', v)=r '(A, jz, v)5 (A9)

I

I '(j „j;v)= N( —1)— ' '& j —m, j m' K —Q &[4~/(2k+1)]' Yg(8„$„)
II

X[( 1) ' '&jz —mz', jzm "IKO&Ix(mz', mz')] . (A10)

I I I I

'(j&,jz,'v)=[r ' '(jz, j,;v)]', (Al 1)

In Appendix B, values for the S-matrix elements and I"s
are calculated assuming a dipole-dipole interaction be-
tween the active atoms and perturbers. Some genera1
comments can be made at this point. By taking the com-
plex conjugate of Eqs. (3) and (4), one can show that

S (j;b, u„, QO)=( —1) S (j;b, u„,QO),

from which it follows that

I I

1 2

(A15)

(A 168)

I "".(j„Jz,'v) =( —1) [I ""~
~ (Jz, j&', v)]' . (A12) (A16b)

From symmetry on reAection in planes containing the z
axis it follows that [S—11]

Combining Eqs. (A6) and (A16a), one finds

(A17)

S (j;b u„, QO)=( —1) S (j;b u„, QO),

(A13)

from which it follows that only terms with K even enter
the sums in Eqs. (Al), (AS), and (A10). Equation (A13)
does not result in any relationships among the

1 I

I ""
(j&,jz,'v)'s or I ' '(j„jz',v)'s; however, it does fol-

1 2

low from Eqs. (A13), (Al), (A6), (AS), and (A10) that

From the Clebsch-Gordon coefBcients appearing in Eq.
(Al) and the fact that only even values of IC enter the
sum, one can deduce that the multipole transfer rates
I ~~. (j&,jz;v) (krak') vanish for j, =O to jz=l or for
j,=

—,
' to jz= —,

' transitions. It also follows from Eq. (AS)
that I ""(j&,jz, v;5m, =0) is diagonal in both k and q for
a j,=—,

' to j2= —,
' transition, implying that CITEC does

not lead to violations in Becquerel's law for such a transi-
tion.

(j„j;v)=( —1)"+"r"" (j, ,j;v), (A 148)
APPENDIX B: ESTIMATE OF THE TRANSFER RATES

I Ir '(A, jz, v)=( —1) ' 'I ', (ji,jz v) .
2

(A14c)

Moreover, for straight-line paths, one can show that, in
addition to Eq. (A13), the S-matrix elements satisfy [10]

I ""
(j„jz,v;5m, =0)

=(—1)"+"+ I "" (j j 'v'5m, =0), (A14b)
In this appendix a rough estimate of the transfer rates

for a(l, =0, s =0, j, =0) to (lz=1, s =0, jz= 1) and a
(l, =0, s =—,', j,=

—,') to (Iz = 1, s =
—,', jz =—,') transition is

obtained assuming a dipole-dipole interaction between
the active atoms and perturbers (such as rare-gas atoms)
whose ground state is an (l', =0, s'=0, j& =0) state. The
interaction potential between the active atom and per-
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turber is expressed conveniently as [19]

, „,(4~)'"
U(t) = —( —,', )'", I'~[8(t),P(t)]*V~(1, 1),

R t' (Bl)

where unprimed variables refer to the active atom,
primed to the perturber, and coJ is the sum of energies of
states I jm ) and

I
j'm'). The initial conditions are given

by

cos[8(t)]=v„t/R (t), sin[8(t)]=b/R (t),
R (t) =(b'+ v't')'" P(t) =0 (B3)

assuming straight-line paths for the atoms.
Given the potential (Bl), we must calculate the time

evolution of probability amplitudes a(JM;t) in a com-
posite angular momentum basis for the active atoms and
perturbers. In other words, the state vector for the sys-
tem is expanded as

where R(t) is the active-atom —perturber internuclear
separation, (8,$) are the polar angles of the relative ve-
locity during the collision, and Vt, (1,1) is an irreducible
tensor operator of rank-two expressed in a composite
basis of active-atom and perturber states, i.e.,

V~2(1, 1)=&i~, lq I2Q&T,'T,', ,

where T and T' are irreducible tensors of rank-one asso-
ciated with the dipole moment operators of the active
atom and perturber, respectively. For the reference
geometry in which the relative velocity v„ is in the z
direction and the impact parameter b in the x direction,
one has

a (j,j;JM;t = —~ )=ao(j om)5JJ 5J'p5Jj5~ (B5)

a (joj '=0jom; t = ao ) =S (jo)ao(j om '), (B6)

which defines the S-matrix elements. Note that jo =j&,j2
in our problem.

Owing to dipole selection rules, the potential (Bl) does
not directly couple levels within the initial-state mani-
fold. One must iterate the equation
i gaia (JM; t) =

& JMI UI J'M') a (J'M', t) exp(i co~~ t) through
a set of intermediate virtual states to arrive at the vector
equation [5]

ilia( jo ) =T(jo, t)a( jo ), (B7)

In other words, the active atom starts in state Ijo) ~ while
the perturber starts in its ground state having angular
momentum j'=0. The initial (and final) composite state
labels are the same as those for the active atom since
j'=0 for these states. The active-atom —perturber in-
teraction proceeds via virtual intermediate states (see
below). At time t= oo, one finds final state amplitudes
given by

I g &
=a (j,j';JM; t) &jm j'm '

I
JM & Ij m & I

j'm '
&

X exp( i cuzt), — (B4)

where a( jo ) is a column vector having elements

a(jo,j =0;jom;t) and T(jo, t) is a matrix having matrix
elements

4 3

T .(jo', t) =
6 {2J+ 1) '(fico q)

' Fg[8{t),0] F(3 [8(t),0]
[15R (t)]6 joJ

X & JM 2Qljom &&JM, 2Q'I jom'&I& jo,j'=o'joIIV"'(1, 1)IjIj ',J & I' (B8)

where the last factor is a reduced matrix involving the in-
termediate virtual state Ij,j ';JM ). In general, Eq. (B7)
must be solved numerically to get S-matrix elements as a
function of b and v, . An approximate solution, sufficient
for our purposes here [5], can be obtained if the noncom-
munitivity of T(t) and T(t') for tAt' is neglected. In
that case,

S(jo, b, u„)=exp (iA') ' f T(b, v„;jo; t)dt

variables if one defines

I VOI
=—I&j„j'=0;j IIv& '(1, 1)IIj,j';J &I (B10)

(Bl 1)

where

for some arbitrary intermediate state. Then, Eq. (B9)
may be rewritten as

S(j 0;b, u„)=exp i ( C lb —u„)I T(jo;x)dx

where S is a matrix having elements S ~ and the explicit
dependence on b, v„, and jo has been indicated. Equations
(B7) and (B9) can be expressed in terms of dimensionless

C=(128ir /15)(2J+1) 'Ificu JI 'I VuI /A' . .

T is a matrix having elements

(B12)

T .(jo,'x)=(1+x ) [(2J+1)/(2J+1)](I&i) &I/co J)Y&[8.(x),0] F& [8(x),0]

X & JM, 2QI jam ) & JM, 2Q'I jom') I &&0,j'=0;JOII V' 'I Ij,j',J & I'/I VOI (B13)

and

cos[8(x)]=x/(1+x')'~', sin[8(x)]=1/(1+x')' ' . (B14)
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With some additional changes of variables, the transfer rates for collisions which do not change m in state
~j, ), given

by Eqs. (A8) and (A10), can be written

I
~q (j),j2,'v;|)m1=0)=N&C uz ( 1) [(2k+1)(2k'+1)] 3(k q,—k'q'~KQ )

k O'Z
[4~/(2K +1)]'/ Yg(8„$, )ix (u lu )M~(j, j, )j2 j2 j&

(B15)

and —i r]P)
Mo( —,', —', ;el) =2—e '[S3/3 3/2( —,';el)

+S) ) ( —,';ii)]",
27 2

(B23a)

X(j —m, j m' K —Q)
X [4'/(2k +1)]'/ Yg+(8„$, )

xi (Ulu, )M~(j„J,),
where

i&(y)=(vr) fdpF&(2')p exp[ —(p +y2)],

(B16)

(B17)

—
imp)

M2( ——' il ): e [S3/3 3/2 3/2' ii )

—
S1/2, 1/2(3/2; 9 )]*, (B23b)

MO(0, 1;71)= I 3 —e '[2S»(1;il)+SOO(1;il )]*I /V3,
(B23c)

M3(0, 1;il)= —
( —,
')' e '[S„(l;31)—S(~(1;il)]',

(B23d)

Mx(J),J2)=(2'/5) f dil q
' 'MI-(j „j,;ri),

M~(j 1,j2, 11)=(—1) ' '( j2 —m2, j2m2 KO)

X [1—S(j) q)S (j„q)'],
and

S(jo;il)=exp irif T(j—o;x)dx

(B18)

(B19)

(B20)

where

e '=S(j„il),
$1=—,'(2J+ 1)( l~, ; I /ai, )( I & i) ——Ol I

T'"
I I

l = 1 &

X (i', =01 IT'"lli'= l & I'/I VoI')

Xy f" (1++')-3/ YE[0(x),0]/'«,
Q

(B24)

(B25)

(a +3) sinh(a)F2a=
a

3 cosh(a)
a

(B21)

It is possible to express the resulting integrals (B17) for ix
in terms of parabolic cylinder functions, but the rather
lengthy expressions are not given here. For y ( 1,

io(y) —1.05[1+(y /5)+(7y4/250)],

i2(y)-0. 505y [1—(y /5)+0. 0379y ],
while, fory ))1,

i()(y)-y '[1+(6/25y )],

(B22a)

(B22b)
iz(y)-y [1—(1.26/y2)+(0. 90/y4)] .

In the text, iz is evaluated at v =u (y =u lu ), the most
probable active atom speed. A graph of i2/io as a func-

tion of m /m =(u/u ) is shown in Fig. 4. For y =0, the
active atoms see an isotropic distribution of perturbers
and I "~ (j),jz', v=0;5m)=0) is diagonal in both k and q.

To evaluate Mz(j„j2), we first use Eqs. (B19) and
(B20) to write

The problem reduces to a calculation of Mx and iz (y).
F«j, =0 to j,=1 and j, =-,' io j,=

—,
' transitions, only

terms with K =0,2 contribute to the sum in Eq. (B15).
The values of Fz needed in Eq. (B17) can be obtained
from Eq. (A3) as

Fo(a) =sinh(a) la,

(3/2) ~(() (3/2)
(B26a)

M ( —' —'' )= —0 327e '( " —ee e

Mo(0 1 il)=3 —e '[e " +e

(B26b)

and the reduced matrix elements have been reexpressed
in terms of the single atom reduced matrix elements, tak-
ing into account the fact that both l& =0 and I

&
=0. The

frequency coL, equal to (co1 ) +a)1, , ), is negative if state j,
is the ground state. In the following, it is assumed that
col is negative.

The S-matrix elements in Eq. (B23) must be calculated
numerically using Eq. (811). Implicit in their evaluation
is a sum over all possible intermediate states. To arrive
at a numerical estimate of the ratios of the various I"s, I
make the simplifying assumption that a single interrnedi-
ate state (j,j') dominates the sum; both

cozen
and

~ Vo ~
ap-

pearing in Eqs. (B10) and (B12) are evaluated for this in-
termediate state using the maximum value of J associated
with the composite (j,j') states. For the j1=—,

' to j2= —,
'

transition, the intermediate manifold is taken as
~ j =—,',j'=1;J=

—,', —,
' ) (J=—', ), while, for the

j,=0—jz =1 transition, the intermediate state is taken as

~ j=0,j' = 1;J=J= 1 ) . One can then integrate over x in
Eq. (Bl 1), numerically evaluate the resulting S matrix,
and substitute these values in Eqs. (B23) to obtain
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M (Q 1 ri)= —( —')' e

23 ]/Q3 (826c) I",'( —,', —,';v) = —AA(0. 1102+0.osoi)D (0„$„), (83lc)

I",'(0, 1;v ) =I:',( 0, 1;v )

where

imp&&(1) igp22(1), iqp23(1)

(826d)

= A [(2.15+1.56i)

+A (0.084+0.06 1i)D() (8„,$„)], (831d)

I ) '(0, 1;v)= A7((0.205+0. 148i)Dz(0„$„), (831e)

( —' —v)= A [(1.'75+ 1.27i)
p2)( —,

'
) = —0.424, f22( —', ) = —0. 138,

p„(1)= —o. s2o,

$22(1)= —0.234,

P„(1)= —O. 351

(827)

(the sign of the co. z has been taken as negative).
g&J

To carry out the integration over g in Eq. (818), some
assumption on the relative values of p) and p;.(j2) is
needed. Two models are adopted. In the first model,

P, =0, on the assumption that the scattering cross section
for state jz is much larger than that for state j, . [Except
for an overall multiplicative factor, this model leads to
collision rates that are identical to those for a model in
which co. J is positive (phase shifts of opposite sign forJ2J
states j, and jz).] With $(=0, numerical integration of
Eq. (817) yields

+A(0. 126+0.092i)D 02 ( g„,p„)],
(831f}

(
' ' )= A [(1 75+1 27i)

—
7(,(0.126+0.092i )D () ( 0„,P„)], (83 1g)

I 3/2( —,', —,';v) = —A A(0.205+0. 148i)D, (0„,$, ) . (831h)

Mode12: p) =$22( —', ) and $&=$23(1).

I )'( —,', —'„'v)= A [(0.915+0.665i)

+A(0. 1492+0. losi)D()(0„,$, )],
(832a)

I, ( —,', —,';v) = A [(0.915+0.665i)

—
A, (0.1492+0.108i)D()(8„,$, )],

Mo( —,', —,
'

) =(2'/5)(3. 50+2.54i),

M2 ( —,', —,
'

) = ( 2m /5 )( 0.266+ 0. 194),
Mo(0, 1)=(2m. /5)(6. 45+4.69i)/&3,

M~(0, 1)=(2'/5)( —')'/ (0.251+0.182i) .

(828a)

(828b)

(828c)

(828d)

I, '( —,', —,'; v ) = —A A, (0.259+0. 18 8 i )D ( 8„,P, ),
I ,'(0, 1;v)=I,(0, 1;v)

= A [(1.17+0.229i)

(832b)

(832c)

In the second model, I try to estimate the maximum ratio
that M2/Mo can achieve by some fortuitous choice of P).
For the —,

' to —,
' transition, I set P& =$22( —', ) and, for the 0

to 1 transition, P, =$23(1). In that limit, one finds

+A(0. 583+0.115i)D (8„$,)], (832d)

(832e)r (0, 1;v)= AA(1. 43+0.280i)D (8„,$„),
( —,', —', ;v) = A [(0.915+0.665i)

+g(0 299+0 217. i)D()(8.„$,)],
Mo( ', —')= (2~/5)( 1.83+ 1.33i),

M2( —,', —', ) =0.327M()( —,', —', ),
Mo(0, 1)= (2n/5)(3. 50+0.687i)/&3,

M2(0, 1)= (1/&2)MO(0, 1)

(829a)

(829b)

(829c)

(829d)

I )/~( —' 3 v) = A [(Q.915+Q. 665i)

—7((0.299+0.217i)D () (8„$„)],

(832f)

(832g)

/(. (U/u )=i2(U/u )/io(U/u~) . (830)

It remains only to calculate the various 1"'s needed in
the text using Eqs. (815) and (816). The results are ex-
pressed in terms of the ratio

I '/
( —,', —,

' v) = —A A(0. 422+0. 307i)D, (8„,$„),
where

A =(Se~/5)C2/5up/5lo(v
/up )

(832h)

(833)

Mode/7: P) =0.
I", ( —,', —', ;v) = A [(1.75+ 1.27i)

and

D,'(e„,y„)=(4~/5)'/2I .'(~7. , y„) . (834)

+A(0.0632+0.046i)DO(8„,$„)],(831a)

I, ( —,', —,';v)= A [(1.75+1.27i)

—k(0.0632+0.046i)D() (8„$„)],
(83 lb)

Note that the "homogeneous" part of the diagonal (in

both k and q or in m) collision rates is generally much
larger than the part varying as Do(8„,$„). 1«s on t»s
basis that, to a erst approximation, one can take all the
diagonal rates (or a given j, and jz) to be equal and in-

dependent of (8„$„).
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