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We develop a theory of electromagnetically induced transparency in a three-level, ladder-type
Doppler-broadened medium, paying special attention to the case where the coupling and probe beams
are counterpropagating and have similar frequencies, so as to reduce the total Doppler width of the
two-photon process. The theory is easily generalized to deal with the A configuration, where the ideal
arrangement involves two copropagating beams. We discuss different possible regimes, depending on the
relative importance of the various broadening mechanisms, and identify ways to optimize the
absorption-reduction effect. The theory is compared to the results of a recent experiment (on a ladder-
type system), using the Rb D2 line, with generally very good agreement. The maximum absorption
reduction observed (64.4%) appears to be mostly limited by the relatively large (~5 MHz) linewidth of

the diode lasers used in our experiment.

PACS number(s): 42.50.Hz, 32.80.Wr, 42.65.Ky

I. INTRODUCTION

Electromagnetically induced transparency (EIT) is the
effect behind some recent proposals for lasing without in-
version [1]. A possible level scheme for EIT is shown in
Fig. 1(a). Under normal circumstances, with most of the
population in the lower level |1), the probe beam on res-
onance with the |1)—|2) transition would be strongly
absorbed. When a strong “coupling beam” resonant with
the |2)—|3) transition is added, however, absorption of
the probe beam can be greatly reduced (although most of
the population is still in the ground state). This possibili-
ty of controlling the transparency of a medium by using
another beam of light may have useful applications in
electro-optical devices and nonlinear optics, in addition
to the lasing without inversion applications mentioned
earlier [2]. Also, systems similar to the one in Fig. 1(a)
have been predicted to exhibit unusual dispersive proper-
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FIG. 1. (a) Relevant energy levels of neutral rubidium atom.
(b) Dressed-state picture.
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ties which might also lead to useful new devices [3].

We present here the theory of a recent experiment [4]
we carried out on the system of Fig. 1(a) (a gas of rubidi-
um atoms). We believe this experiment to be the first one
to observe EIT in an inhomogeneously broadened medi-
um, with cw lasers continuously tunable over a broad
range of frequencies [5]. This makes a detailed, quantita-
tive comparison to a relatively simple theory possible and
this is one of the main purposes of this article. As re-
gards the theoretical treatment itself, its main new
feature is the explicit inclusion of inhomogeneous
broadening, which is treated exactly (to lowest order in
the weak probe field) so that the influence of the various
broadening mechanisms may be assessed in a variety of
different regimes and in particular in the ‘“almost
Doppler-free” configuration of our experiment. Our for-
mulas for the ladder system can easily be extended to the
A configuration and we also indicate how to do it here.

Our paper is organized as follows. In Sec. II we
present the theoretical results and in Sec. IIT a discussion
of the experiments and detailed comparison to the
theoretical predictions. Section IV contains some brief
concluding remarks. Section II is further divided into
several subsections, dealing with the derivation of the
general, analytical results, their generalization to the A
level scheme, numerical and analytical study of various
limits of interest, and a brief summary of the main points.

II. THEORY

A. General results for the ladder system

Consider the three-level system in Fig. 1(a). Let w,; be
the frequency of the |1) —|2) transition, w, the frequen-
cy of the probe laser, and A;=w, —w,, its detuning, and
similarly let w3, be the frequency of the |2)—|3) transi-
tion, @, the frequency of the “coupling” laser, and

A,=w,— w3, its detuning. Using standard semiclassical
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methods (see, e.g., [6]), we find the following equations of
motion for the matrix elements of the atomic density
operator:

Pn= —(’}’32—iAz)Psz+ig32Ec(P33—P22)+i821Ep*P31 >

(1a)
pzlz—(7’21_iAx)P21+i821Ep(P22_P11)“ig32Ec*P31 ’

(1b)
P31=_[7/31—i(Al"’Az)]Ps}—igszEchl+ig21EpP32 .

(Ic)

The dipole moment matrix elements for the two transi-
tions are 27g,, and 27g,,; we shall take them to be real
for simplicity. E, (E,) is the amplitude of the coupling
(probe) field. If collisional dephasing is negligible, the de-
cay rates are given by y;;=(I'; +T;)/2, where I'; is the
natural decay rate of level |i ) (with ", =0, since level |1)
is the ground state). As we shall show below, as long as
we are only interested in the solution of system (1) to
lowest order in the weak probe field, the equations of
motion for the diagonal density-matrix elements p; are
actually not needed and our results are, to that order, in-
dependent of any assumptions about the various channels
through which the different states may get populated or
depleted.

A key ingredient of equations (1) is the presence of the
matrix element p;;, which indicates a coherence between
the levels |3) and |1) that develops as a result of the
coherent driving of the two allowed transitions. At
steady state Eq. (1c) yields

_ igynE, + ignkE,
3 7’31_1'(A1+A2)p21 7/31—1'(A1+A2)p32
ig32Ec

(2)

Ya—i(A + AP
Here we make our first approximation, namely, neglect-
ing the contribution to p;; from the upper transition di-
pole amplitude p;,. The justification is twofold: first, this
term is multiplied by the weak probe field E,, and
second, the population in levels 2 and 3 is probably negli-
gible and so should be p,;. For a probe strong enough to
begin to saturate the |1)—|2) transition, this approxi-
mation may not hold anymore. Using (2) in (1b) and solv-
J

4i#g3, /€,

ing for the steady state we get
igz1Ep(P22_P11 )

Pu~ s 93/4
Y Yu—i(A+A,)
gy
~— E, , (3)
Q%/4 r
Ya—iA+

’}/31_i(A‘+A2)

where ), =2g;,E, (assuming E, the field’s complex am-
plitude, to be real) is the Rabi frequency of the coupling
field. In (3) we have made our second approximation,
namely, neglecting the population p,, of the middle level
(and therefore also that of the upper level), which means
Pr=p33=0 and p;;~1. The complex susceptibility at
the probe field frequency is obtained from the polariza-
tion

P=j6kE,[x(w,)e Ty e, ]

=—2hg21Np21e_im"t+c.c. , (4)

where N is the density of atoms. The real and imaginary
parts of the susceptibility y=x'+ix’’' lead to the disper-
sion and absorption characteristics of the atomic medium
in the usual way, i.e., the intensity absorption coefficient
is given by a=w,nox""/c and the dispersion coefficient
(real part of the wave vector k) is given by B=w,nyx'/2c,
where n is the background index of refraction (due to far
off-resonance transitions). While the results up to this
point are well known, as special cases of other treatments
(see, in particular, [7]) we have preferred to derive them
explicitly to make the paper self-contained and also to
point out clearly which assumptions and approximations
are or are not necessary for a good description of our ex-
periment.

The above derivation ignores Doppler broadening. A
key ingredient in our experimental scheme is that the
probe and coupling beams are counterpropagating and
their frequencies are very close. An atom moving to-
wards the probe beam with velocity v “sees” its frequency
upshifted by an amount w,v/c (to lowest order in v /c),
while the frequency of the coupling beam is, for the same
atom, downshifted by an amount —w_,v /c. If the number
of atoms per unit volume with velocity v is N (v)dv, their
contribution to the total susceptibility is

(v)dv =
ArvIay Q2 /4

N(v)dv , (5)

) L@
Yo —iA —i—v+
c

where the detunings A, and A, are defined as the nominal
detunings for an atom at rest. In our experiment, w, is
approximately equal to ®, and hence the two-photon
transition is almost Doppler-free. Even so, the small
term (w, —w.)v /c in (5) does make a difference. The to-

p
tal polarizability is obtained by integrating (5) over the

Y3~ i(A+A)—ilw, —w v /c

[
velocity distribution, which is conventionally taken to be
Maxwellian, i.e.,

— NO —v2/u?
N@)= u\/—;re dv , (6)
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where u /V'2 is the root-mean-square atomic velocity.
For a purely Doppler-broadened medium, the full width
at half maximum of the absorption profile would be given
by

2 _
Pr yving . (7)

Awp=
b c

If the small term (0, —w,)v/c is neglected in (5), the

integral over velocities yields the relatively simple result
_ 4ificg},NoVr

€U

Y e?’(1—erfz) )

p

with the argument

c Q2 /4
A 721_1.A1+

uw, v~ i(A+Ay)

. 9

The error function of complex argument is available in
most mathematical function packages (see also [8]). The
particular combination of e? and erfz appearing in (8) is
also called sometimes the plasma dispersion function (see
Appendix C of [6]). Some approximations to this result
will be discussed later on.

If the Doppler broadening of the two-photon transition
is not neglected, Eq. (5) can still be integrated over the
velocity distribution (6), but the results are a little more
complicated. One needs to calculate the poles of the
denominator in (5), as a function of z=v /u,

N Yo TiA; | ¥y Ti(A+A,)
22| wu/e  (w,—eu/c
. . 2
L4 Yo i . Yu—i(A+4,)
2 w,u/c (0, o )u/c
Qz 1/2
o - 2,2 (10
oy(0,—w)u"/c
The result is
Y= 2c B-Hﬁ
o, 2
2iticg},NgV'r 2
= 2B T —ays,e [ 1—s,erfliz,)]
€U,
2
+(1+d)sye [1—s,erfliz,)]} ,
(11)
where s, , = —sgn[Im(z, ,)] and the quantity
] —iA —i(A;+A,)
d=—_1 Y2 1 ¥an 174, (12)
z,—z, | wyu/c (0, —w )u/c

has been defined for convenience. This quantity d ap-

4itig2, /
x(v)dv = 17821 /%0

proaches *1 in the limit in which the Doppler shift of the
two-photon transition is negligible, i.e., when v, — o, is
sufficiently ~ small.  Specifically, if |o,—0.|/0,
<<v3,7Q2, we have d —»>+1 [the sign depends on the
choice of a branch for the square root in (10)] and the re-
sult (8) is recovered from either the z, or the z, term in
(11). Further approximations leading to simplifications
of (8) and (11) in special cases will be discussed in Sec.
IIC.

We note here the existence of at least one earlier
theoretical treatment of this system by Hansch and Tos-
chek [9]. Their main result, Eq. (58) of [9], is, however,
derived under some approximations which make it only
of limited validity for our purposes. In particular, they
keep the strong-coupling field only to second order,
whereas we have kept it to all orders (which we need in
order to compare with the experimental results; see Fig. 7
below), and they also make the strong Doppler limit ap-
proximation, which does not quite apply to our almost
Doppler-free case. A consequence of this approximation
in [9] is that they in fact predict a vanishing effect for
@, Smp, which is clearly not correct; for instance, our
Egs. (8) and (9) show electromagnetically induced tran-
sparency to be quite feasible for the simplest case of
®.=w, (completely Doppler-free two-photon transition),
as will be discussed in detail in Sec. II C (see also Fig. 2
below).

B. The A system

One can formally obtain the so-called A (or ‘““folded”)
level configuration from Fig. 1 by taking the coupling lev-
el |3) to lie below level |2). This makes the frequency
w3, formally negative; the slowly varying term in the in-
teraction Hamiltonian arises then from the ‘“negative fre-
quency” part of the coupling field, that is, the part that

o t .

goes as e ° (this may also be understood by noting that
the transition from |2) to |3) now involves the creation,
instead of the annihilation, of a photon). Therefore, the
role of A, in the equations in the preceding subsection is
now played by —w, —w3,=—w,tw,;=—A,, if the de-
tuning is defined in terms of the positive frequency w,; as
A,=w,—w,;. Equation (3) then becomes

ig2
=— E 13
P21 L 93/4 P (13)
ramtt Y31~ (A —A;)

(A system, homogeneously broadened case).

It is clear that when the motion of the atoms is con-
sidered, the way to stay close to two-photon resonance in
this system is to use two copropagating beams (so that
both frequencies are either upshifted or downshifted).
The equivalent of Eq. (5) then reads

02/4

N (v)dv (14)

.A .a’p +
—1 11—V
(A — Ay~ i(w,

—w v /c
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(A system, copropagating pump and probe beams). Then,
for the two-photon Doppler-free case (0. =w,), the total
susceptibility is given by Eq. (8), only with

¢ Q/4

- — A —— 1
: uw, Tamt Yu—i(A;—Ay) {13)

instead of (9), whereas the general case is given by Eq.
(11) with

Ay—>—A, (16)

in Egs. (10) and (12). Whereas most of the discussions in
the following subsection will assume the ladder
configuration of our experiment, they all can easily be ap-
plied to the A system with copropagating beams through
the substitution (16) above.

C. Various limits

Although this does not quite apply to our experiment,
consider first, for simplicity, what happens if the Doppler
broadening of the two-photon transition is ignored alto-
gether because of the counterpropagating pump-probe
beam arrangement and the closeness of the two frequen-
cies. Then we obtain Eq. (8). An asymptotic result valid
for large |z| (and |argz| <37 /4; see [8]) is

1

22 - [ —
e’ (1—erfz) v

1 1

17
z 253 17)

The argument z given by (9) will be large under two-
photon resonance conditions (A;=—A,) provided that
cQ? /4u ®,Y3>>1 or, in terms of the full Doppler width

(7, if
Qg 1 (18)
—_—>>1 .
Y31hwp

Equation (18) may hold either for a large . or a small
¥3;. If (18) holds and |A;+A,| <y5;, use of (17) in (8)
yields the homogeneously broadened result

4i#ig?,N, /€
Y= 8 124¥0/ €g . (19)

A Q2/4
Yot Y31~ i(A+4))

At line center, and for a perfectly tuned coupling beam
(A,=A,=0), the absorption coefficient « is reduced by a
factor

alQ,) 1 1
a(0) 1+Q2/4y,,7 3

— 3 , (20
Virzge °(1—erfzy)
where zo=cYy, /uw,=2VIn2(y, /Awy). In the limit
vY31—0, Eq. (18) obviously holds for any value of . and
(20) equals zero (total absorption suppression, perfect
transparency).

The assumption y;;—0 (which requires an infinitely
long-lived coupling level |3)) was made implicitly by
Imamoglu and Harris in [1]. It was shown later by
Fleischhauer et al. [7] that only under this condition do
the atomic evolution equations for the driven A or cas-

cade systems reduce to the equations for interference be-
tween excited states decaying to the same continuum,
originally proposed by Imamoglu [10] as an example of a
system that may show a perfect zero in absorption, but
not in emission.

In practice, one will never have y3;; =0, but clearly a
large reduction in absorption will take place if (18) holds
and

Q?
4217 31

For a Doppler-broadened medium (Awp > ¥,;), (18) is the
more restrictive condition. The assistance provided by
the coupling to the third level is, however, immediately
apparent. If one had to rely solely on the dynamic Stark
shift (equal to Q,/2) for the absorption suppression at
line center, one would naively expect that values of ), in
excess of the |1)—|2) transition’s natural linewidth y,,,
or even the full Doppler linewidth Aw, might be neces-
sary in order to see a substantial effect. Instead, by mix-
ing level |2) with the long-lived level |3), one gains a
large enhancement factor €_/¥;;, so that (18) and (21)
may hold even for values of the Rabi frequency much
smaller than the Doppler width. In our experiment,
Q. /Awy, is typically of the order of 1; yet the large value
of Q. /v 3, (of the order of 200) allows us to see a substan-
tial reduction of the absorption at line center.

It remains to be considered what happens when the
(small) Doppler broadening of the two-photon transition
is taken into account. We have mentioned already one
limit in which (11) reduces to (8), namely, when the fre-
quencies ®, and o, are so close that one has
lw, —w,| /@, <<y3,/Q%. This, however, is not really the
case in our experiment, nor will it in general be the case if
Q, is large and y;; is small. We find instead that for
most of our range of 2, the opposite inequality holds:

>>1 . (21)

2
Q 1)

—L ey P (22)
rh ‘wp ~ao,]

When (22) holds, the size of the arguments z, and z, of
the error functions in (11) is determined mostly by the
last term inside the square root in Eq. (10) (at least when
[Aj+A,| <ys and |A] <a)p7/31/]a)p—a)c|). This term
goes as Q2 /Awp8wp, where

dowp=Avplw,~w.)/, (23)

is the residual Doppler width of the two-photon transi-
tion. Therefore, if (22) and

Q

——————AwD N >>1 (24)

hold, one can use the approximation (17) to simplify (11)
near the two-photon resonance point. Some algebra
shows that when this is done the final result (to lowest
nonvanishing order in 1/|z,,|) is once again the homo-
geneously broadened formula Eq. (19). Thus Eq. (19) will
always hold, near A;,A,=0, for a sufficiently large Q,,
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even for a Doppler-broadened medium. Again, we note
that here “‘sufficiently large” does not mean that _ has
to be at all comparable to the full Doppler width; the
relevant scale is set by Eq. (24) [or by (18) if ¥3,> |8wp|]
[11].

For reference, we estimate that in our experiment the
right-hand side of Eq. (24) is at most of the order of 6.
This is still not quite large enough to make the use of the
homogeneously broadened formulas entirely accurate and
of course it gets worse for lower powers of the coupling
laser. However, numerical evaluation of the general ex-
pression (11) is quite straightforward: Figure 2 shows the
effect of the various broadenings and the way the homo-
geneously broadened limit (19) is approached at line
center for a sufficiently high Rabi frequency. The solid
gray line in Fig. 2 is the theoretical prediction for the ab-
sorption at line center A;=A,=0 as a function of the
Rabi frequency and for the parameters of our experiment,
for which 8w, =—2.97 MHz. The solid black line is the
homogeneously broadened result (19), whose value at
Q,.=0 has been used to normalize all the curves. The
dotted line shows the prediction if the small Doppler
shift of the two-photon transition is neglected, i.e., if dw,
is set equal to zero [this is given by Eq. (8)]. The dashed
line shows a hypothetical case with dwp =2.97 MHz and
all other parameters are as before.

Figure 2 indicates that for values of (), smaller than
those needed for (24) to hold it is actually better to have
dwp <0 than dwp >0 or even Swp =0. (This asymmetry
was exhibited already, in rather extreme form, by the ap-
proximate results in [9].) The asymmetry may be under-
stood, formally at least, by looking at the real and imagi-
nary parts of the denominator of (5) for A;=A,=0:

Q%/4

Y%H‘(wp—wc Yv2/c?

=yu+

X

1/31+i(wp—wc)%

0 50 100 150 200

FIG. 2. Theoretical predictions for absorption coefficient a
as a function of Rabi frequency (., on resonance at line center
(Ay;=A,=0). y,,=3 MHz and y;,=0.5 MHz. Solid black line,
a,, the homogeneously broadened case (Awp =8wp =0); solid
gray line, Awp =540 MHz and dwp = —2.97 MHz; dashed line,
Awp =540 MHz and 8wp=2.97 MHz; dotted line, Awp, =540
MHz and dwp =0.

If dwp <O, that means we have w, <o, and in this case
the term proportional to (0, —®.)v /c in (25) will add up
to the other imaginary part —w,v/c; this makes the
imaginary part of (5) smaller, overall, for any velocity v,
than in the opposite case, with dwp >0 (i.e., o, >w,),
where the term proportional to (0, —w,)v /c partly can-
cels the —w,v /c term.

Finally, we must consider briefly, for the purpose of
comparison with the experiments, the effect of a finite
laser linewidth. A simple way to account for this is to as-
sume that the experimental curves will be proportional to
the convolution of (11) with the laser line shapes, the
relevant variables being the frequencies w, and w, [12].
If the line shapes are Lorentzian, one can take advantage
of the simple result

® f(x) _ T .
f—oo (x —x¢) 2 +y2 x yf(xo iv) (26)

valid for any function f(x) analytic in the upper half
plane (including infinity). It can be shown that x(v) in
Eq. (5) is such a function of w, and w,, provided that the
integral over velocities is truncated so as not to allow
speeds greater than that of light (of course, such a trunca-
tion has a negligible effect in the final result). Then the
result of the convolution, apart from an overall multipli-
cative factor, is to replace w, everywhere by w2+i Ypo

P
where ©? and y p» are the nominal frequency and the half

linewidtﬁ of the probe laser, respectively, and similarly to
replace o, by wl+iy,. This replacement has negligible
consequences, because of the smallness of y, . compared
to w, everywhere except in the detunings A; and A,. In-
spection of (10)-(12) then shows that all that is neces-

sary is to change the effective linewidths

Yu—=>Yutvp, Ya—=>Yatv,tv.. @7

For our experiment, y,~vy.~2.5 MHz. It should be
kept in mind that this very simple approach will not hold,
in general, if the laser line shape is not Lorentzian.

The replacement (27) indicates that a large laser
linewidth will reduce the observed transparency because
of the sensitivity of our equations to the effective value of
v3;- Figure 3 shows the theoretical prediction for

0.5

0.4

UL o3

o(0)
0.2

0.1

2y
FIG. 3. Theoretical prediction for the absorption coefficient
at line center (A;=A,=0) as a function of laser linewidth. Solid
line, ¥,,=3 MHz, y;,=0.5 MHz, Q,=92 MHz, Aw, =540
MHz, and 8wp=—2.97 MHz; dashed line, the limit y;; =0
(other parameters are the same).
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a(Q,)/a(0) as a function of the laser full linewidth 2y
(assuming y,=v .=~y ,), at line center (A;=A,=0), and
for the parameters in our experiment (in particular, we
use the inferred effective Rabi frequency Q.=92 MHz;
see Sec. III). The dashed line illustrates what one might
observe instead if the third level had an infinite lifetime,
i.e., if y3;=0 instead of ~0.5 MHz. Clearly, at 2y; =5
MHz we are mostly limited by the finite laser linewidth.

D. Summary

The main points of the foregoing analysis may be sum-
marized as follows.

Assume an inhomogeneously broadened medium
(Awp >>v31,7,1), under conditions of one- and two-
photon resonances, for simplicity (A;=A,=0). Also as-
sume Y3, <Y,; since there is no apparent advantage in
coupling a long-lived transition to a short-lived one. (In
all that follows, from the point of view of what may be
observed in a particular experiment, y3; and y,; may
need to be augmented by the laser linewidth as neces-
sary.) If a “Doppler-free’” arrangement is used (counter-
propagating beams for the cascade system, copropagating
for the A system), then let |8wp, | be the residual Doppler
width of the two-photon transition [see Eq. (23)]. Two
regimes are then possible.

(i) If the level spacings are matched so that
[8wp| <<¥3, the condition to observe a large reduction
in absorption on resonance is given by Eq. (18). This is
analogous to the homogeneously broadened case [Eq.
(21)], except that the width Aw;, has replaced the original
homogeneous width (radiative or collisional) y,; of the
probe transition. Still, Eq. (18) shows that it is not neces-
sary for the pump Rabi frequency to exceed the Doppler
width and that in principle arbitrarily small absorption
can be achieved even for a small ., provided only that
v 31 be small enough (this also parallels the homogeneous-
ly broadened case [7]). The difficulty in achieving this
Doppler-free regime is finding levels with almost identical
separations. This may be especially hard in the cascade
configuration (although our experimental system actually
comes pretty close), but may be not as difficult for the A
systems, where |1) and |3) may just be different magnet-
ic or hyperfine sublevels.

(ii) For a small enough 75, or a large enough |8wp|
that the two-photon transition may not be regarded as
Doppler-free (in particular, when |8wp| > 73,), the condi-
tion for a substantial reduction of absorption on reso-
nance is Eq. (24) instead [at least for Swj >0; see (iv)
below for the other case]. This may still be achieved for
an (), considerably smaller than the full Doppler width,
if |8wp | can be made small enough.

(iii) In either case, the homogeneously broadened for-
mulas are recovered, near resonance, for a sufficiently
large Q.. The condition for this “power broadening” to
occur is again (18) or (24) (whichever is largest).

(iv) For values of Q. too small to satisfy (24), it is ad-
vantageous (from the point of view of reducing the ab-
sorption on resonance) to have a negative 8wp rather
than a positive or even zero (completely Doppler-free)

value. When inhomogeneous broadening is important,
therefore, one should look for systems where w;,> w,;.
(Note that for the A-type systems this means that, ideal-
ly, the coupling level |3) should be located somewhat
below the “ground” level |1).) Our numerical calcula-
tions suggest that it is generally better to have —&w|, as
large as possible, especially for small Q_; if Q, is already
large enough to satisfy (18), we find that there is little ad-
ditional benefit in making —8w, much greater than a
few times 5.

III. EXPERIMENTAL RESULTS

In this section the theoretical treatment will be com-
pared with our experimental results. The experiments
were done with rubidium atoms in a vapor cell at room
temperature [4]. The pumping laser of wavelength 775.8
nm couples the upper transition from state 5P;,,, F =4
(state [2)) to state 5Ds,,, F =5 (state |3)) and the probe
laser of wavelength 780.0 nm couples one hyperfine tran-
sition of state 55 ,,, F =3 (state |1)) to state 5P; ,, F =4
(state |2)), which is the Rb D2 line. This three-level
ladder-type system is exactly the one that we used in the
theoretical model described in the preceding section. The
condition o, —w, >0 is satisfied in this system, which is
favorable for EIT as discussed earlier. The natural
linewidth T, of the rubidium D2 line is about 6.0 MHz
and the natural linewidth I'; of the transition between the
states 5P;,, and 5Ds, is about 0.97 MHz. The Doppler
width at room temperature is about 540 MHz.

The experimental arrangement is shown in Fig. 4. The
probe and pumping beams are orthogonally polarized
and they propagate in opposite directions through a
76.0-mm-long rubidium vapor cell kept at room tempera-
ture (around 21°C-22°C). Both diode lasers (DL1 and
DL2) are frequency and temperature stabilized to give a
linewidth of about 5 MHz, which is the Schwalow-
Townes limit. The pumping laser (DL2) is a laser diode
at wavelength 775.8 nm with maximum output power of
20 mW at the cell position. This pumping beam is fo-
cused by a 10-cm lens onto the cell. The pumping inten-
sity at the beam waist is estimated to be 250 W/cm?. The
probe laser (DL1) is a laser diode at wavelength of 780.0
nm. To get a good beam profile, a 0.5-mm aperture is

DL1 ‘ l N
. N\,
780nm HWP  PBS y
(O]
AP1
PBS

E: ™

Detector

FIG. 4. Experimental arrangement. DL1 and DL2, diode
lasers; PBS, polarizing cube beam splitter; AP1 and AP2, aper-
tures; L1 and L2, lenses; HWP, half wave plate; POL, polarizer.
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used. The signal beam is also focused by a 10-cm lens
onto the cell to match the pumping beam. A polarizer is
used in front of the detector to eliminate the scattered
light from the strong pumping beam by the windows of
the cell.

When the pumping beam is blocked, typical absorption
curves of the probed transition for two-level atoms are
recorded (we concentrate only on one absorption line of
8Rb between 5S,,,, F =3 and 5P;,), as shown in Fig.
5(a). The maximum absorption coefficient at the center
frequency of the Doppler-broadened line is measured to
be a=~8.2X 1072 cm ™~ !. The room temperature was mea-
sured to be T=21.0°C during the experiment. With
pumping Rabi frequency set to zero, Eq. (11) for the ab-
sorption part is plotted (gray curve) together with the ex-
perimental curve (dark solid curve) with a laser linewidth
of 5.0 MHz and a Doppler width of 540 MHz. The
atomic decay rate T, is taken to be 6.0 MHz and T'; to be
0.97 MHz. When the pumping beam is applied and
tuned to the resonance frequency A, =0, a narrow dip at
the center of the absorption profile appears, as shown in
Fig. 5(b). Equation (11) for the absorption part is plotted
(gray curve) together with the experimental results (dark
solid curve). In this theoretical plot, all the parameters
are the same as used in Fig. 5(a), except for the nonzero
Rabi frequency (1, =92 MHz.

The only adjustable parameter in our theory is the

o (cm™1)
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FIG. 5. Absorption coefficient a as a function or probe de-
tuning A,. Heavy black curve, experiment; gray curve, theory.
(a) No coupling laser. (b) Coupling laser on resonance A,=0.
The theoretical parameters are y,; =3 MHz, y;,=0.5 MHz,
Q,.=92 MHz, Awp =540 MHz, 8wy, =—2.97 MHz, and laser
(half) linewidth v, =y ,=2.5 MHz.

pumping Rabi frequency Q.. In our experiment, two ma-
jor factors contribute to the uncertainty in determining
the Rabi frequency 1, for the pumping beam. One is the
tight focus of the pumping beam. The output of the
diode laser is an elliptical shape with the ratio of two ma-
jor axes of about 3:1. The Rayleigh lengths of the two
axes are about 3.2 and 31.0 mm, respectively. Since the
cell is about 76 mm long, the field is nonuniform inside
the atomic medium. Hence it is very difficult to convert
the pumping power into an effective Rabi frequency with
high accuracy. In our current theoretical treatment, the
change in the pumping intensity along the cell and the
spatial shape in the radial direction (Gaussian beam
profile) have not been taken into account. Additionally,
the mode matching of the probe and pumping beams are
not perfect. Due to the experimental arrangement, the
probe beam is comparable to the pumping beam in spatial
size. With the tight focusing, exact mode matching
efficiency is hard to determine, which contributes to the
uncertainty of the effective pumping Rabi frequency.
Other than the uncertainty in pumping Rabi frequency,
we have not considered the effect due to hyperfine struc-
tures on the excited states 5P;,, (state |2)) and 5D,
(state |3)). The closest hyperfine structure separation in
state 5P;,, is about 121 MHz (F =3 and 4), which will
have little effect on our experiment. However, the sepa-
ration between the closest hyperfine structures in state
5Ds,, is 9.4 MHz (F=4 and 5), which is within the
linewidth of the resonance dip in Fig. 5(b). We attribute
the broadening of the dip to the effect of hyperfine struc-
tures in state 5D;,. The experimental results and the
theoretical curves seem to agree very well in Figs. 5(a)
and 5(b).

From Fig. 5(b), a new absorption coefficient
a=~2.90X 1072 cm ™! is obtained at the center frequency.
This change in absorption at resonance gives an absorp-
tion reduction of 64.4%. As discussed in Sec. II, this
reduction in absorption is the result of atomic coherence
induced by the pumping field. The current limiting fac-
tor in absorption reduction is the laser linewidth. From
Fig. 3 one can see that, by simply reducing the laser
linewidth to 0.5 MHz, we could, in principle, achieve an
absorption reduction of 92.5%.

When the pumping beam is tuned off resonance
(A,=—320 MHz), a dispersionlike structure appears at
the side of the Doppler-broadened absorption curve [Fig.
6(a)] as a result of contributions from absorption reduc-
tion due to atomic coherence and enhancement due to
two-photon absorption. Figure 6(b) is the absorption
curve when the pumping frequency is tuned far from res-
onance (A,= —800 MHz). The absorption peak is due to
two-photon absorption from state |1) to state |3).
Again, theoretical results from Eq. (11) for the absorption
part are plotted (gray curves) with the experimental data
(dark solid curves) in these two curves. The parameters
used in the theoretical plots are the same as in Figs. 5(a)
and 5(b), except for the detuning of the pumping frequen-
cy A,. In particular, the same effective Rabi frequency is
used in Figs. 5(b), 6(a), and 6(b).

We have measured the change in absorption coefficient
with the pumping power for both on-resonance pumping
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FIG. 6. Same as Fig. 5 for a detuned coupling beam. (a)

A,=—320 MHz. (b) A,=—800 MHz. All other parameters
are the same as in Fig. 5.
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FIG. 7. Absorption coefficient versus pumping power for (a)
A,=A,=0 and (b) A,=—550 MHz and A;~550 MHz (the
two-photon absorption peak is slightly shifted from A, = —A,).
Solid line, theoretical prediction [the parameters are the same as
in Figs. 5 and 6, with the abscissa equal to 02 in units of (92
MH2z)3.

[Fig. 7(a)] and off-resonance pumping [Fig. 7(b)]. In the
on-resonance pumping case (A,=0), the absorption
coefficient is reduced at center frequency of the probe
beam as the pumping power increases. This absorption
reduction is due to atomic coherence induced by the
pumping beam. Equation (11) for the absorption part is
plotted together with experimental data in Fig. 7(a).
These measurements were done on a different day and the
temperature measured was 7"=22.5°C. The new absorp-
tion coefficient in the absence of the pumping beam is
a=~9.8X1072 cm™!. The pumping power was measured
experimentally for each point. In the theoretical treat-
ment, however, the Rabi frequency (), is the parameter.
Therefore, the only adjustable parameter is the conver-
sion from pumping power to Rabi frequency , as stated
earlier. The parameters used for the theoretical plot are
the same as those used in Figs. 5 and 6. The agreement is
quite remarkable. We also measured the increase in ab-
sorption due to two-photon absorption when the pump-
ing beam is —550 MHz off resonance with the [2) —[3)
transition (A,=—550 MHz). Equation (11) for the ab-
sorption part is again plotted with the experimental data
in Fig. 7(b). The experimental curve seems to bend more
than the theoretical one. We believe that this disagree-
ment is due to our neglecting the spatial variation of the
pumping beam inside the vapor cell in our theoretical
treatment.

IV. CONCLUSION

In this paper, a simple theoretical model was developed
to understand an experiment done in a three-level
ladder-type system in rubidium atoms. Results of the
theoretical analysis are summarized in Sec. II D.

We have also presented experimental measurements of
the absorption of a three-level ladder-type atomic system
in rubidium together with the theoretical results. From
our measurement, the absorption is reduced by 64.4% for
the probe beam at its resonance frequency when the
pumping field is on resonance with the upper transition.
The absorption on resonance can be further reduced if we
reduce the linewidth of the laser diodes and eventually
the reduction will be limited by the finite linewidth of the
upper state |3). In the limit when the laser linewidth and
the decay rate of state |3) go to zero, one can expect per-
fect transmission in an otherwise absorptive atomic medi-
um by using a pumping laser. This effect (reduced ab-
sorption in a medium) can find many applications in non-
linear optics and optoelectronic devices.

This measurement has a high-frequency resolution
with low pumping power and provides a meeting ground
for the experimental results and theoretical calculations.
Our simple theoretical model gives results in remarkable
agreement with the experimental measurement. We be-
lieve that the simple theoretical calculation is also useful
in clarifying the mechanism of EIT.
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